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2.12 Outflow Plumes 

 

 One of the most important aspects of deep ocean overflows is the mixing and 

water mass modification that occurs as dense water spills over a sill and descends down 

the continental slope.  These flows undergo turbulent mixing and entrainment leading to 

significant dilution and to increases in volume flux by 200% or more. The mixing may be 

due to bottom boundary layer turbulence or to interfacial instability or both.  Bottom and 

interfacial drag may also be particularly important in determining the path that the flow 

takes. The portion of the overflow in which these processes are active normally extends 

from the sill to some point tens or hundreds of kilometers downstream and is called the 

plume or outflow plume.  It is a sub-region of the overflow, meaning the entire 

hydraulically-driven flow that begins at the upstream mouth of the channel and ends at 

the downstream extent of the plume.  

 

(a)  Frictional plumes in a channel. 

 

 Some insights into the structure of a plume can be gained by comparing sections 

taken downstream of the Faroe-Bank Channel flow (2.11.4-2.11.6) showing the lateral 

spreading and thinning of the flow in the downstream direction.  As the plume descends it 

becomes thinner and wider and is increasingly confined to the right-hand slope of the 

channel.  These features have been reproduced in a laboratory model (Davies et al 2006) 

with a V-shaped channel that approximates the Faroe-Bank Channel bathymetry 

downstream of the sill (Figure 2.12.1). The observer faces upstream and the upper and 

lower frames show upstream and downstream sections of a particular realization of the 

plume. Variations in greyscale correspond to variations in density.  Three main water 

masses can be distinguished and these consist of a quiescent overlying fluid (middle 

grey), a dense core region (dark) lying within the plume, and an intermediate interfacial 

region (light grey) consisting of mixed fluid.  Comparison of the upstream and 

downstream sections shows that the thickest portion of the core region has shifted from 

the bottom of the V-shaped channel to higher up on the slope, possibly indicating lateral 

motion from right to left in the figure.  The lateral spreading and thinning of the plume in 

the downstream section is also evident.  

 

 It is difficult to configure laboratory experiments to match all the relevant 

nondimensional scale ratios that characterize the ocean application.  In the above 

experiment it is possible to match quantities like the average Froude and Rossby numbers 

V/(g D)
1/2

 and V/fW, where V, D, and L are velocity, depth and width scales for the 

plume).  More difficult to match is the Reynolds number Re=VD/ , where  is the 

kinematic viscosity of water. The magnitude of Re potentially determines characteristics 

of the turbulence that lead to mixing and entrainment.  Values for the present experiment 

lie in the range 1400-1600 whereas ocean values are O(10
8
).  However the dependence of 

the flow on Re considerably weakens when the threshold value of 1500-2000 is exceeded 

(Davies et al. 2002) and this scenario is approached in the experiment. 



 

 Deductive analytical models of plumes are generally not available due to the 

difficulty in dealing with the combined effects of friction, entrainment and nonlinear 

advection.  However there are some very helpful models that rely partially on ad hoc 

assumptions.  We will discuss two such models.  The first ignores entrainment but 

includes some elementary Ekman layer effects. The second includes both frictional drag 

and entrainment but does so within the context of a ‘streamtube’ flow that has uniform 

properties across each section. The flow takes place on a uniformly tilting plane.   

 

 In the Davies et al. 2006 model, the flow is confined to a V-shaped channel that 

has side slopes  and -   (Figure 2.12.2, viewed from upstream) and that tilts downhill 

with uniform slope S. The flow grounds on the left and right slopes at positions x*=xL* 

and x*=xR* as shown.  The neglect of entrainment allows for a second simplifying 

assumption, namely that the flow is locally uniform in y*.  Changes in the flow along its 

path can then occur only as a result of changes in the bottom slopes (  or S), which are 

allowed to vary gradually with y*.  Finally, it is assumed that the plume thickness d* is 

much greater than the thickness of bottom or interfacial frictional layers and that the 

inviscid core region is in geostrophic balance in both directions.  Thus the along-channel  

inertial effects fundamental to hydraulic behavior will be absent. 

 

 The geostrophic relations for the two velocity components in the inviscid core are 

 

    u* =
g

f
S      (2.12.1) 

and 
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 The volume flux associated with the core region is 
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in which d * (xL*) = d * (xR*) = 0 has been used.  The flux in any frictional boundary 

layers at the top or bottom must be added to Q* to get the total volume flux, but these 

contributions are small. 

 

 The depth-integrated transport of volume in the x*-direction consists of a 

contribution d*u* from the core velocity, plus a contribution from the frictional boundary 

layers.  In the present circumstance the latter is an Ekman layer and it characteristics are 



discussed in most texts on geophysical fluid dynamics [e.g. Pedlosky (1987), Ch. 4]. For 

a laminar flow the Ekman layer thickness is E = (2 / f )1/2 , but  must be replaced by a 

hypothetical turbulent viscosity in the context of the experiment or application.  If the 

overlying geostrophic flow is directed primarily in the y-direction, which is the case here, 

then a transport in the negative x* direction equal to v * E / 2  takes place in the boundary 

layer.  Davies et al. (2006) assume that a similar frictional layer occurs at the upper 

interface and thus the total boundary layer transport is * E .  

 

 Since the flow is independent of y*, the depth integrated mass flux in the x*-

direction is nondivergent.  This flux is clearly zero at the edges of the plume and the flux 

must therefore be zero everywhere else:  

 

    u *d * * E = 0 .    (2.12.4) 

 

 Use of (2.12.1) and (2.12.2) to substitute for the velocities leads to 

 

    
d *

x *

S

E

d* =
 (x > 0)

 (x < 0)
.   (2.12.5) 

 

 The solutions in the two regions are given by 

 

   

   d* =
Be x*/ E + E /S   (x > 0)

Ae x*/ E
E /S   (x < 0)

.   (2.12.6) 

 

The solution on each tilting side slope therefore consists of a uniform region with 

constant layer thickness and an outer boundary layer of width E/S that brings the 

thickness to zero.  The theory formally breaks down as the depth vanishes since there is 

nothing to balance the Ekman flux in (2.12.4).  The fact that the thickness is brought to 

zero monotonically means the slope of the interface cannot be greater than the slope of 

the bottom.   

 

 Matching the two solutions across x*=0 leads to 

 

    A = B + 2 E / S .     

 

In addition the position of the right-hand outcrop is given by setting d*=0 in the first 

relation in (2.12.6): 

 

    B =
E

S
e SxR */ E . 

 

The full solution is therefore 

 



  d* =
E

S

1 eS(x* xR *)/ E                   (x* > 0)

(2 e SxR */ E )eSx*/ E 1  (x* < 0)
  (2.12.7) 

 

 The position of the left edge of the current can be obtained by setting d*=0 in the 

second part of (2.12.7): 

 

   (2 e SxR */ E )eSxL */ E = 1 .    (2.12.8) 

 

 The flux Q is computed from (2.12.3) as 

 

  Q =

2g E
2

fS2
S

E

(xR * xL*) + 2(e
SxR */ E 1) ,  (2.12.9) 

 

and edge positions xR* and x*L are related by (2.12.8), or 

 

   xL* =
E

S
ln(2 e SxR */ E ) .    (2.12.10) 

 

As the along-channel slope S decreases the right-hand side of (2.12.9) increases.  A 

constant value of Q can be maintained by increasing the value of xR* and thus the right 

hand edge of the current must broaden as the along-channel slope decreases.   This 

tendency can be understood as follows: When S decreases (and  remains fixed), u 

decreases while v, and therefore the cross-channel Ekman layer flux remains the same. 

The layer thickness d must therefore increase to maintain zero net volume transport 

across the channel.  The plume must therefore narrow in order to maintain the same value 

of Q.  We leave it as an exercise for the reader to argue that the opposite effect occurs 

when  decreases and S is kept constant. 

 

 Equation (2.12.9) suggests 
2g E

2

fS2
 as a natural scale for Q.  A plot of the 

corresponding nondimensional transport vs. a nondimensional version of xR* (Figure 

2.12.3) shows that the right side of the plume broadens as the transport increases.  This 

tendency is consistent with what is observed in the experiment (symbols), and to some 

extent the Faroe Bank Channel overflow.  

 

 

(b) Streamtube models for entraining plumes.  

 

 The previous model is restricted in that it requires a channel geometry and does 

not allow for entrainment.  All major outflow plumes undergo entrainment, though it may 

only be significant over certain reaches. The plumes associated with outflows from the 

Mediteranean, the Denmark Strait, and the Weddell Sea’s Filchner Ice Shelf ride along 

continental slopes and gradually descend.  A traditional tools for simulating the combined 



effects of entrainment and bottom friction in these flows is the streamtube model, 

pioneered by Smith (1975) and improved by Killworth (1977) and Price and Baringer 

(1994).  We will discuss the original version of this model and comment on later 

refinements. 

  

 The term ‘streamtube’ implies a coherent flow that can be characterized at any 

cross section by a few variables that define the bulk properties like average velocity.  In 

the case of the Smith (1975) model the flow takes place on a flat surface with uniform 

slope S in the y-direction (Figure 2.12.4).  Natural coordinates (s*,n*) are used to 

measure distance along and normal to the axis of the plume.  The plume properties are 

assumed to vary gradually in the s*-direction.  Different versions of the model make 

different assumptions with regard to the variables used to characterize the flow and the 

way in which entrainment, friction and stratification are handled, but there is one far-

reaching assumption make by all.  The plume is supposed to be sufficiently thin that the 

slope of the interface remains nearly equal to the slope of the bottom in any direction.  

Accordingly, the pressure gradient in the plume is assumed proportional to the bottom 

slope; contributions from the gradient of the plume depth are neglected.  The main 

consequence of this simplification will be elimination of gravity wave dynamics from the 

model and thus the transmission of information upstream.  As we will see, the steady 

plume equations can be integrated downstream beginning at some point where the flow 

properties are known without regard for conditions far downstream.  This considerably 

simplifies the computational problem for ocean applications.  However, the local Froude 

numbers in deep plumes are observed to consistently fall below unity, particularly far 

downstream of the source, suggesting that upstream wave propagation is possible.  The 

importance of the consequences is not fully understood at the time of this writing. 

  

 

 The plume axis makes an angle  with respect to the x-axis and thus the position 

(X*,Y*) of the plume in the Cartesian frame is given by  

 

   
dX *

ds *
= cos    and    

dY *

ds *
= sin . 

 

The along- and cross- axis velocities will be denoted V* and U* respectively, with 

U * << V *  and it will be assumed that V* and the plume density  are constant across 

the section of the plume at any particular s*. The overlying fluid is stably stratified and 

has density a(z), which can alternatively be expressed as a function of s* for a given 

plume path.  

 

 Entrainment into the plume is represented as in Section 1.11 by a cross-interface, 

positive downwards, vertical velocity we*.  If A* is the cross-sectional area of the plume, 

the volume flux A*V* must therefore obey  

 

   
s *
(A *V*) = we

nR *

nL *

*dn * ,    (2.12.11) 



 

while the total mass flux A*V* is subject to  

 

 

  
s *
( A *V*) = awe

nR *

nL *

*dn* a we

nR *

nL *

*dn * .  (2.12.13) 

 

 

Here nR* and nL* denote the grounding positions of the interface on the right and left 

edges of the plume, facing downstream.   

 

 The along-axis momentum balance for the plume is expressed in terms of the 

depth-integrated versions of the shallow-water equations, which appear at the beginning 

of Section 2.1 in Cartesian form.  If at a particular section of the plume, the coordinates 

are aligned such that the former y* axis coincides with the present s*-direction, and the 

former x* points in the -n* direction, then the along-axis momentum equation is  

 

s * oV *2 d *+ 1
2 ( a )gd *2

+
n *

( oU *V *d*) fU *d *

                                                                 = ( a )gS sin ( B + I )
 (2.12.14) 

 

This result may be compared with the depth-integrated momentum equation (1.9.10) for a 

one-dimensional flow subject to entrainment from above. Note that there is no source of 

momentum from the entrainment since the overlying fluid is assumed to be motionless 

(v1=0 in 1.9.10).  There are sinks of momentum from the frictional stresses at the bottom 

and interface, as represented by B and I. The Boussinesq approximation has been made, 

meaning that  is replaced by a constant reference density o where it multiplies inertial 

terms.  It will be convenient to choose o as the density of the plume at some source point 

where the outflow originates.  

 

 Following the assumption that the plume is so thin that the pressure gradient is 

due entirely to the bottom slope, the term proportional to d*
2
 is neglected.  An important 

consequence is that horizontal pressure gradients due to horizontal variations of density 

along the path of the plume are ignored. The remaining pressure gradient (first term on 

the right-hand side) is proportional to the along-axis component of the bottom slope 

Scos .  In addition fU*d* is neglected on the basis that U* is rendered small by the use of 

the natural coordinate system and the assumption of gradual variations in s*. This last 

assumption is not consistent with the usual semi-geostrophic approximation, where in 

spite of gradual variations the term fU* must be retained.  This and other non-deductive 

assumptions place the streamtube theory in the realm of ad hoc models.  

 

  Integration of the simplified version of (2.12.14) across the plume and use of 

d*(nR*)= d*(nL*)=0 leads to 

 



 
s *

A *V *2( ) = g SA *sin [( B + I )
xR *

xL *

/ o ]dn ,  (2.12.15) 

 

where A* = (d*)
xR *

xL *

dn  and g = g( a ) / o . 

 

 The cross-stream momentum equation is a form of the geostrophic relation, 

modified to include the effects curvature along the s*-axis. The equation is identical to 

the n* momentum equation written in a cylindrical coordinate system with n* as the 

radial variable (see Batchelor, 1967, Appendix 2) and with the advective terms ignored.  

(A similar problem will be considered in detail in Section 4.5.)  The resulting momentum 

balance is 

 

   V * f +V *
d

ds *
= sg cos .   (2.12.16) 

 

The factor d / ds * is the curvature of the plume axis and V *d / ds *  can be thought of 

as an augmentation of the Coriolis acceleration.  

 

 A simple example that provides a reference for further analysis is a non-

entraining, frictionless outflow that moves along isobaths ( =0).  Equation (2.12.16) 

gives the velocity of such a flow as 

 

    V* =
Sg

f
 .     (2.12.17) 

 

This formula applies in more general settings as well. It can be shown (Exercise 3) that 

the right hand side is the average velocity of a geostrophic current flowing along a 

constant slope, provided the interface elevation is properly taken into account in the 

calculation of the pressure.  The same factor was also shown by Nof (1983) to be the 

speed of a geostrophically-balanced, lens-like eddy propagating along a slope. 

 

 More generally, let go  denote the value of reduced gravity at the source.  Then the 

above result suggests Sgo /f as a scale for V* and it is natural to then choose L=Sgo /f
2
 as a 

horizontal length scale. We also scale A* with its upstream value Ao*.  The corresponding 

dimensionless forms of (2.12.11-16) are   

 

    
s
(AV ) = En ,    (2.12.17) 

 

  



    
s o

AV =
a

o

En ,   (2.12.18) 

 

 

   
s
AV 2( ) = Asin F ,   (2.12.19) 

and 

    

    V
d

ds
= cos V ,   (2.12.20) 

 

 

where  (s) = ( a ) / ( o ao )  and ao is the upstream value of a.   

 

 The expressions for entrainment and drag   

     

 

   En =
1

fAo
we

nR *

nL *

*dn *     (2.12.21) 

  and 

 

     F =
1

Aogo s
[( B + I )

xR *

xL *

/ o ]dn   (2.12.22) 

 

must be parameterized. The bottom and interfacial stresses are most commonly specified 

using a quadratic drag law of the form 

 

    F = V 2 .    (2.12.23) 

 

Entrainment is normally parameterized as described in Section 1.9 in terms of a Froude 

number.  Many of the laboratory experiments or field studies that have been used to 

develop empirical formulas involve nonrotating flows in which the local Froude number 

v/(g d)
1/2

 is constant across the descending stream. Some of the corresponding data is 

shown in Figure 1.10.4. In the present case the value of v/(g d)
1/2

 varies across the stream 

and the parameterization is written in terms of a bulk Froude number characterizing the 

whole cross-section (Price and Barringer, 1995).  For present purposes it is adequate to 

regard En as a function of V and A and make no further specification. 

 

 A more general case of uniform flow over the sloping bottom arises if 

entrainment is ignored (En=0, = o) and the overlying fluid is homogeneous ( a= ao, and 

therefore =1).  If the friction parameterization (2.12.23) is then used, the velocity and 



angle of descent are found by setting / s = 0 in equations (2.12.19,21) and setting A to 

its upstream value of unity.  Thus 

 

    sin = V 2     (2.12.24) 

and 

 

    cos = V ,    (2.12.25) 

 

 

 These relations summarize the force balance (Figure 2.12.5) in which gravity 

attempts to pull the plume down the fall line, frictions tends to retard the flow, and the 

Coriolis effect tends to accelerate the plume the right of the velocity. Only the frictional 

and gravitational forces act parallel to the plume axis and velocity must have a down 

slope component ( >0) in order for the two to balance. If V is eliminated between the 

above two relations, it follows that  

     

     
sin

cos2
=    (2.12.26) 

 

and thus the angle of descent increases as the friction coefficient increases. If perturbed 

from this parallel state the plume executes stable meanders about it’s original path (see 

Exercise 4).  

 

 When entrainment is present, the flow can no longer be uniform in s, making 

simple solutions harder to come by. However, if the overlying fluid is homogeneous 

( a=constant) then the problem can be simplified somewhat.  To begin with, subtraction 

of the product of a and (1.12.18) from (1.12.19) yields 

 

    a

o

AV = 0 ,   (2.12.27) 

 

showing that the buoyancy flux  

 

    B = [( a ) / o ]AV   (2.12.28) 

 

is conserved.  At its point of origin (s=0) we will assume that the plume flows parallel to 

the isobaths ( =0), as it would if entrainment and friction were nil. The upstream values 

of the plume variables at this point are then A(0)=V(0)=1, (0)=0, (0)= o, and a(0)= ao.  

Downstream of this point we will consider the evolution of the flow assuming that 

entrainment and friction are finite but weak (En<<1 and <<1).  The entrainment may 

vary with V and A, and it is assumed only that it retains the same general nondimensional 

size as the friction term, i.e. En (V ,A) = O( ) .  
 

 Next expand the dependent variables according to  



  

   A = 1+ A(1) +  
 

   V = 1+ V (1)
+  

         (2.12.29) 

  
 
=

(1)
+  

 

  
 
= O +

(1)
+  

 

Substitution into (2.12.17,19,20 and 27) and retention only of O( ) terms leads to  

 

   
d

ds
A(1) +V (1)( ) =

En ,  

 

   

   
d

ds
A(1) + 2V (1)( ) = (1) 1 , 

 

   
 

d (1)

ds
=

(1) V (1) , 

and 

 

   
 

(1)
= (V (1)

+ A(1) ) . 
 

where 
 

(1)
=

(1) / ( o ao ) .  

 

 The solutions satisfying the upstream conditions (1)
= V (1)

= A(1) = 0 are 

 

   (1)
= 1 cos s , 

 

   V (1)
= sin s

En s , 

 

   A(1) = sin s +
2En s , 

and 

 

   
 

(1)
=

En s . 

 

Thus the combined influence of friction and entrainment causes the plume to turn 

downslope (
(1)

 becomes positive). The velocity V decreases but the area A increases at 



twice the rate, this in order for the volume flux to increase.  The plume is diluted (
 

(1)  

becomes negative) in proportion to the entrainment rate En(1,1) but in inverse proportion 

to the drag coefficient.  Along with these trends, the plume undergoes a meandering 

motion with wave length 2 , dimensionally 2 Sgo /f
2
, caused when the path overshoots 

the equilibrium angle 
(1)

=1 or = .  The linear solution remains valid only for distances 

of order  
-1

 downstream of the point of origin; the secular growth associated with the 

terms proportional to s invalidate the asymptotic expansion further downstream.   

 

 Application of streamtube models to specific outflows have resulted in a number 

of refinements, including variable bottom slope and separate treatments of temperature 

and salinity. In his simulation of the Weddell Sea plume, which is observed to spill to the 

bottom of the slope, Killworth (1977) notes that the simulated flow will not reach the 

bottom without inclusion of the thermobaric effect, the increase with depth of the 

coefficient of thermal expansion.  A less subtle process is entrainment, which addressed 

by the Price and Barringer (1995) model.  Since the entrainment velocity is parameterized 

by the Froude number, an explicit treatment of the plume width and depth, and not just 

the cross section area, is required.  Price and Barringer base their treatment on a 

spreading law in which the downstream rate of increase of the plume width is 

proportional to the bottom drag. 

 

 One of the most important factors determining the fate of ocean plumes is the 

density of the overlying water. It is well known that the densest source waters come from 

the Mediterranean Sea, but the densest product waters come from the high latitude 

overflows (Weddell Sea, FBC and Denmark Strait).  For these applications, the least 

dense source waters tend to produce the densest product waters (Table 2).  This is largely 

due to the fact that the density of the overlying water is greatest where the product water 

is greatest. 

 

 Table 2.1  Densities ( ) of the average source, product and overlying water for 

four major outflow plumes.  (Data from Price and Baringer, 1995).   

 

     Location                                            source          product      ambient 

                                                                                                    (overlying) 

  

Filchner Ice Shelf  (Weddell Sea)           27.93           27.89         27.82 

Denmark Strait                   28.04           27.92         27.72 

Faroe Bank Channel           28.07           27.90         27.56  

Mediterranean          28.95           27.70         27.06 

 

    

 

Exercises.   

 

1)  Show that the theory that leads to (2.12.7) fails to provide a solution for the case in 

which the plume rides entirely over the positively sloping portion of bottom (x*>0), i.e. a 

solution for with xL*>0. 



 

2)  For the Davies et al. (2006) model, show that the plume broadens when the cross-

channel slope  is decreases but  remains fixed. 

 

3)  Show that the velocity defined by (2.12.17) is the average velocity of a geostrophic 

current flowing along a constant slope if the interface elevation is properly taken into 

account in the calculation of the pressure. 

 

4)  The meandering of a non-entraining plume. Consider the Smith (1975) streamtube 

model for the case in which there is no entrainment and where the overlying density is 

uniform.  

 

 (a)  Show that the two momentum equations (2.12.19 and 2.12.20)  can be written 

for this case in the form 

 

    Q
dV

ds
=
Qsin

V
V 2 , 

and 

    

    V
d

ds
= cos V , 

 

where Q=AV is the (now constant) volume flux. 

 

 (b)  For a given Q, show that the fixed point  (i.e. / s =0) solutions, which are 

just the parallel flows discussed earlier, are given by (2.2.26) and  

 

    2V 4Q 2
+V 2 1 = 0 . 

 

 (c)  By linearizing the momentum equations about this solution, show that small 

departures from the parallel state consists of meanders of the flow axis and calculate the 

meander wavelength. 

 

 (d)  Show that motions not restricted to small amplitude perturbations of the 

parallel state are described by the relationship 

 

   
d

dV
=
Q(cos V )

Qsin V 3 . 

 

Sketch some of the corresponding solutions in the (V, ) plane and show that they consist 

of periodic orbits that surround the fixed point calculated in (b). 

 

 Note:  I have not solved this problem yet for the linear solutions nor have I 

sketched the periodic orbits to be sure that they are in fact closed.  According the Price 

and Baringer, the solutions are cycloids. 



 

    

Figure Captions   

 

2.12.1  Dye images two section of a laboratory plume in a V-shape channel. Different 

shades of gray correspond to different densities, though there is no calibration.  The 

viewer faces upstream. The lighter fluid is a mix between deeper (dark) and upper 

(middle gray) fluid.  (Based on Figure 3 of Davies, et al. 2006)  

 

2.12.2  Definition sketch for Davies et al. 2006 model. 

 

2.12.3 The  dimensionless width 
xR *

E cos
. of the right-hand (x>0) portion of the current 

as a function of dimensionless transport Q/Qs, where Qs =
2g E

2 / fS2  . The curve 

shows the predicted width based on (2.11.19) The symbols represent data from the 

Davies et al. (2006) experiment. (Figure 11 of Davies et al. 2006).   

 

Author Note: To get the ordinate, their  Ls/L, I use their 4.6 and 4.17, in which their L is 

my E/ .  Also their X̂L  is my xR*/L.  Thus 

 

Ls / L =
X̂L E / cos

E /
=

X̂L

cos
= my

xR * /L

cos
=

xR *

E cos
 

 

2.12.4  Definition sketch for streamtube model. 

 

2.12.5  The equilibrium state of a descending, non-entraining plume in a homogeneous 

environment.  The dashed arrows show the normal and tangential components of the 

gravitational force; these must be balanced by the Coriolis acceleration and the frictional 

drag vectors. 

 

  



Figure 2.12.1 low resolution,
grey scale version



α

d

h
α

u

δΕ

(a)

(b)

Figure 2.12.2



100

10

1

0.1
0.001 0.01 0.1 1 10 100

Q/Qs

xR*φ
δE cos(α)

Fig. 2.12.3



β

n*

n*
=n L

*

n*=n R
*

s*

x*

Figure 2.12.4



isobaths

gravity

Coriolis

friction

plume velocity V

β

Figure 2.12.5




