
2.10  Transport Bounds 
 
 
 We have seen how difficult it is to calculate the volume flux Q of a hydraulically 
controlled, rotating flow when idealizations such as uniform potential vorticity and 
rectangular cross section are relaxed.  Although calculations are still possible through 
numerical means, one might first ask whether any general statements about Q can be 
made without regard to the details of q and h.   An approach developed by Killworth and 
McDonald (1993) and Killworth (1994) is to seek bounds on Q in terms of simple 
measures of the upstream flow and the channel geometry.  Given some information about 
the available energy, one simply attempts to find the maximum Q that can be forced 
through a section of a channel with a given geometry.  Although the bounds are formulate 
without reference to hydraulic control, the result bears a remarkable similarity to 
hydraulic laws developed in early sections. 
 
 The topographic cross section is arbitrary and it is only assumed that the bottom is 
wetted continuously across, so that the flow occurs in one coherent stream.  In contrast to 
the situation in typical hydraulic models, B(ψ) need not be conserved from one section to 
the next.  However, it most meaningful to imagine that all the streamlines that cross 
through the section originate in an upstream basin where the maximum B is equal to E. 
This maximum applies only to those basin streamlines that make their way to the sill 
section.  If non-conservative processes are then limited to a quadratic bottom drag, B(ψ) 
can only decrease along a particular ψ and the maximum B at any downstream section 
must be equal to or less than E.  These ideas require some modification if the section 
streamlines that originate far downstream (Section 2.9) or are part of a local closed gyre 
(Section 2.7).  Although the section may lie anywhere, the tightest bound is obtained at 
the sill, meaning the section with the greatest minimum bottom elevation, hmin.  The 
smallest possible value that B (nondimensionally v2 / 2 + d + h ) can have occurs when 
depth d and velocity v are zero at h= hmin.  It follows that 
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In addition to geostrophy, the chief assumption made is that the potential vorticity of the 
flow is non-negative.  
 
 Now consider a hypothetical flow at the sill section (Figure 2.10.1a).  The layer 
thickness is assumed to go to zero at the edges x=-a and x=b of the stream, but the 
sidewalls could just as well be vertical.  The surface or interface may have segments of 
negative slope indicating negative velocities.  The bound on Q is formulated by first 
making a sequence of changes to the flow, each of which maintains or increases the 
original flux.  
 
 The first step is to excise any segments of reverse flow along the sidewalls, so that 
new edges of the current lie at x=b and x=-a′  (Figure 2.10.1b).  We then place a vertical 
wall at x=b and, to the left of x=-a′, we alter the bottom topography such that it becomes 



flat and has the elevation hmin (Figure 2.10.1c). Over this flat portion we add a positive 
region of flow that smoothly brings the layer depth to zero at a point x=-a. The width of 
the side region is arbitrary.  None of the alterations thus far could increase the volume 
flux.  The flux of the altered flow is given by 
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where z

s
= d + h .  

 
 We next eliminate any interior minima in zs slicing off the top of the mound of 
water to the left of any such minima (Figure 2.10.1c,d).  The segment extending from 
x=x1 to x=x2 in the figure is therefore replaced by a quiescent region, and the same is done 
to the left of any remaining minima. To prove that this operation cannot increase the flux 
note that for the Figure 2.10.1.c flow we have  
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Since the surface elevation is the same at the end points  
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Finally, the previous assumption of positive potential vorticity q along with the 
relationship dB/dψ=q means that B must increase with ψ and thus  
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The flux to be removed is must be non-positive. 
 
 
 The end result of this surgery is a water surface rising monotonically to the right, 
so the stream has positive or zero velocity everywhere across the channel with flux 
greater than the original flux.  A bound on the flux of the altered flow can be formulated 
beginning with the (2.10.2) definition of transport: 
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which for the altered state cannot be less than the original Q.  Since !z

s
/ !x is non-

negative, the integral in the above expression cannot be less than  
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It immediately follows  
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 Now zs(a) cannot exceed the maximum value E of the Bernoulli function, and 
therefore Q !
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 .  Also, if we associate with E an equivalent surface elevation 
hmin+ΔzE, then the transport bound becomes Q !

1

2
"z

E

2  or, in dimensional terms:  
 

    Q* !
g "zE *( )

2

2 f
.     (2.10.10). 

 
 There are a number of examples, all with rectangular cross sections and all with 
separated sill flow, for which the right-hand side of (2.10.10) gives the exact flux.  The 
first is the case of flow from an infinitely deep and quiescent basin across a sill (Section 
2.4).  Here ΔzE* is just the reservoir head, Δz of (2.4.15), and is a constant over the 
upstream basin.  The same applies for the case of uniform, but finite potential vorticity 
flow  (see 2.6.7b).  The largest value of the Bernoulli function at the sill lies along the 
right-wall streamline and the sidewall depth there is just ΔzR*.  Since the flow stagnates at 
the right wall, ΔzR* equals the required ΔzE*.  We also argued in Section 2.6 that any 
separated sill flow that stagnates along the right wall is critical and that the corresponding 
flux is given by (2.6.7).  The bound would be exact for this class of flows as well.   In all  
these cases the flow is either positive or zero at the edges, so that no fluid need be excised 
from the end points (Figure 2.10.1a,b).  Also, since the bottom is horizontal, the shaving 
off of mounds of fluid (Figure 2.10.1c) does not alter the volume flux.  The sequence of 
steps taken to formulate the bound therefore cannot decrease the transport. The cases 
cited serve notice that the bound (2.10.10) is achievable.  
 
 The fact that the bound (2.10.10) is achieved in two examples with rectangular 
cross-sections suggests that departures from this geometry should tend to reduce the flux.  
However, if the geometry is sufficiently irregular that the flow becomes divided into two 
or more streams, then the combined flux can exceed the bound, though (2.10.10) 
continues to hold for each individual stream  (Whitehead, 2003).  Simply put, the 
formation of multiple streams is similar to the existence of multiple openings through 
which fluid may drain from the basin. 
 



 Killworth and McDonald (2003) have shown that the bound can be extended to a 
fluid with N active layers, each with its own uniform density, and all lying below a deep 
and inactive upper fluid.  The volume flux Qn in layer n is according to 
 
    

  

Fn !
gn

2g
En " hmin( )

2 ,    (2.10.11) 

 
where gn is the reduced gravity and En is the maximum Bernoulli function for that layer, 
the latter defined with the same restriction as the single-layer case. 
 
Figure Captions 
 
Figure 2.10.1  Series of surgical procedures used to alter a given flow (a) in order to 
produce a simpler flow (d) whose transport is known.  The transport cannot be decreased 
in any step and thus the transport (d) acts as a bound.  (Based on a figure in Killworth and 
MacDonald 1993). 
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