
© L. Pratt and J. Whitehead 6/13/05 
very rough draft- not for distribution 

Chapter 2:  The Hydraulics of Homogeneous Flow in a 
Rotating Channel.  
 
 
 The original models of rotating, hydraulically-driven currents were motivated by 
observations of deep overflows.  The spillage of dense fluid over the sills of the Denmark 
Strait, the Faroe Bank Channel and other deep passages was suggestive of hydraulic 
control and early investigators hoped that weir formulas might be of use in estimating the 
volume transport.  To this end the whole volume of dense, overflowing fluid was treated 
as a single homogeneous layer with reduced gravity.  For the Denmark Strait overflow 
(Figures I6 and I7) this layer typically includes all fluid denser than σθ=27.9.  Even with 
this simplification, it was apparent that formulas such as (1.4.12), or their generalizations 
for nonrectangular cross sections, were not applicable.   For one thing, the interface 
bounding the dense layer no longer has uniform elevation across the channel.  Rotation 
brings more fundamental complications into play, including vortex dynamics and new 
types of waves.  Some of these processes can arise in nonrotating flows but the presence 
of rotation makes them unavoidable.   For these reasons, some of the early investigators 
questioned whether the concept of hydraulic control was at all applicable to rotating 
flows. 
 
 We shall trace the development of the early theories for rotating-channel flow and 
show that hydraulic control and many of the other features reviewed in the first chapter 
remain present in one form or another.  However, a number of novel features will arise, 
some which are not entirely understood.  Many are associated with the nonuniformity of 
the flow in the transverse (across-channel) direction.   Examples include the confinement 
of the volume transport to sidewall boundary layers, the formation of velocity reversals 
and recirculations, and the separation of the stream from one of the sidewalls. The waves 
involved in rotating hydraulic control are also different-some are trapped to the side walls 
of the channels, others are manifested by the meandering of the free edge of a separated 
flow, still others involve fluctuations of the horizontal velocity but not the free interface.   
 
 Our treatment of steady models will be preceded by a discussion of waves.  As 
before, an understanding of these waves in the linear limit is a prerequisite for 
introduction of the concepts of subcritical and supercritical rotating flow.  The nonlinear 
theory of these waves leads to an understanding of steepening and spreading, the process 
by which rotating hydraulic jumps, bores and rarefaction waves are formed.   Under the 
usual assumption of gradual variations of the flow along its predominant direction, three 
types of waves arise.  The first is the Kelvin wave, an edge wave closely related to the 
long gravity waves of the last chapter.  The second is the frontal wave, which replaces the 
Kelvin wave when the edge of the flow is free to meander independently of sidewall 
boundaries.  The third wave is the potential vorticity wave, a disturbance that exists when 
gradients of potential vorticity exist within the fluid.  Nearly all analytical models of deep 
overflows assume that the potential vorticity is uniform within the flow, thereby 
eliminating this wave.  We will touch on only one model that does not. Coastal currents 
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and surface jets are more dependent on potential vorticity dynamics and will be covered 
in later chapters.  
 
      
 
2.1  The Semigeostrophic Approximation in a Rotating Channel. 
 
 We consider homogeneous flows confined to a channel rotating with constant 
angular speed f/2 in the horizontal plane.   As we will occasionally switch back and forth 
between dimensional and nondimensional variables, star superscripts are used to denote 
the dimensional versions.  Thus  (x*,y*) denote cross-channel and along-channel 
directions, (u*,v*) the corresponding velocity components,  and (d*,h*) the fluid depth 
and bottom elevation.  Provided the scale of x*- and y*-variations of d* are large 
compared to the typical depth, the shallow water equations continue to apply. The 
dimensional version of these equations is 
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rotation is counterclockwise looking down from above, as in the northern hemisphere.  
These equations apply to a homogeneous layer with a free surface or to the active lower 
layer of a ‘1 1

2
-layer’ or ‘equivalent barotropic’ model.  In the latter, g is reduced in 

proportion to the fractional density difference between the two layers.  In such cases the 
upper boundary of the active layer will be referred to as ‘the interface’. 
 
 Another version of the momentum equations that will prove useful is obtained by 
multiplying (2.1.1) and (2.1.2) by d* and using (2.1.3).  The resulting ‘depth-integrated’ 
momentum equations are 
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 For large-scale oceanic and atmospheric flows away from the equator and away 
from fronts and boundary layers, the forcing and dissipation terms and the terms 
expressing acceleration relative to the rotating earth are generally small in comparison to 
the Coriolis acceleration.  The horizontal velocity for these types of flows is 
approximately geostrophic or, in the context of our shallow water model, 
 

  fv* ! g
"(d *+h*)

"x *
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#(d *+h*)

#y *
.  

 
These relations suggest that geostrophic flow moves parallel to lines of constant pressure, 
with high pressure to the right in the northern hemisphere.  This situation was quite 
different for the flows treated in Chapter 1, in which the velocity is aligned with the 
pressure gradient and flow is accelerated from high to low pressure.  For the deep 
overflows and strong atmospheric down-slope winds the acceleration of the flow down 
the pressure gradient is also a characteristic feature, suggesting a departure from the 
geostrophic balance.   
 
 To explore this issue further it is helpful to nondimensionalize variables.  Define 
D and L as a typical depth scale and along-channel length scales and take (gD)1/2 as a 
scale for v*. This choice is made in the anticipation that the gravity wave speed will 
continue to be a factor in the dynamics of hydraulically controlled states and that such 
states will require velocities as large as this speed.  A natural scale for t* is therefore 
given by L/(gD)1/2.   As a width scale, we pick (gD)1/2/f, which is the Rossby radius of 
deformation based on the depth scale D. For readers not familiar with the theory of 
rotating fluids, the Rossby radius of deformation is the distance that a long gravity wave 
[with speed (gD)1/2] will travel in half of a rotation period.  Motions with much smaller 
length scales are generally not influenced by rotation.  The Rossby radius appears as a 
natural width scale for boundary currents and boundary-trapped waves.   With these 
choices, the cross-channel velocity scale (gD)/fL is suggested by balancing the second 
and third terms in (2.1.3).  The dimensionless variables are therefore 
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Substitution into (2.1.1-3) leads to  
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where ! = (gD)

1/2
/ fL  is the ratio of the width scale of the flow to L: a horizontal aspect 

ratio.   
 
 The limit! " 0 leads to a geostrophic balance in the cross-channel (x-) direction 
but not the along channel direction.  The along-channel velocity v is geostrophically 
balanced but the cross-channel velocity u is not.  The flow in this limit is therefore 
referred to as semigeostrophic.  The semigeostrophic approximation requires that 
variations of the flow along the channel are gradual in comparison with variations across 
the channel.  In particular, the interface must slope steeply across the channel but only 
mildly along the channel.  The along-channel velocity component v is therefore directed 
nearly perpendicular to the pressure gradient.  As (2.1.6) suggests, the (weaker) along-
channel pressure gradient does lead to acceleration in the same direction, but this occurs 
over a distance L large compared to the cross-stream scale δL. 
 
 As in most other descriptions of rotating fluids, vorticity and potential vorticity 
are conceptually and computationally central.  For shallow homogeneous flow, the 
discussion is simplified by the fact that the horizontal velocity is z-independent, so that 
the fluid moves in vertically coherent vertical columns.  The vorticity or potential 
vorticity of the fluid can therefore be discussed in terms of the vorticity of a material 
column.   If the curl of the shallow water momentum equations 
(i.e.!(2.1.2) / !x *"!(2.1.1) / !y * ) is taken and (2.1.3) is used to eliminate the 
divergence of the horizontal velocity from the resulting expression, the following 
conservation law for potential vorticity can be obtained: 
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The relative vorticity !* = "v *

"x *
#
"u *

"y *
 is the vorticity of a fluid column as seen in the 

rotating frame of reference.  The absolute vorticity is the total vorticity ζ*+ f of the 
column.  The potential vorticity q* is simply the absolute vorticity divided by the column 
thickness d*.  If the forcing and dissipation has no curl (! *"F* = 0 ) the potential 
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vorticity of the material column is constant.  Conservation of potential vorticity is a 
consequence of angular momentum conservation; if the column thickness d* increases, 
conservation of mass requires the cross-sectional area of the column to decrease, and the 
column must spin more rapidly to compensate for a decreased moment of inertia.  
 
 It is sometimes convenient to represent the potential vorticity q* as  
 

    q* =
f +! *

d *
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where D

!
 is known as the potential depth.  Each infinitesimal fluid column has its own 

time-independent potential depth.  To interpret this quantity, consider a column with 
relative vorticity ζ* (also =q*d*-f by the definition of q*).  Next stretch or squeeze the 
column thickness d* to the value f/q*, so that ζ* vanishes.  This new thickness is the 
potential thicknessD

!
.  This interpretation is limited by the fact that D

!
 may be 

negative, making it physically impossible to remove ζ* by stretching.  Most of the 
applications we will deal with have positive potential depth. 
 
 The nondimensional versions of (2.1.8) and (2.1.9) are 
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 In the semigeostrophic limit! " 0 , we have  
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These two relations can be combined, yielding an equation for the x-variation in depth 
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If q=constant the above equation can easily be solved, reducing the calculation to a two-
dimensional problem (in y and t).  This situation arises if q is initially constant throughout 
the fluid and no forcing or dissipation is present. 
 
 Another form of the shallow water momentum equations (2.1.1) and (2.1.2) that 
will prove very helpful is 
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is the two-dimensional Bernoulli function.  Its dimensionless form 
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B=v2/2+g(d+h), which is the same expression we used in the one-dimensional flows 
treated in Chapter 1. 
 
  If the flow is steady (! / !t* = 0)  then the continuity equation (2.1.3) implies the 
existence of a transport stream function ψ*(x,y) such that 
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The total volume transport Q* is the value of ψ* on the right-hand edge of the flow 
(facing positive y*) minus ψ* on the left wall.  If, in addition, there is no forcing or 
dissipation (F*=0) then (2.1.15) can be written 
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or q *!"* = !B * .  Thus the Bernoulli function is conserved along streamlines: 
 
    B*=B*(ψ*)  
 
and  
 



© L. Pratt and J. Whitehead 6/13/05 
very rough draft- not for distribution 

    q* =
dB *

d! *
.     (2.1.19) 

 
This remarkable link between energy and potential vorticity is one of the central 
constraints used in hydraulic theories for two-dimensional flow.  As shown by Crocco 
(1937), the relationship (2.1.19) holds in more general settings.   
 
 In the examples of one-dimensional, steady sill flows presented in Sec. 1.4, the 
flow in the channel or reservoir upstream of the sill was completely specified by two 
constants, the transport Q* and the Bernoulli function B*. In the rotating, two-
dimensional generalization of these examples there are three conserved quantities: the 
functions B*(ψ*), q*(ψ*) and the total volume transport Q* [equal to the difference 
between the values of ψ* on the channel side walls].  As shown by (2.1.19) these three 
quantities are not independent.  If B*(ψ*) is specified and the range of ψ* which actually 
exists within the channel is given, then q*(ψ*) is completely determined within the 
channel.   
 
 Some knowledge of waves is crucial to one’s understanding of the hydraulics of 
rotating-channel flows.  In general, it is possible to place the relevant waves in three 
classes.  The first two are the Kelvin and Poincaré waves, both of which depend on the 
combined effects of rotation and gravity.  The third class, potential vorticity waves, can 
exist in flows with neither gravity nor background rotation.  Their dynamics involve 
vortex induction mechanics that can arise when the potential vorticity of the fluid flow 
varies spatially.  We now discuss some of the linear properties of each class when the 
waves arise as small perturbations from a resting state in a channel geometry.   Nonlinear 
steepening and other finite amplitude effects will be treated in later sections.   
 
 
 Consider the shallow water equations linearized about a state of rest with d=1.  
Setting d = 1+!  (!<<1), and assuming u<<1 and v<<1, equations (2.1.5-2.1.7) with 
F,h=0 are 
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 The corresponding potential vorticity equation, which can be obtained directly 
from the above or simply by linearization of the nondissipative version of (2.1.8), is 
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Integrating this relation in time lead to 
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where ( )o indicates an initial value. The last equation indicates that the linearized 
potential vorticity, equal to the relative vorticity !v / !x " # 2!u / !y  plus the stretching 
contribution!" , is preserved at each (x,y).  
 
 The left hand side of (2.1.23) can be expressed in any of the three variables u,v, or 
!by using (2.1.20-2.1.22) to eliminate the remaining two.  For example the equation for 
! is 
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For an arbitrary initial disturbance the resulting flow will consist of two components.  
The first is a steady flow whose potential vorticity is given by the potential vorticity of 
the initial disturbance.  This flow is obtained by finding a steady solution to (2.1.24).  The 
second component consists of waves that are generated as a result of the unbalanced part 
of the initial flow. Individually, these waves are solutions to the homogeneous version of 
(2.1.24) subject to the boundary condition 
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obtained by evaluating  (2.1.20) and (2.1.21) at the sidewalls and eliminating v from the 
result. 
 Assuming traveling waves of the form! = Re aN(x)e

i(ly"# t )$% &' , where ω is the 
frequency and l is the longitudinal wave number, one finds two distinct solutions (Gill, 
1982 or Pedlosky1987), both of which were discovered by Kelvin (1879). The first is 
named after Poincaré (1910) and has an oscillatory structure in x: 
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the dimensional form of which is 
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where D is the background depth.   
 
 Poincaré waves can be better understood by first considering a long gravity wave 
propagating in an arbitrary direction on an infinite, nonrotating plane.  The form of the 
wave is given by!* = Re a * e

i(k*x*+l*y"#*t*)$% &' , where k* and l* represent the wave 
numbers.  The dispersion relation for this wave is given in dimensional terms by (2.1.27) 
with f=0 and with k* replaced by the discrete wave number (n2π2/w*)2.  Next consider a 
second wave with wave numbers (-k *,l*) and therefore having the same frequency as the 
first wave.  If the second wave also has the same amplitude a as the first, a superposition 
of the two waves leads to a u* field proportional 
toRe a(e

i(k*x*+l*y*!"*t*) ! ei(!k*x*+l*y*!"*t*) )#$ %& = Re 2aie
i(l*y*!"*t*)

sin k * x *#$ %& .  Since u* is 
zero whenever k*x* is an integer multiple of π, the waves satisfy the side-wall boundary 
conditions in a channel with side walls at  x* = ±w * /2  provided that  k* is chosen to be 
2nπ/w*.  These waves are sometimes called oblique gravity waves and their cross-
channel structure is said to be standing.  Poincaré waves are rotationally modified 
versions of these waves.  
 
 
 The second class consists of edge waves named after Kelvin himself.  The cross-
channel structure and dispersion relation are given by 
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 Kelvin waves have a boundary layer structure that becomes apparent when the 
channel width is much wider than the deformation radius.  Taking the limit w>>1 
(equivalentlyw* >> (gD)1/2 / f ) in (2.1.28) leads to 
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The first solution corresponds to a wave propagating in the positive y-direction at speed 
(gD)1/2 and trapped to the wall at x*=w*/2.  The trapping distance is the Rossby radius of 
deformation based on the background depth D.  The other wave moves in the opposite 
direction and is trapped to the wall at x*=-w*/2.  In the limit of weak rotation, N± 
becomes constant and the Kelvin waves reduce to x-independent, long gravity waves 
propagating along the channel.  A further distinguishing property of linear Kelvin waves 
is that the cross-channel velocity u is identically zero. 
 
 Kelvin waves are nondispersive, meaning that the phase speed c* does not depend 
on the wave number l*.  The wave frequency ω*=c*l* is proportional to l* and therefore 
the group velocity !" * /!l * is equal to c*.  In Chapter 1, we described the resonance that 
can occur when a background flow is critical c*=0  with respect to a nondispersive wave.  
A bottom slope or other stationary forcing introduces disturbance energy that cannot 
propagate away.  Eventually the disturbance becomes large enough to break away, 
leading to fundamental changes  in the upstream flow.  We expect that Kelvin waves will 
play an important role in the upstream influence of rotating channels flows.    
 
  Poincaré waves are not admitted under semigeostrophic dynamics, a result that 

can be shown by taking (δ→0) in (2.1.27).  The limiting condition (n
2
!
2

w
2

+1 = 0)  cannot 

be satisfied for real n. Since most simple models of the hydraulics of rotating flow in a 
channel or along a coast use the semigeostrophic approximation, Poincaré waves do not 
arise.  There are, however, a few models where hydraulic effects arise in unbounded 
flows (e.g. see Section 3.8).  These effects involve Poincaré waves with short wave 
lengths (l→∞), for which (2.1.27) reduces to c =! / l = ±1  (or!* = ±(gD)

1/2 ).  In this 
limit the waves behave like nonrotating gravity waves and can be considered 
nondispersive if propagation is somehow limited to a single direction. 
 
 
 Poincaré and Kelvin waves rely on gravity and a free surface to provide a 
restoring mechanism.  Potential vorticity waves, on the other hand, rely on gradients of 
potential vorticity within the fluid.   One can introduce this effect by modifying the above 
example to include a lateral bottom slope !h * /!x* = "s = const.  In addition, the Kelvin 
and Poincaré waves by placing a rigid lid on the top of the fluid.  The resting basic state 
now contains a potential vorticity gradient associated with the variable depth. If D is the 
layer thickness at midchannel (x*=0) and if the bottom and surface tilt lead to only slight 
variations of h* about D, then the potential vorticity of the ambient fluid is 
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Under these conditions the flow will support potential vorticity waves with phase speeds 
given by 
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In the long wave limit (w*l*→0) the waves are nondispersive: 
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where w* is the channel width and dq *
dx *

= !
sf

D
2

.  This example is discussed fully by 

Pedlosky (1987).  For positive s, !q * /!x* < 0 and thus higher potential vorticity is found 
on the left-hand side (facing positive y*) of the channel.  In this case the propagation 
tendency of the waves is towards negative y. 
       
 
 The waves produced in the last example are called topographic Rossby waves 
since the background potential vorticity gradient is due to a sloping bottom.  More 
generally, steady flows with nontrivial depth and vorticity distributions generally have 
potential vorticity gradients and will support potential vorticity waves, although some of 
these waves may be unstable.  The nondispersive character of the long waves is 
indicative of their ability to transmit upstream influence, an effect that will be 
demonstrated in later sections.  
 
   
 
Exercises 
 
1)  Dissipation and vorticity flux. 
(a)  By taking the curl of the shallow water momentum equations (2.1.15) obtain the 
vorticity equation 
 

  !"
a
*

!t *
+# $ (u *"

a
*) = k $ (# % F*) , 

where !a* = f +! * is the total (or absolute) vorticity of a fluid column. 
(b)  By writing k ! (" # F*) = $" ! J

n
*  where Jn*=k×F*, rewrite the vorticity equation in 

the form 
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Thus the quantity u *!
a
*+J

n
*may be interpreted as the total flux of absolute vorticity, 

the term u *!
a
*  accounting for the advective part of the flux and the term J

n
* 

accounting for the dissipative flux. 
(c)  By taking the cross product of k with the steady version of (2.1.15) obtain the 
relation 
 
  k ! "B* = u *#

a
*+J

n
* . 

By comparing this with the relation k ! "#* = u *  interpret B* as a streamfunction for 
the total vorticity flux. Further show that the derivative of B* along streamlines gives a 
vorticity flux that is entirely due to dissipation, whereas the derivative of B* in the 
direction normal to streamlines gives a flux that is partly due to dissipation and partly due 
to advection. 
 
[The ideas developed in this exercise are due in part to Schär and Smith (1993).] 
 
2)  Equation (2.1.24) allows a solution to the linear shallow water equations in terms of! .  
Show that the equivalent equations for u and v are given by 
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and  
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