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1.7 Solution to the Initial-Value Problem 
 
 
 The shock joining relations developed in the previous section make it possible to 
solve the initial-value problem posed by Long’s experiment.  The term ‘solve’ is used 
advisedly here for we do not actually calculate the evolving flow during its early 
development.  Instead, we wait until the various transients have separated from one 
another, at which point the flow field consists of steady segments separated by isolated 
bores and rarefaction waves.  The formal solution is thereby guided by the experiment.  
Piecing together the different steady segments of flow allows a solution to be constructed 
and, more importantly, allows calculation of the obstacle heights required to initiate 
partial or total blockage or establishment of a hydraulic jump.  
 
 Let us continue to view the problem as the adjustment to the sudden introduction 
of an obstacle into a uniform stream.  As noted in the previous section permanent 
upstream effects (partial blockage) occur when the obstacle is sufficiently high that the 
initial flow has insufficient energy to ascend the crest or sill, at least according to a 
steady-state calculation.  The critical obstacle height hc is given by (1.6.1).  Figure 1.7.1a 
shows the developing upstream flow for hm>hc.  The initial flow (v0,d0), also the flow far 
upstream,  is approached by a bore moving at speed c1, downstream of which lies a new 
steady flow (va,da). Equations (1.6.4) and (1.6.5) can be used to link the two steady flows 
across the bore, leading to  
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 In addition, conservation of energy and mass connect the sill flow with the steady 
flow immediately upstream of the obstacle according to  
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 Adding to these the condition that the sill flow is critical, 
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results in five equations for the unknowns c
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 Figure 1.7.2 shows the locations of the different solution regimes in terms of the 
dimensionless obstacle height h

m
/d

0
 and initial Froude number F0.  The curve BAE 

gives the critical obstacle height hc/d0 in terms of F0 and is determined by (1.6.1). To the 
left of this curve the obstacle is shorter than the critical height and the steady flow 
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established is completely supercritical or subcritical, depending on the initial Froude 
number.  No upstream influence exists.  To the right of this curve the flow upstream 
influence occurs and the flow adjusts to a hydraulically controlled steady state.  As we 
have shown, the upstream influence takes the form of a bore that partially blocks the 
flow. Note that any bore that propagates upstream must decrease the volume transport, a 
property that can be deduced from conservation of mass (1.7.1) in the form: 
 
   v

a
d
a
= v

0
d
0
+ c

1
(d

a
! d

0
) .    (1.7.6) 

 
Since c1<0 and do<da the final transport is less than the initial transport (v
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we say that the flow is partially blocked.  Various properties of the solution including the 
bore speed and final transport can be obtained by solving (1.7.1-1.7.5) and some of these 
properties are presented in Baines (1995, Figures 2.10 and 2.12). 
 
 Further to the right in the diagram curve BC gives the value of hm/d0 needed to 
completely block the flow. This curve is determined by setting va=0 and da=hm in (1.7.1) 
and (1.7.2) and eliminating c1 between the two equations, resulting in 
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 The wedge shaped region EAF in Figure 1.7.2 represents special initial conditions 
for which two final steady states are possible, depending on how the experiment is 
performed.  To understand this, first consider the curve AF which indicates upstream 
values of  Fd and hm/d0 where a stationary bore is possible in the flow approaching the 
obstacle.  For these upstream conditions the steady flow near the obstacle can either be 
entirely supercritical, or have the stationary bore upstream of the obstacle leading to 
hydraulically controlled flow over the obstacle.  The curve is obtained by setting c1=0 in 
(1.7.1)-(1.7.5), resulting in 
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If one performs the original version of Long’s experiment in EAF, no upstream bore is 
found and the final steady state is the entirely supercritical flow, as in the upper left inset 
of Figure 1.7.2.  The other alternative can be realized by starting with an obstacle of 
height hm>hc (to the right of curve AE) and waiting until a hydraulically controlled flow 
is established.  If the obstacle height is then reduced to a value in the region EAF, the 
hydraulically controlled solution will persist.  A numerical demonstration of the process 
is shown in Figure 1.7.3. In frame (a) the obstacle of height hm>hc is introduced, exciting 
an upstream bore. In (b) the obstacle has been lowered to a height hm<hc such that hm/do 
lies in region EAF. Here the bore continues to propagate upstream and the flow over the 
sill remains critical.  Next the obstacle is lowered to point to the left of curve AF, causing 
the bore to reverse directions and move downstream towards the obstacle (c).  Eventually 
the bore moves past the obstacle (d) and a supercritical state is achieved. 
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 Finally, the curve AD separates flows with and without hydraulic jumps attached 
to the downslope of the obstacle. For initial conditions lying below AD the jump would 
be positioned on the down slope of the obstacle.  Above AD the jump would move 
downstream leaving supercritical flow behind.  On AD the hydraulic jump will become 
stationary right at the foot of the obstacle, as shown in Figure 1.7.1b.  In order to find the 
obstacle height at which this last situation occurs one must piece together the segments of 
steady flow shown at sections ‘a’, ‘b’, ‘c’ and ‘d’ in the figure. There are 10 unknowns, 
including the depths and velocities at these four sections, the upstream bore speed, and 
the obstacle height.  Four constraints are provided by the shock joining conditions across 
the bore and hydraulic jump.  Also volume transport and energy (Bernoulli function) are 
conserved between sections ‘a’ and ‘c’ and between ‘c’ and ‘b’, providing 4 additional 
constraints.  The final two constraints are provided by the condition of critical flow at the 
sill and the conservation of R-=vo-2(gdo)1/2 across the rarefaction wave that moves 
downstream of the obstacle.  The algebra involved in the determination of the obstacle 
height from these ten relations is formidable.  
 
Figure Captions 
 
1.7.1  The various transients generated by the introduction of an obstacle into a uniform 
stream when ho exceeds the critical value hc for upstream influence. 
 
1.7.2  The various asymptotic regimes of the Long-type initial-value experiment in terms 
of the initial conditions.  
 
1.7.3  Evolution of a shallow stream when an obstacle of height hm is introduced in a 
moving stream of depth do, such that the initial conditions lie to the right of curve AE in 
Figure 1.7.2.  The obstacle height is then lowered so that hm/do lies in region EAF (frame 
b).  Later hm/do is decreased so as to lie to the left of curve AF (c and d).  The scale of the 
vertical axis z/do varied from frame to frame, but the intersection of the surface with the 
left edge always lies at hm/do=1. 
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