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1.6  Hydraulic Jumps, Bores, Rarefaction Waves and Long’s Experiment. 
 
 

 One of the traditional difficulties in learning about hydraulics is reaching an 
understanding of why hydraulically controlled solutions arise and how they are 
established. Calculations of steady flows merely show the existence of hydraulically 
controlled solutions for special values of the governing parameters (e.g. B=2.5 in Figure 
1.7) and this gives the impression that such a might be difficult to realize in nature. On 
the other hand, observations and laboratory experiments show that controlled, subcritical-
to-supercritical solutions tend to prevail when topography is large. To aid the intuition, it 
often helps to consider how steady flows are established as the result of time-dependent 
adjustment from a simple initial state, or as the result of varying the upstream conditions. 
One of the most thoroughly studied adjustment problems is the experiment of Long 
(1953,1954,1972) in which an obstacle is towed through a laboratory tank containing a 
fluid initially at rest.  The initial fluid depth do is constant and the obstacle is towed at a 
fixed speed v0 until a translating steady state is achieved in the vicinity of the obstacle.  
For a frictionless system, the experiment is equivalent to the sudden introduction of an 
obstacle into a moving stream of depth and velocity d0 and v0 (Figure 1.6.1).  This is the 
viewpoint we will use. The outcome depends crucially on the height hm of the obstacle 
relative to a critical value hc .  The latter is simply the obstacle height associated with a 
hydraulically controlled steady state whose upstream depth and velocity are do and vo. 
This is exactly the height that appears in (1.4.11) if Q/w is interpreted as v0d0.  A 
nondimensional form of this relation is 
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 For hm<hc the sudden appearance of the obstacle generates disturbances that 
propagate away from the obstacle and leave behind an uncontrolled steady solution, 
either completely supercritical or completely subcritical. When the initial state is 
subcritical v0<(gdo)1/2 a subcritical steady state with a dip in the upper surface is 
established (Figure 1.6.1b). Note that the disturbances propagating away from the 
obstacle are isolated in the sense that they do not permanently alter the flow into which 
they are propagating. For supercritical initial flow and hm<hc a supercritical steady state is 
established, this time with the two isolated disturbances propagating downstream. 

 When hm>hc the situation is quite different.  The obstacle now generates an 
upstream bore: a propagating wave consisting of an abrupt increase in depth.  As shown 
in Figure 1.6.1(c or d) the upstream bore increases the depth from d0 to d1. In practice, the 
bore can vary from a nearly discontinuous, turbulent transition to a gradual,  and perhaps 
oscillatory, change.  The latter is called an undular bore. Here, we have simply 
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represented the bore as a depth discontinuity.  Downstream of the obstacle the adjustment 
is caused by a bore and a rarefaction wave. In some cases the downstream bore may 
become stationary on the down-slope of the obstacle forming a hydraulic jump (Figure 
1.6.1c).   Over the obstacle a hydraulically controlled steady state develops, with 
subcritical flow upstream, supercritical flow downstream (perhaps connected to a 
hydraulic jump) and with critical flow at the sill. Finally, if the obstacle height exceeds a 
second threshold height hb (>hc), complete blockage of the flow can occur, as shown in 
Figure 1.6.1d.   

 Long’s experiments give a particular view of the concept of hydraulic control, one 
in which obstacle gains the ability to permanently alter the far field flow.  When hm<hc 
the long-term influence of the obstacle is local; when hm>hc this influence is global.  In 
the latter case, it is often said that the obstacle exerts upstream influence (even though the 
downstream flow is also altered). Another virtue of Long’s experiment is that the final 
steady state can be predicted from the initial conditions.  To do so, one must analyze the 
time-dependent flow that has developed long after the obstacle is introduced.  That is, the 
transients must have moved away from the obstacle and developed into fully developed 
bores and/or rarefaction waves.  The analysis makes use of shock-joining conditions 
linking the uniform flows on either side of the transients.  The full solution to the 
adjustment problem will be presented in the next section; first we must develop a theory 
for shock joining. 

 Bores and hydraulic jumps are nonhydrostatic and often highly turbulent.  They 
involve changes in the depth and velocity that take place over a distance of the order of 
the fluid depth.  This distance is very short in the context of our long-wave model and we 
will therefore represent the transition as a discontinuity in d and v, away from which the 
pressure is hydrostatic and the velocity independent of depth.  As an example, consider a 
hydraulic jump consisting of a stationary discontinuity between two steady flows (Figure 
1.6.2).  Let (du,vu) and (d

d
,v

d
)  denote the depth and velocity immediately upstream  and 

downstream of the jump. In practice, one must measure these end-state values far enough 
away from the jump that the fluid is hydrostatic. Then it is immediately clear from mass 
conservation that  
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Although the channel width w may vary with y, the assumed abrupt nature of the jump 
means that w is essentially the same on each side of the jump.  Hense w does not enter the 
above mass balance. 

 A second matching condition can be obtained from the observation that no 
external forces in the y-direction act on the fluid at the discontinuity.  In practice, there 
might be a frictional stress acting along the bottom or a pressure component in the y-
direction resulting from a non-zero bottom slope, however the force arising from this 
stress will be negligible if the length of the shock is sufficiently short. Hence the 
difference in the pressure forces on either side of the jump must equal the change in the 
momentum flux of fluid entering and leaving the jump.  Since the integral of the 
hydrostatic pressure p  over the fluid depth is the total pressure force acting horizontally 
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at a particular section is ρwgd2/2.  Similarly, the total momentum flux across a particular 
section is ρwv2d.  Our momentum budget therefore requires 
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The quantity !w(d v2 + gd2 / 2)  is sometimes called the flow force and (1.6.3) shows that 
it is conserved across a jump. 

 

  If the discontinuity translates steadily at speed c1, the above analysis can be 
repeated in a frame of reference moving with the discontinuity.  Since the flow appears 
steady in this frame, and since the governing equations are invariant with respect to 
steady translation, (1.6.2) and (1.6.3) are again obtained, but with v

d 
 and v

u
 interpreted 

as moving frame velocities.  To return to the rest frame replace these velocities by vd-c1 
and vu-c1, where vd and vu now denote the rest-frame velocities. The general shock joining 
relations are therefore given by: 
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 If the end states are unsteady, the shock speed will vary with time.  In this case it 
is possible to show that (1.6.4) and (1.6.5) continue to hold, but we leave the proof as an 
exercise for the reader.  

 Equations  (1.6.2) and (1.6.3) allow the downstream state of a hydraulic jump to 
be calculated given a known upstream depth and velocity. These relations also show that 

energy is not conserved crossing the jump. Since Bu =
vu
2

2
+ gdu  is the energy per unit 

mass of any fluid element entering the jump, the total energy influx is QBu  and the total 
outflux is QBd. The difference between these two is proportional to the rate of energy 
dissipation! ˙ 

E  (per unit mass) within the jump.  Using (1.6.2) and (1.6.3) it can be shown 
that 
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Energy dissipation requires the downstream depth to exceed the upstream depth, 
‘downstream’ meaning the direction of positive Q.  For a bore, the above expression is 
valid if Q is interpreted as (v

u
! c

1
)d

u
w , the transport in the moving frame of the bore.  

Thus, the depth of fluid passing through the bore must increase in order for energy to be 
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dissipated.  It is remarkable that ˙ 
E  can be calculated independently of viscosity or even 

the form of internal dissipation. 

 Since a bore or jump contains no internal sources of energy, the fluid depth must 
increase in the direction of flow passing through. This is an important constraint as 
(1.6.4) and (1.6.5) admit solutions with positive and negative dissipation.  An example 
can be found though elimination of c1-vd from (1.6.4) and (1.6.5), yielding 
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The left-hand side of this relation is the speed of a bore relative to the velocity of the fluid 
to the left .  For given vu, dd, and du, two solutions for c1 can be found corresponding to 
the positive and negative square roots of the right-hand side.  The positive root 
corresponds to fluid entering the bore from the right while the negative root corresponds 
to fluid entering from the left.  If d

d
> d

u
 the negative root must be selected.   

 Returning temporarily to the case of a stationary jump, a bit of manipulation of 
(1.6.2) and (1.6.3) leads to  
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where Fu = vu / gdu , the Froude number of the approach flow.  Since the fluid depth 
must increase in the direction of the flow, dd/du >1 and thus Fu must exceed unity.  The 
approach flow must be supercritical.   Since the subscripts u and d can be interchanged 
without effecting (1.6.2) and (1.6.3), an expression involving the downstream Froude 
number Fd = vd / gdd  can be obtained simply by interchanging the subscripts in (1.6.8).  
Thus 
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showing that the downstream flow must be subcritical.   In summary, the bore overtakes 
linear waves propagating against the upstream flow but is overtaken from the rear by the 
same type of linear waves. The convergence of waves at the discontinuity, which is an 
extension of the steepening process discussed earlier, is instrumental in maintaining the 
bore. 

  The hydraulic jump provides a mechanism for a supercritical flow to join to a 
downstream subcritical flow with the same Q but lower B.  For the steady solutions 
sketched in Figure 1.7, this means that the hydraulically controlled flow ( ˜ 

B =5/2) could 
connect to one of the solutions for which ˜ 

B <5/2.  The connection would occur in the 
form of a hydraulic jump on the down-slope of the obstacle, and one possibility is 
indicated in the figure. 
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 The above analysis takes for granted that the jump or bore occurs over a 
horizontal distance short enough that bottom friction and other external sources or sinks 
of momentum are insignificant.  For hydraulic jumps this assumption is valid as long as 
the Froude number of the approach flow is greater than about 1.7 (Chow, 1965).  Then 
the depth change occurs over a horizontal distance on the order of the fluid depth.  Such a 
change is tantamount to a discontinuity in the gradually varying framework of shallow-
water dynamics.  For Froude numbers <1.7 however, the jump becomes undular 
(wavelike) and the depth changes occur over a much longer distance.  Non-hydrostatic 
effects are essential to the wavy structure of the jump and the increased horizontal length 
may necessitate consideration of additional sources of momentum. The reader is referred 
to Baines (1995) for a discussion. 

Some of the best places to observe bores are over gently sloping beaches such as 
those of southern California (Figure 1.6.3).  On the left-hand side of the photo is a 
turbulent bore caused by the shallow surge of a wave running towards the beach.  The 
middle of the photo shows a fairly quiescent, V-shaped region in which the water depth is 
just a few inches.  To the right is the smooth, wavy front of a surge that is running away 
from the beach.  The latter was generated by a previous wave that ran up on the beach 
and is now spilling back.  This reverse surge is a good example of an undular bore.    

 Discontinuities, real or contrived, are encountered quite often in fluid dynamics.  
In many situations, matching conditions are found by integration across the discontinuity 
of the equations governing the flow away from it.  Of course, this procedure is only valid 
when the governing equations hold at the discontinuity as well.  One must take great care 
in applying this method to free-surface jumps and bores, for which the shallow water 
equations do not hold.  For example, (1.6.5) cannot be derived by integrating the shallow 
water momentum equation (1.2.1) across the discontinuity.  Doing so would lead to the 
conclusion that the Bernoulli function B is conserved across the shock, which clearly 
incorrect .  A valid procedure in this case is to apply a more primitive version of the y-
momentum equation such as 
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which is valid throughout the fluid.  Here V is any material volume in the fluid and the 
right hand side of (1.6.10) is the sum of forces F(y) in the y-direction around the bounding 
surface !V .  If the shallow water approximations for v and F(y) are substituted directly 
into (1.6.10) the result is the so called flux form of the y-momentum equation: 
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which can also be obtained by multiplying  (1.2.1) by d and using the continuity equation 
(1.2.2).  Although it is formally invalid within the jump, (1.6.11) yields the correct 
matching condition when integrated across a discontinuity in depth. Numerical solutions 
of the shallow water equations based on the finite-difference method frequently use 
(1.6.11) in place of (1.2.1) since the resulting solutions obey the correct matching 
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conditions when jumps and bores are present. (We may write a section on numerical 
methods and,  if so, should inform the reader where this will be.)   

 The above discussion has assumed a single layer flow with a free upper surface, 
but most ocean and atmospheric applications will involve an overlying or underlying 
fluid slightly different density.   Experiments by Wilkinson and Wood (1971) reveal the 
anatomy of such a jump when the second fluid is relatively deep and inactive (Figure 
1.6.4). The jump consists of two stages, an upstream region in which overlying fluid is 
entrained down into the moving layer, and a ‘roller’ region with a large anticyclonic 
eddy.  The Froude number based on reduced gravity remains <1 in the entrainment region 
and jump to below unity downstream of the roller.  Entrainment is produced by shear 
instabilities at the interface between the two fluids.  At the top of the roller, where the 
velocity is negative and the vertical shear is reduced relative to upstream values, 
entrainment is not observed.  By traditional definition the entrainment region and the 
roller comprise the hydraulic jump, even though the entraining region may be quite long 
compared to the roller. 

 The presence of entrainment gives rise to a significant departure from the single-
layer case considered earlier.  One of the consequences is that for a given upstream state 
there is no unique downstream state.  As demonstrated by Wilkinson and Wood a range 
of downstream states may be found by varying the height hm of an obstacle placed 
downstream of the jump (Figure 1.6.4).  Lowering hm causes the roller region to migrate 
downstream, lengthening the entraining regions and increasing the total amount of 
entrainment.  For sufficiently small hm the roller disappears and the jump consists entirely 
of a gradually deepening region of entrainment.  This is the state of maximum 
entrainment.  If hm is increased, the roller moves upstream and eats up the entrainment 
region.  For sufficiently large hm the entrainment region disappears and the jump consists 
only of the roller.  An further increase in hm causes the roller to come into contact with 
the vertical wall beneath which lower layer fluid is injected.  The jump at this point is 
said to be flooded.   Photographs of the three cases (no roller, combination of entrainment 
region and roller, and flooded jump) are shown (Figure 1.6.5) for the Wilkinson and 
Wood experiment, an upside-down version of the scheme we have been discussing.  

 Entrainment gives rise to a lack of conservation of mass and volume flux in the 
lower layer.  If E is the volume flux per unit width introduced into the lower layer by 
entrainment, then mass and volume flux balances for the lower layer between sections 
immediately upstream and downstream of the jump (Figure 1.6.5) are 
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which is often written in form 

    !guvudu = !gdvddd ,    (1.6.13) 

where !g() = g("2() # "
1
) / "

1 .  The quantity !g vd is called buoyancy flux and its 
conservation is a consequence of the total conservation of mass for the two layers as a 
whole.  

 Further complicating the problem of shock joining is that fact that a horizontal 
pressure force, exerted by the overlying fluid, now exists on the upstream face of the 
roller and the top of the entraining region.  However, the flow force for the two layers as 
a whole remains conserved provided the bottom is horizontal and frictional bottom drag 
is negligible.  To find the total flow force, we assume that the upper layer is motionless, 
implying that the free surface (z=D) is level.  Integrating the hydrostatic pressure over the 
whole depth of the layer then leads to 
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The first term on each side of the equation is the barotropic pressure force, equal to the 
force that would exist if the fluid had uniform density ρ1.  The second term is the extra 
pressure force due to the excess density of the lower layer.  Cancel the barotropic term 
and one is left with an expression identical in form to the case of a single layer (cf. 1.6.3).  

 If the entrainment E is known, then (1.6.12-1.6.14) provide three relations for the 
downstream velocity, layer depth, and density can be calculated from upstream values.  
Of course E is not known in advance nor, as shown by the experiment, can it be predicted 
solely on the basis of the upstream state.  Some sort of downstream information, or an 
assumption about the downstream flow, must be made.  An approach taken by Wilkinson 
and Wood (1971) is to assume that the downstream flow is hydraulically controlled by an 
obstacle of height hm, as in the experiment.  It is further assumed that no entrainment or 
dissipation occurs between the downstream section xd and the sill.  Although two 
additional unknowns (the velocity and layer thickness at the sill) are introduced, there are 
three constraints.  These include conservation of energy and volume flux as well as the 
critical condition at the sill. For given hm the entrainment can be calculated and the 
problem closes.  

 Although this last procedure is elegant, it is difficult to apply in geophysical 
settings due to the general lack of a clearly defined downstream obstacle or hm value.  
Supercritical flows often spill out onto vast terrestrial or abyssal plains and the factors 
controlling the downstream layer thickness are complex.  Alternatives to the Wilkinson 
and Wood procedure use turbulence closure assumptions to predict the energy dissipation 
or entrainment in the jump.  The reader is referred to the work by Qinfang and Smith 
(2001a,b), Holland et al. (2002) and references contained therein. Also could refer to a 
more recent paper I have reviewed, provided that it appears. 
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Exercises 
 
1)  Derive the shock joining conditions for a hydraulic jump in a channel with the same 
triangular cross-section as that given in problem 4 of Section 1.4. 
 

2)  Consider a bore propagating in a flow with spatially and temporally varying velocity 
and depth.  The speed of the bore is unsteady: c1=c1(t).  Define a material volume V 
bounded by the free surface, the side walls of the channel, and by material fluid columns 
located at position a(t)<y<b(t) as shown in Figure 1.6.2.  Also, let yu and yd be fixed 
positions lying within the volume as shown in the figure.   

(a) Show that  
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(b) Note that the above equation also applies in a steadily translating frame of reference.  
Let the speed of translation be c1(0), so that the frame speed matches the bore speed at 
t=0. By shrinking the distances between a(t), yu, yd, and b(t) to zero , show that at t=0 
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where vu=( da/dt)t=0 and vd=(db/dt)t=0.  

(c) By applying (1.6.10) and evaluating the forcing terms on the right-hand side using the 
hydrostatic pressure at y=a(0) and y=b(0), show that (1.6.3) is recovered.  Note that 
(1.6.5) follows by transformation back to a rest frame. 

(d) Perform the same series of operations starting with a primitive statement of mass 
conservation in order to recover (1.6.4) for an unsteady shock. 

 

Figure Captions 

 

1.6.1  Schematic depiction of the various types of shallow-water adjustment caused when 
an obstacle is introduced into a uniform, subcritical stream (a).  In (b) the obstacle height 
is less than the critical value and the flow remains subcritical.  In (c) the obstacle exceeds 
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its critical height and a hydraulically controlled flow with a jump emerges.  In such cases 
the jump may also propagate downstream as a bore.  In (d) the obstacle has exceeded the 
height required for complete blocking.  (The downstream disturbances are not shown for 
this case.) 

1.6.2  An abstraction of a hydraulic jump. 

 

1.6.3  The foamy wave front is a bore, formed by the leading edge of a wave propagating 
onto a gently sloping beach in southern California.  The wavy feature to the right is an 
undular bore that is propagating in the opposite direction (right-to-left).  The latter is 
formed at the leading edge of a long wave that has been reflected from the beach.  (L. 
Pratt photo.) 

1.6.4.  A schematic view of the two-fluid jump observed by Wilkinson and Wood (1971). 

1.6.5   Photographs of the laboratory experiment of Wilkinson and Woods (1971). 
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