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1.4 The hydraulics of steady, homogeneous flow over an obstacle. 
 
 We are now in a position to review one of the simplest examples of hydraulic 
behavior: that of a steady, homogeneous, channel flow passing over an obstacle or 
through a width contraction.  The channel will continue to have rectangular cross-section 
with gradually varying width w and bottom elevation h.  The steady shallow-water 
equations governing such a flow are 
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 Before considering specific solutions it is worth noting some general properties 

which follow from (1.4.1) and (1.4.2). Elimination of dv
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whereFd

2
= v

2
/ gd .  This expression gives the rate of change of the free surface elevation 

d+h along the channel in terms of the rate of change of the geometrical parameters w and 
h.  Positive values of the numerator on the right hand side are associated with 
constrictions of the geometry due to increasing bottom elevation or to decreasing width.  
If the flow is subcritical (F

d

2
< 1 ) the denominator is negative and the fluid depth 

decreases in response to constrictions.  This is the situation when flow in a reservoir 
approaches a dam.  Supercritical flow (F

d

2
> 1 ) experiences increases in depth in 

response to constrictions, a situation that can be observed in river rapids; the free surface 
rises where the current passes over a stone on the river bottom.  Finally, critical flow  
(F

d

2
= 1 ) with a finite free-surface slope1 requires that the rate of contraction be 

zero: dh
dy

=
d

w

dw

dy
.  This condition holds where dh

dy
 and dw

dy
 are both zero, as at the crest 

or sill of an obstacle in a constant-width channel, at a narrows of a constant-elevation 
channel, or at a section where the minimum width coincides with a sill.  Critical flow can 
also occur where increases in bottom elevation coincide with increases in width, or vice 
versa, such that the rate of geometrical constriction is zero according to the above 
criterion.  Locations of critical flow are called critical or control sections.  
 
                                                
1 There are physically meaningful solutions having infinite free surface slopes.  These ‘hydraulic jumps’ 
will be discussed in Section 1.6. 
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 There is a simple reason explaining why critical flow can occur only at special 
locations.   The forcing of the flow is entirely due to topographic and side-wall variations 
and is clearly stationary. Where the flow supports stationary free disturbances (i.e. where 
the flow is critical) this forcing gives rise to a resonant response.  The resonance, which 
corresponds to the vanishing of the denominator in (1.3.3), is prevented only if the 
forcing, as measured by numerator, is zero.  In other words, the net rate of contraction or 
expansion of the channel geometry must be zero where the flow is critical, else the 
forcing would give rise to a growing disturbance that would alter the flow. 
 
 A second consideration in the interpretation of critical flow involves the 
nondispersive character of the waves in question.  Let us temporarily leave the shallow 
water model, in which all waves are considered infinitely long in comparison with the 
fluid depth, and consider the phase speed of a linear wave of finite length 2π/k.  For a 
wave propagating on a uniform current of depth D and velocity V, the phase speed is 
given by 
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The latter gives the speed at which disturbance energy propagates. In the shallow-water 
limit (kD→0) the waves are nondispersive; phase and energy propagate at the same speed 
(gD)1/2.  When long waves are resonantly forced, neither the phase nor energy is able to 
escape.  Energy accumulates and the disturbance grows to the point where nonlinear 
dynamics intercede.  For waves with finite wavelength (kD>0) the phase and energy 
propagate at different rates.  Stationary waves may be excited by topographic variations, 
but their growth is limited by the fact that energy is able to propagate away from the 
region of excitation.  This process is responsible for the generation of ‘lee’ waves, which 
are stationary waves of finite length.  In summary, the resonant excitation of free 
disturbances by topography leads to consequences most profound when the waves are 
nondispersive.   
 
 Now consider the class of steady flows that arises when w is constant and the 
channel contains a single obstacle of height hm, as shown in Figure 1.1.1c. Normally, 
computation of the flow is carried out using statements of conservation of energy: 
 

   v
2

2
+ gd + gh = B ,      (1.4.4) 

 
and conservation of volume transport: 
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   vdw = Q ,      (1.4.5) 
 
obtained through integration of (1.4.1) and (1.4.2) with respect to y. The constants B and 
Q  represent the Bernoulli function (or ‘head’) and volume flow rate. The former is the 
energy per unit mass of a fluid parcel and is always independent of depth in our shallow-
water system.  For steady flow (1.4.4) indicates that B is independent of y as well. 
 
 Solutions for the fluid depth can be found by eliminating v between (1.4.4) and 
(1.4.5), with the result: 
 

   Q
2

2w
2
d
2
+ gd = B ! gh.     (1.4.6) 

 
The quantity B-gh , sometimes called the specific energy, is the total energy minus the 
potential energy provided by the bottom elevation.  The specific energy represents the 
intrinsic energy of the flow.  Changing the bottom elevation alters the specific energy, 
forcing the depth to adjust to new values.  One approach to the steady flow problem is to 
imagine that Q  and B are fixed conditions set far upstream of the obstacle, so that one 
can march along the channel, using (1.4.6) to calculate the depth at each y.  Of course 
(1.4.6) is cubic and there may be more than one value of d for each h, a situation that can 
be clarified by plotting h (or, more conveniently, B-gh) as a function of d. To make such 
a plot as general as possible, we first nondimensionalize  (1.4.6) by dividing by gD, 
where D is a scale chosen for convenience as (Q / w)2/3g!1/3 .  Then let !d = d / D , 
 
!h = h / D , and

 
!B = B / gD .  The resulting relation  
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2( !d)
2
+ !d = !B ! !h     (1.4.7) 

 
is plotted in Figure 1.4.1a. To construct a solution at a particular y, first set the 
normalized energy  !B  and note the bottom elevation  !h  at that y.  This fixes a point on the 
vertical axis, !B ! !h .  If the latter is >3/2, two possible solutions  !d  exist corresponding to 
the right- and left-hand branches of the curve.  There is one solution for !B ! !h =3/2 
corresponding to the minimum of the curve.  Here 
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and therefore  !d =1 or d=(Q/w)2/3g-1/3=(vd)2/3g-1/3 or, finally,Fd

2
= v

2
/ gd = 1 .  The solution 

at the minimum of the curve therefore corresponds to critical flow.  The left hand branch 
of the curve is associated with smaller depths and, since the flow rate is the same, larger 
velocities. Therefore the left-hand branch corresponds to supercritical  (F

d

2
> 1 ) flow, 

while the right-hand branch corresponds to subcritical (F
d

2
> 1 ) flow.  Constructing a 
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solution requires choosing between the right- and left-hand branches, and there is nothing 
thus far to suggest how this choice is to be made. 
 
 Ignoring for the moment the dilemma of being forced to choose between two 
possible solutions, we arbitrarily begin on the subcritical branch of the solution curve.  To 
construct a solution over a particular obstacle, begin at the section (y=y1) upstream of the 
obstacle, where  !h =0. To find the depth  !d  at this section, go to Fig. 1.4.1a and read off 
the value  !d (y1) corresponding to  !B ! !h (y1)= 

!B .  Next, move forward along the channel to 
where the bottom elevation  !h  begins to increase.  The new solution occurs at a lower 
value of  !B ! !h , requiring one to trace the solution curve to the lower left, as suggested by 
the arrows drawn above the curve.  The depth therefore decreases as we move up the 
upstream face of the obstacle. We can continue in this way until we reach the obstacle’s 
sill y=ys and

 
!h = !h

m
.  If the sill elevation 

 
!h
m

 is sufficiently small that 
 
!B ! !h

m
> 3 / 2 then 

the minimum of the solution curve is not reached and the depth  !d (ys) will exceed the 
critical depth  !d =1.  Continuing further downstream causes one to retrace the solution 
curve in Figure 1.4.1a as indicated by the arrows drawn underneath the curve. When the 
obstacle is passed (y=y2), the depth returns to its upstream value and the solution is 
subcritical at all points between.  The free surface will appear as shown in Figure 1.4.1b.  
Note that the solution is symmetrical in the sense that equal bottom elevations upstream 
and downstream of the sill see the same fluid depth.  If the left-hand branch of the 
solution curve had been traced for the same topographic variations, a symmetrical 
supercritical solution with  !d increasing over the obstacle would have resulted.  We will 
refer to these solutions as pure subcritical or pure supercritical flow. 
 
 Next suppose that 

 
!B ! !h(ys ) = 3 / 2  so that the minimum of the solution curve is 

just reached at the sill.  If the approach to the sill had been along the subcritical solution 
branch, there are two choices in constructing the downstream solution. First, one might 
retrace the subcritical solution branch as in the above example.  Second, one might 
continue onto the supercritical branch and obtain an asymmetrical solution with the fluid 
depth decreasing in the downstream direction.  The second situation is depicted in Figure 
1.4.2.  As it turns out, the first of these scenarios results in a solution with a discontinuity 
in the free surface slope at the sill and can be ruled out. The proof is explored in in 
Exercise 1 below. The preferred solution is thus the one with subcritical flow upstream, 
supercritical flow downstream, and critical flow at the sill.  This type of flow, which 
resembles flow over a dam or spillway, is often described as being hydraulically 
controlled for reasons that will soon become apparent.  For now, we simply note that 
small disturbances generated downstream of the sill are unable to propagate upstream. 
The subcritical flow upstream of the sill is therefore immune to weak forcing imposed 
downstream of the sill. 
 
 It is also natural to ask what happens when

 
!B ! !h(ys ) < 3 / 2 , in which case no 

solution exists at the obstacle’s crest.  This situation occurs when the energy  !B  is 
insufficient to allow the fluid to surmount the obstacle.  For example, one might start 
with the hydraulically controlled flow described above and raise the elevation of the sill a 
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small amount, creating a small region about the sill for which no steady solution would 
exist.  Under these conditions a time-dependent adjustment must take place leading to a 
new upstream flow with a larger

 
!B ( = B(gQ / w)

!2 /3
) . As we shall discuss in Section 1.6, 

the value of  !B  is altered the minimal amount required to allow a smooth steady state.  
The new steady state is therefore hydraulically controlled.  Note that change can be 
effected by increasing the Bernoulli function B or by decreasing the transport Q. 
 
 So far, we have constructed various solutions by fixing the energy parameter  !B  
and varying the sill height of the topography. For a different perspective, consider the 
family of solutions obtained for a fixed topography by varying 

!B .  Figure 1.4.3 shows the 
free surface profiles of the solutions over an obstacle of unit dimensionless height.  Each 
value of  !B  shown is associated with two solutions, one having supercritical and one 
subcritical flow upstream of the obstacle.  For  !B >2.5 the curves are the symmetrical, 
purely sub- or supercritical solutions discussed before.  For  !B =2.5 the two solutions 
intersect each other at the sill; one of these is the hydraulically controlled solution 
discussed above and the other, its mirror image, is supercritical upstream and subcritical 
downstream of the sill.  For  !B <2.5 the solutions cease to be continuous across the sill. 
 
 The asymmetrical solution that is supercritical upstream and subcritical 
downstream is difficult to reproduce in the laboratory, most likely due to an instability 
that occurs near the sill.  A heuristic demonstration of the instability can be made through  
consideration of a small-amplitude, long-wave disturbance introduced about the sill 
(Figure 1.4.4). This disturbance may be synthesized using the two linear wave modes of 
the system, which propagate at speeds v-(gd)1/2 and v+(gd)1/2 . Since the slower wave 
propagates in the downstream direction upstream of the sill and in the upstream direction 
downstream of the sill, any energy carried by this wave will become continuously 
focused and amplified at the sill. 
 
 Now picture a steady flow that is critical at the sill, and consider the effect of 
increasing hm by a small amount.  The original flow no longer has sufficient energy to 
surmount the obstacle.  At the sill, the temporal increase in hm results in the resonant 
excitation of a disturbance.  The disturbance remains stationary only as long as its 
amplitude remains small.  Eventually it becomes large enough to break free and move 
upstream, establishing a new value of !B .  This process is known as upstream influence 
and will be illustrated further in Sections 1.6 and 1.7.  Upstream influence and hydraulic 
control  both refer to the regulation of the upstream conditions.  
 
 If it is known in advance that the flow is hydraulically controlled, one can derive a 
transport relation or ‘weir formula’ to measure the volume transport.  Weir formulas 
make use of the criticality of the flow at the sill to express the transport in terms of the 
fluid depth at some convenient section.  This circumvents the need to directly measure 
the velocity, which is normally more difficult than measuring the depth.  As an example, 
consider a reservoir of width ws that drains across a sill of width ws. The condition of 
criticality vc = (gdc )

1/2 at the sill can be used to write the volume transport Q=vdw 
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as g1/2dc
3/2
ws , so that Q is determined by measurement of fluid depth at the sill.  It is often 

more convenient to determine Q by a depth measurement in the reservoir itself, say at 
y=y1 in Figure 1.4.2b.  Equating energy and volume transport at the reservoir and sill 
sections leads to 
 

   v
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 and  
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Eliminatation of v1 and use of the critical condition leads to  
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where Δz is the difference in elevation between the free surface at y=y1 and the sill. 
Measuring Δz and d1 allows Q to be determined from the above formula.  In many cases, 
y1 can be chosen as a location where the depth d1 or width w1 is sufficiently large that the 
second term on the left-hand side can be neglected. In this case the simplified relation  
 
   Q = 2

3
( )

3/2

wsg
1/2
!z

3/2 .    (1.4.12) 
 
can be used as an approximation.  For the reduced gravity analog of the current model, 
weir formulas would permit calculation of volume transport based on the interface 
elevation upstream of the critical section. 
 
 Although equation (1.4.11) was motivated by the practical necessity of measuring 
volume flux, it also provides particular view of the concept of hydraulic control.  In a 
controlled state, there is a fixed relationship between the parameters governing the flow, 
in this case Q and!z , and the geometrical parameters describing the control section, in 
this case the sill height hm.  For non-controlled solutions no such relationship exists, 
implying that one has more freedom to manipulate these flows.  We will elaborate on this 
point further.  In addition, it is easy to show that critical flow is associated with a number 
of variational properties of steady flows.  For fixed Q  and h, the energy B of the flow is 
minimized over all possible values of d, which can be seen from Figure 1.4.3 or from 
taking!B / !d = 0  in (1.4.6).  Similarly, it can be shown that for fixed B and h, Q is 
maximized over all d.  Hydraulically controlled solutions thus minimize the energy 
available at a given volume transport, which is consistent with the idea that the fluid is 
barely able to surmount the obstacle.  In addition, these solutions tend to maximize the 
transport available at a given energy level.  
 
Exercises 
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1) Using l’Hôpital’s rule in connection with (1.4.3), derive an expression for the 
slope of the free surface at a sill under critical flow conditions.  You may assume that the 
channel width is constant.  From the form of the result, show that critical flow can occur 
over a sill (d2h / dy2 < 0 ) but not a trough  (d2h / dy2 > 0 ). Also show that a solution 
passing through a critical state at a sill generally cannot be subcritical (or supercritical) 
both upstream and downstream of the sill without incurring a discontinuity in the slope of 
the free surface.   
 
2) Construct a nondimensional solution curve akin to that of Figures 1.4.1 or 1.4.2 
for the case of a channel of constant h but variable w. 
 
3) Consider a 100m-deep reservoir that is drained by spillage over a dam of height 
99m.  Both the dam and reservoir have width w=100 meters.  Approximate 
 (a)  The volume flow rate from the reservoir. 
 (b)   The depth and velocity at the sill of the dam. 
 (c)   If you used an approximation to answer (a) estimate the error. 
 
4) Suppose that the channel has a triangular cross-section.  The width w at any z is 
given by  
 
   w(z) = 2!(z " h(y))  
 
where h(y) is the elevation  of the bottom apex.  The along channel velocity v and surface 
elevation are independent of x. 
  
 (a)  Taking h=constant, find the speed of long surface gravity waves in the 
channel. 
 (b)  For steady flow, formulate a solution curve like that of Figure 1.4.1a or 1.4.2a 
showing how the fluid depth varies with h. 
 (c)  Show that the condition obtained at the extremum of the curve is the critical 
condition found in part (a).  
 (d)  Write down the weir formula for the case in which the fluid originates from 
an infinitely deep reservoir and spills over a sill. 
 
Figure Captions 
 
Figure 1.4.1. The top frame shows a curve of  !B ! !h  as a function of  !d , as given by 
equation 1.4.7.  The arrows on the subcritical branch of the curve show how one would 
trace along that curve in order to get the solution shown in the lower frame. 
 
Figure 1.4.2.  Similar to 1.4.1 except that a hydraulically controlled solution is traced 
following the arrows. 
 
Figure 1.4.3  A family of solutions to (1.4.7) for a fixed obstacle and various values of  !B.  
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Figure 1.4.4.  A supercritical-to-subcritical and the direction of propagation for the 
slower long wave.  Disturbance energy contained in this mode would converge at the sill 
leading to an instability. 
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