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1.3  Nonlinear steepening and rarefacation. 
 
 
  A basic grasp of the hydraulic properties of a steady flow requires that one 
understand the characteristics of linear disturbances that propagate on that flow.  
However, finite amplitude disturbances are crucial in understanding how such solutions 
are established and how hydraulic jumps and other types of shock waves are formed.  A 
feature common to most nonlinear disturbances that arise in hydraulic models is that they 
are governed by hyperbolic partial differential equations.  The defining characteristics of 
quasi-linear hyperbolic systems in 2 dimensions is described in detail in Appendix B, as 
are the methods for transforming the governing equations into standard forms.  However, 
a heuristic definition would center on the properties that two independent types of 
disturbances (waves) exist and that these waves propagate through the physical domain at 
a finite speeds.  In the example of the previous section, the disturbances were the two 
linear gravity waves that propagated at speed c

±
= V ± gD( )

1/2 .  However, standard 
methodology allows one to consider wave amplitudes sufficiently large to destroy the 
distinction between the wave and the background flow. 
 
  To begin, it is helpful to rewrite the one-dimensional shallow water equations 
(1.2.1) and (1.2.2) in the form  
 
   d

±
R
±

dt
= !g

dh

dy
      (1.3.1) 

where 

   d±

dt
=
!

!t
+ [v ± gd( )

1 / 2
]
!

!y
    (1.3.2) 

 
and  
   R

±
= v ± 2(gd)

1 / 2 .     (1.3.3) 
 
The procedure for obtaining this new form is discussed in Exercise 1 and the reader who 
seeks a more general discussion can consult Appendix B or look at standard texts such as 
Courant and Friedricks (1976) or Whitham (1974).   
 
 To interpret (1.3.1-1.3.3) first note that the operators d±

dt
 are time derivatives seen 

by observers traveling with characteristic speeds 
 
     dy±

dt
= v ± gd( )

1/ 2 .    (1.3.4) 

 
These speeds are nothing more than the linear wave speeds with V and D replaced by the 
local velocity and depth, v and d.  As before, it is helpful to think of the characteristic 
speeds as defining individual signals that move through the fluid and that compose 
general wave forms. Since the characteristic speeds vary throughout the flow field, 
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different parts of a wave form move at different rates, leading to steeping (convergence) 
or rarefacation (spreading) of the wave. If the bottom slope is zero (dh/dy=0), an observer 
moving at one of the characteristic speeds sees a fixed value of the Riemann invariant R+ 
or R-.  The latter are nonlinear generalizations of the functions introduced in the previous 
section.  Among other things, they serve as indicators of the presence of ‘forward’ and 
‘backward’ wave forms.  If, for example, R- is uniform in y then the flow field contains 
no ‘backward’ wave forms (i.e., those propagating at speed v-(gd)1/2).  The forward 
propagating waves in such a field are sometime called simple waves.  A simple physical 
interpretation of Reimann invariants in terms of energy or momentum has proved to be 
elusive. 
 
 The characteristic speeds have real and unequal values for all flows in which the 
depth is non-zero and this implies that (1.2.1) and (1.2.2) are hyperbolic.  The importance 
of this property is that solutions to the initial-value problems can be constructed using the 
method of characteristics.   Suppose that one is given the initial conditions v(y,0) and 
d(y,0) for all y and asked to compute the evolution of the flow for t>0. The initial values 
of the Riemann invariants are given by R

+
= v(y,0) + 2[gd(y, 0)]

1/ 2  and 
R

!
= v(y,0) ! 2[gd(y,0)]

1/ 2and, provided that dh/dy=0, these values are conserved along 
characteristic curves (or ‘characteristics’), paths traced out in the (y,t)-plane by moving 
away from t=0 at the appropriate characteristic  speed . Unlike the case for the linear 
waves considered in the previous section, the slopes of the characteristic curves depend 
on the local values of the velocity and depth and may no longer be constant. 
 

We can now lay out a procedure for solving any initial value problem involving 
smooth initial values of v(y,0) and d(y,0).  Let y+(yo,t) and y-(yo,t) define the characteristic 
curves originating from a location y=yo on the t-axis of (y,t) space, also known as the 
characteristic plane (Figure 1.3.1a).  The slopes of these curves are given (1.3.4) and can 
be calculated along t-axis from the initial conditions. The method of characteristics is 
initiated by projecting the curves forwards in time over a short interval Δt and assuming 
that the curves retain their initial slopes.   The value of R- or R+ will be conserved, at least 
to a first approximation, along these straight-line projections.   At a location such as p in 
the figure, a provisional value of R- is determined by the curve y-(yo,t) that passes through 
it.  The value of R+ is known from the y+(yo,t) line that pass through and intersects the 
first curve at p.  Provisional values of d and v can be computed from 
 
    v =

1
2 (R+

+ R
!
)     (1.3.5) 

 
    d = [(R

+
! R

!
) / 4]

2
/ g .   (1.3.6) 

 
The characteristic speeds that follow from these values will generally be different than  
the initial estimates, implying that the characteristic curves are not straight.  In this case 
an iterative procedure can be used to make the solution converge.  Once satisfactory 
values of v and d have been found at t=Δt, the solution may be advanced further in time 
through reiteration. The method will continue to work as long as the ‘-’ or ‘+’ curves do 
not begin to intersect each other.  Should the latter occur, multiple values of R+ or R- 
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would apply at the same point and the solution would be overdetermined. This situation 
is associated with the formation of shocks, meaning discontinuities in v and/or d, a 
process that will be explored later.  Note that when the channel bottom contains 
topography, R

±
 are no longer conserved and must be computed by through integration of  

(1.3.1) along characteristic curves.  However the characteristic curves may still be 
interpreted as paths along which information travels.   
 
 Elementary examples of nonlinear evolution can be constructed through the 
consideration of a simple wave, as generated from an initial condition with uniform R- or 
R+.  Consider the initial condition shown in Figure 1.3.1a, with shallow water to the right 
and deeper water to the left.  Suppose further that the shallower region has uniform depth 
do and is motionless (v=0).  We then choose the initial velocity to the left of the shallow 
region such that R- is uniform. The value of R- can be found by evaluating v-2(gd)1/2 in the 
shallow, quiescent region, leading toR

!
= !2(gdo)

1/ 2 .  R- must have this value for all y 
and therefore for all y and t reached by ‘-’ characteristics, provided they do not intersect.  
An immediate consequence is that v and d become linked by the relation  
 
    v = 2(gd)

1/ 2
! 2(gdo )

1/ 2 , 
 
which follows from the definition of R-.  The definition of R+ then leads to 
 
    R

+
= 4(gd(y,t))

1/2
! 2(gdo )

1/2 , 
 
and thus d(y,t) itself is conserved along each ‘+’ characteristic curve.  Since both R+ and d 
are conserved, v must also be conserved along each such curve and the characteristic 
speed must be constant and equal to its initial speed:  
 

    
c
+
= v(y,t) + (gd(y,t))

1/2

   = 3(gd(y,0))
1/2

! 2(gdo )
1/2

.
   (1.3.7) 

 
 The slope 1/c+ of each ‘+’ curve is constant, though different curves have different 
slopes.  For the disturbance shown in Figure 1.3.1a, characteristics emanating from the 
deeper part of the disturbance are tilted more steeply than those emanating from the 
shallower portion. The tilt of each curve is an indication of how rapidly the signal 
corresponding to a particular part of the disturbance travels.  The signal itself can be 
identified as a particular value of d.  Here the deeper (left-hand) portion will propagate to 
the right more rapidly than the shallower, right-hand portion. The slope !d / !y  of the 
free surface will therefore increase in what is called nonlinear steepening. We leave it as 
an exercise for the reader to show that a disturbance of the type shown in Figure 1.3.1b 
would spread or rarefy (provided R- remains uniform).  In other words, the left-hand 
(shallower) d-values would propagate more slowly than those to the right.   
 
 Steepening waves eventually experience singularities, as shown by the converging 
characteristic curves in Figure 1.3.1a.  As more rapid signals overtake slower ones, the 
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free surface slope increases without bound and eventually multiple values of d occupy the 
same y, as indicated by intersections in the characteristic curves. When this occurs, the 
shallow water approximation must be abandoned.  Depending on the rate of steepening, 
nonhydrostatic effects may be overcome, allowing a breaking wave to form, or may 
arrest the steepening altogether.  A more complete description of the sequence of events 
that can take place can be found in Baines (1995). 
 
 A further illustration of the power of the method of characteristics is provided by 
a nonlinear version of the dam break problem explored in the previous section.  We now 
consider the motion following the destruction of a barrier separating a resting fluid of 
depth D from a region with no fluid (Figure 1.3.2). The initial conditions are 
 

   d(y, 0) =
D (y > 0)

0 (y < 0)

! 
" 
# 

     (1.3.8) 

and 
   v(y, 0) = 0 .      (1.3.9) 
 
As posed, the solution to this problem is non-unique.  Different solutions can be found 
depending upon how one deals with the discontinuity in initial depth at y=0.  A 
reasonable way to resolve this difficulty is to replace this discontinuity with a smooth, but 
abrupt, transition over 0<y<yT, as shown in the figure. We must specify the initial values 
of d and v within this short region and the corresponding characteristic speeds and 
Riemann invariants can be used to compute the evolution.  Different specifications lead 
to different outcomes and this is the source of the non-uniqueness.  The calculation of the 
evolution becomes quite simple if d and v are chosen such that either R+ or R- are uniform 
in the abrupt  region and has the same value 2(gD)1/ 2  or !2(gD)1/ 2 as in the region y<0.  
Then one of the Riemann invariants will be initially uniform throughout the fluid, 
allowing application of the simplifications described above for ‘simple’ waves. The limit 
yT→0 may be taken later in order to approach the original step geometry. 
 
 Following this idea further, suppose that R- is initially uniform in the transitional 
interval 0<y<yT.  Its value must therefore be !2(gD)1/ 2 in order to match that of the 
uniform region y<0.  It follows that the definition of R- in the transition region that  
 
  v(y, 0) ! 2(gd(y, 0))

1/ 2
= !2(gD)

1/ 2  (0<y<yT). 
 
However, d<D in 0<y<yT, implying that v(y,0)<0. That is, the fluid in the vicinity of the 
barrier will initially move to the left after the barrier is removed.  Obviously, the 
assumption of uniform R- is not one that leads to a physically realistic evolution.  On the 
other hand, the choice R+=uniform leads to  
  
  v(y, 0) + 2(gd(y, 0))

1/ 2
= 2(gD)

1/ 2  (0<y<yT)  (1.3.10) 
 
so that v(y,0)>0 in the vicinity of y=0, as expected.   
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 It is now easy to make a sketch of the characteristic curves for all y and t, as is 
done in Figure 1.3.2. Since R+ is uniform, all of the ‘-’ characteristics are straight.  Their 
slope is determined by the initial value of the characteristic speed: 
 

 

  

c!(y,0) =
!(gD)

1/2
                                                         (y < 0)

v(y,0) ! (gd(y,0))
1/ 2

= 2(gD)
1/ 2 ! 3(gd(y,0))

1/2
    (0 < y < yT )

" 

# 

$ 

. 

 
Since d(y,0) decreases  monotonically from D to 0 as y increases from 0 to yT, c- increases 
from -(gD)1/2 to 2(gD)1/2 over the transitional interval.  The ‘-’ characteristic curves 
originating from this interval therefore fan out as shown in Figure 1.3.2.  Since d and v 
are constant along these curves, the developing flow consists of a rarefaction wave.  The 
leading edge (d=0 ) of this wave moves to the right at speed 2(gD)1/2 whereas the rear 
edge moves to the left at speed (gD)1/2.  The leading edge speed is also the fluid velocity 
at the leading edge. One of the fanning characteristic curves has c-=0 and therefore points 
directly upwards in the Figure.  In the limit yT→0 this curve lies at y=0, the position of 
the barrier.  Thus, the flow at y=0 immediately becomes steady and critical after the 
barrier is destroyed.  The flow at all other y approaches this same critical state as t→∞. 
The depth d

!
 and velocity v

!
 of this final state are determined by the condition of 

criticality  [v
!
= (gd

!
)
1/ 2 ] and by the uniformity of R+=v! + 2(gd

!
)
1/ 2

= 2(gD)
1/ 2 , leading 

to v
!
=
2
3 (gD)

1/ 2and d
!
= (23 )

2
D .  The volume transport per unit width of channel is 

therefore given by 
 

   v!d! =
2

3

" 

# 
$ 

% 

& 
' 

3

g
1 / 2
D
3/ 2      (1.3.11) 

 
 If the initial depth in y>0 is finite then the advancing edge of the flow forms a 
shock.  Calculation of the solution for this case requires more advanced development of 
the theory of shocks and this is left for later in this chapter.  The interested reader may 
consult Stoker (1957) for the full solution. 
 
   
 
Exercises 
 
 
1) Derivation of Riemann Invariants.   Obtain the homogeneous form of (1.3.1) from the 
shallow water equations (1.2.1) and (1.2.2) by the following procedure: 
 
 a) Try to write the homogeneous versions of (1.2.1) and (1.2.2) in the 
characteristic form 
 

  !
!t

+ c
±

!
!y

" 

# 
$ 

% 

& 
' v+ (

±
(v,d)

!
!t

+ c
±

!
!y

" 

# 
$ 

% 

& 
' d = 0  
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by multiplying (1.2.2) by a factor α
±
(v,d) , adding the result to (1.2.1), and calculating  

α
±
(v,d) and c

±
(v,d) such that the above form is achieved. 

 

 b) Use this result to find the functions R
±
(v,d) satisfying !

!t
+ c

±

!
!y

" 

# 
$ 

% 

& 
' R±

= 0 . 

2)  Linearize the Riemann invariants R
±
 about a uniform background flow v=V and d=D.  

How do the resulting expressions relate to the traveling wave functions f+(y-c+t) and f-(y-
c-t) defined in Section 1.2? 
 
3)  Consider the initial condition v=0 and  
 

  d(y,0) =
do                     ( y > L)

do + a(1!
y

L )    ( y " L)
. 

 
Altough this initial condition does not formally give a ‘simple wave’ solution, a simple-
wave character emerges in parts of the domain after a finite time has elapsed.  Use this 
behavior to discuss the qualitative features of the nonlinear evolution of this disturbance 
and compare with the linear result (Exercise 2 of Section 1.2).  
 
4)  For the example shown in Figure 1.3.1a, at what time does wave breaking (shock 
formation) first occur?  [Hint: do not necessarily be satisfied with the obvious answer.] 
 
5)  Consider the following twist on the classical dam break problem with initial 
conditions (1.3.8) and (1.3.9).  Suppose that at t=0 the barrier is not destroyed but instead 
is made to recede from the reservoir at a constant speed co<2(gD)1/2.  Use the method of 
characteristics to sketch the solution. 
 
Figure Captions 
 
1.3.1  Characteristic curves for two initial value problems, one with deeper water to the 
right (a) and the second with deeper water to the left (b). 
 
1.3.2  The full dam break problem as visualized with a gradual initial change in depth, 
rather than a discontinuity, near x=0.  The characteristic curves are shown in the upper 
frame and the rarefying surface disturbance and intrusion are shown in the lower frame. 
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