
Appendix C:  The method of characteristics for steady, 2-d, shallow flow with 
rotation. 
 
 
 The  shallow-water equations for steady flow over a horizontal bottom can be 
written in the nondimensional forms 
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In contrast to the cases discussed in Appendix B, the system contains three dependent 
variables and this number cannot be reduced without further assumption.  A characteristic 
form can nevertheless be sought using the same reasoning; one would like to linearly 
combine the constituent equations such that differentiation of each variable takes place in 
a single direction.  Taking the combination 
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 If the direction of differentiation of u, v, and d is along the curve 
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The characteristic direction(s) is then determined by the solvability condition for (C3).  
Writing the three equations in the form  
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and setting the determinant of the coefficient matrix to zero leads to 
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 One of the characteristic directions is the flow direction itself: 
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The corresponding characteristic curves are just the streamlines of the flow and the 
corresponding characteristic equation expresses the conservation of the Bernoulli 
function along this path.  [This constraint is absent in the irrotational case discussed in 
Example 1 or Appendix B because the Bernoulli function is uniform throughout the 
domain.]  We will denote these curves using the subscript ψ. 
 

The remaining two characteristic directions are obtained by setting the bracketed 
term in (C4) to zero.  Rearrangement of this expression leads to (B19), and thus the 
second and third characteristic directions are the same as for the case of irrotational flow. 
The corresponding characteristic curves are again denoted C+ and C- with corresponding 
parameters σ+ and σ-.  These curves cross streamlines at the Froude angle ±A, where 
d = (u,v)

2
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2
A , as shown in Figure 4.4.1a. The corresponding characteristic equations 

are obtained by multiplying (C2) by 
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The relationships 
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(C3) have been used to obtain the second step.  A convenient form of the characteristic 
equation is obtained by writing (C6) in terms of the variables 

  

u  and θ, where 

  

(u,v) = u (cos!,sin!)  .  As shown in Figure 4.4.1a, the characteristic curves C+ and C- are 
inclined at the angle θ±A with respect to the x-axis and 
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Setting the bracketed term on the right-hand side of (C6) to zero, using (C7) and 

dividing the result by 
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±
)  leads to 
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and where the second equality follows from (A19).   The term CL can be further 
simplified by writing it as a linear combination CL =αCL +βCR where  CR  represents the 
final expression in (C9), α+β=1, and α is picked so that the terms proportional to 
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If σ± is chosen to be arclength measured along the characteristic curve, then 
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A more traditional form of (C10), one having roots in the field or aerodynamics, 
uses the intrinsic long wave speed d1/2 as a variable.  The middle term in (C10) would 
then be written 
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where (B19) has been used in the last step.  
 
 In summary, the three sets of characteristic curves include the streamlines (see 
C5) and the curves that cross the streamlines at the Froude angle ±A  (see B19).  The 
characteristic equation that applies along streamlines is simply the Bernoulli equation: 
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while the equations that apply along the Froude lines are given by (C8) or (C10).  The 

dimensional versions these three can be obtained by replacing d by gd and dx
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, where f is the Coriolis parameter. 

 
 An example of the use of these relations to compute a supercritical coastal current 
emerging from a river mouth is given by Garvine (1987).1 
 
 
 
    

                                                
1 A misprint in this reference lists θ in place of A in the middle term of (C10).  The calculations presented 
are based on the correct formulation, however. 


