
Appendix B:  The method of characteristics in two dimensions. 
 
(a) Mathematical Theory 
 
 Many of the flows dealt with herein involve two independent variables in a two 
dimensional space.  Examples include wave propagation in x and t  and steady shallow 
flow on the (x,y) plane.  If we temporarily let x and y represent generic independent 
variables, then the governing equations take the form: 
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where u and v are generic dependent variables.  For the systems we consider, the 
coefficients A1, A2, etc. may depend on x, y, u and v, but not on the derivatives of u and v. 
The governing equations are then quasilinear and may be amenable to solution using the 
method of characteristics, provided that further conditions hold.  The development of this 
approach is laid out in Courant and Friedrichs (1948) and the following summary is based 
on their notation and expose′.   
 
 In general, we wish to take advantage of the physical property of certain systems 
that all information propagates in a ‘forward’ direction, usually meaning positive x or y, 
and at finite speed.  We should then be able to construct solutions by forward integration 
along the paths of information travel beginning from the boundaries at which the 
information is generated. To make these ideas more precise, consider a path x=x(σ) and 
y=y(σ), parameterized by the variable σ.  The vector (dx/dσ ,dy/dσ) is tangent to the path 
and the derivative of a function f in the same direction and with respect to σ  
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.  The first aim of the analysis is to manipulate (B1) to form a 

single equation in which the x- and y- derivatives of u and v combine to form a 
derivatives in a particular direction.  This characteristic direction depends on u, v, x, and 
y and defines a characteristic curve along which the derivative is taken.  To this end, 
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 In order that the derivatives of u and v along the hypothetical path be the same, 
we need 
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which allows (B2) to be written as 
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and, by a similar approach  
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 The factors λ1 and λ2 are determined by rearranging (B3) as 
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Setting the determinant of the coefficients of λ1 and λ2 to leads to 
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where 
 
  a = [AC] ,  2b = [AD]+ [BC] ,  c=[BD] ,   (B7) 
 
and [MN]=M1N2-M2N1. 
 
 With (dy/dσ)/( dx/dσ)=dy/dx, the characteristic direction (dx,dy) is given by 
 



   a
dy

dx

!
"#

$
%&
2

' 2b
dy

dx
+ c = 0 . 

 
This equation has two distinct real solutions (dy/dx)- and (dy/dx)+ if and only if 
 
     b2>ac.      (B8) 
 
If (B8) is satisfied, the governing equations are called hyperbolic.  If the equations are 
hyperbolic within a finite region of the (x,y) plane, then two distinct characteristic curves 
C- and C+ can be found within this region.  The curves are computed from 
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 We will now use σ- and σ+ (formerly σ) to parameterize the two characteristic 
curves.  Thus, a curve determined by the ‘+’ sign in (B9) has σ-=constant, and vice versa. 
The original intent was to obtain a form of the governing equations in which derivatives 
are taken in a characteristic direction, i.e. along one of the characteristic curves.  Either of 
(B4a) or (B4b) provides a basis for the desired result, but λ1 and λ2 must first be 
eliminated.   If one attempts to do so using (B4a) and (B5a), say, then it follows that 
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where  
 
   T=[AB], S=[BC], K=[AE], and H=[BE]. 
 
 A useful alternative to (B10) can be obtained by eliminating λ1 and λ2 between 
(B4a,b): 
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(b)  Example 1: Steady, irrotational, two-dimensional, shallow flow over a horizontal 
bottom. 
 
 We use (x,y), (u,v) and d to denote the nondimensional position, velocity and 
depth variables, as defined in Section 2.1.  Dimensional versions of the following 
relations may be obtained by replacing d by gd, where g is the gravitational acceleration. 
The flow to be considered is governed by the continuity equation  
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and by the statmement of conservation of energy 
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Although the Bernoulli function B is normally a function of the streamfunction, the 
assumption of irrotational flow (zero vorticity) renders it a constant.  
 
 If the gradient of (B13) is used to eliminate the gradient of d from (B12), one 
obtains 
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Together with the condition of zero vorticity: 
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(B14) forms a system of two quasilinear equations  of the form (B1) with A1=d-u2, 
B1=C1=-uv, D1=d-v2, B2=-C2=1, and A2=D2=E2=E1=0. The two dependent variables are u 
and v, with d regarded as a function of u and v through (B13).  With these coefficients we 
have a=(u2-d), b=uv, c=(v2-d), and thus the condition for hyperbolicity (B8) is 
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 Equation (B6) governing the characteristic curves is now 
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whereas (B11) yields 
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Keep in mind that du and dv represent changes in u and v measured along the curve. 
 
 A convenient expression for the orientation of the characteristic curves can be 
determined by rewriting (B17), in the form 
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In other words, the characteristic curves at any point form an angle 
A = ± sin
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]  with respect to the local flow direction (streamline).  A is 

analogous to the Mach angle of gas dynamics, named after Ernst Mach.  In shallow water 
theory, A is sometimes referred to as the Froude angle. 
 

It is often helpful to consider the images of the (x,y)-plane characteristics in the 
(u,v)-plane, often called the hodograph.  To this end, note that (B17) and (B18) together 
imply 
 

    
 

dy

dx

!
"#

$
%&
±

= '
du

dv

!
"#

$
%&
!

    (B20) 

 
[The coordination between the ‘+’ and ‘-‘ subscripts must be established independently 
and can be done so using equations (B4) and (B5).]  Now consider a pair of  ‘+’ and  ‘-‘ 
characteristic curves C+ and C- that intersect at some point P in the (x,y)-plane (Figure 
4.4.1a). If α and β are used as a parameters along C+ and C-, then 
 

 !y
!"

=
dy

dx

#
$%

&
'(
+

!x
!"

along C+, and        !y
!"

=
dy

dx

#
$%

&
'(
+

!x
!"

 along C-.  (B21) 

 
The velocity at P determines a point in the (u,v)-plane through which the images Γ+ and 
Γ- of C+ and C-  pass.  According to (B20)  
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It follows that !u
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perpendicular to the image Γ- of C-, and vice versa, if the two are plotted in the same 
space.   
 
 The geometry of the characteristics and their images can be summarized as 
follows.  The two characteristic curves C+ and C- passing through P form Froude angle 
A = ± sin
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4.4.1a).  If plotted in the same space the hodograph image Γ+ of C+ forms a right angle 
with C-, and vice versa, at P (Figure 4.4.1b).  The relationship between A and the angle A′ 
in the (u,v) plane between  characteristics and streamlines is thus 
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It follows from (B19) that 
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 For computational purposes, it is convenient to introduce the angle θ between the 
streamline and the x-axis (Figure 4.4.1a): 
 
    u = qcos!  and v = qsin! .        (B25) 
 
It follows that  
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where we have introduced the convention that C+ tilts to the left, and C-  to the right, as 
seen by an observer facing downstream.  In these terms, equations (B21) and (B22) 
become 
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This set could form the basis for a numerical calculation in which characteristic curves 
emerge from a boundary along with u and v are known.  The paths of the curves 
penetrating into the domain of interest is calculated by solving (B25) simultaneously. 
 
 
(c)  Example 2: One-dimensional, time-dependent shallow flow over a horizontal bottom 
 
 
 In this example we follow the Chapter 1 notation convention that un-starred 
variables are dimensional.  The dimensional governing equations (2.1.1) and (2.2.2), with 
h=constant, can be expressed in the form (B1) with (t,x)  in place of (x,y), d in place of v, 
and A1=C2=1, B1=D2=u, B2=d, D1=g, and C1=A2=E1=E2=0. Equation (B9) then gives  
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while the characteristic equations, obtained using (B10), are  
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The latter can also be written in the form!R
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