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Abstract 

Geometric methods from dynamical systems are used to study Lagrangian transport in numerically generated, time- 
dependent, two-dimensional (2D) vector fields. The flows analyzed here are numerical solutions to the barotropic,/%plane, 
potential vorticity equation with viscosity, where the partial differential equation (PDE) parameters have been chosen so 
that the solution evolves to a meandering jet. Numerical methods for approximating invariant manifolds of hyperbolic fixed 
points for maps are successfully applied to the aperiodic vector field where regions of strong hyperboticity persist for long 
times relative to the dominant time period in the flow. Cross sections of these 2D "stable" and "unstable" manifolds show 
the characteristic transverse intersections identified with chaotic transport in 2D maps, with the lobe geometry approxi- 
mately recurring on a time scale equal to the dominant time period in the vector field. The resulting lobe structures provide 
time-dependent estimates for the transport between different flow regimes. Additional numerical experiments show that the 
computation of such lobe geometries are very robust relative to variations in interpolation, integration and differentiation 
schemes. 

1. Introduct ion 

Recently, there has been much interest in applying 

methods from dynamical  systems to the study of  trans- 

port  and mixing in fluids. For  t ime-periodic 2D flows 

the transport dynamics can be reduced to the study 

of  the associated Poincar6 map on ~2. In such flows 

the mechanism for chaotic transport is the existence 

of  hyperbolic fixed points for the map and the trans- 

verse intersection of  their associated invariant mani- 

folds. Segments of  the invariant manifolds are used to 

partition the phase space into regions with distinctly 
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different motions and transport of  fluid from one flow 

regime to another is understood via the dynamics of  

the lobes resulting from the intersecting manifolds. 

The theory of  lobe dynamics is well  established as a 

technique for characterizing mad quantifying transport 

in t ime-periodic 2D flows [8,17,19,24,25,28] and has 

been extended to flows with quasiperiodic time depen- 

dence [4,10,28]. 

The motivation behind the work presented here is 

to apply techniques in dynamical  systems analysis to 

the study of  transport for idealized dynamical  mod- 

els of  oceanic flows where the t ime-dependent vec- 

tor fields are generated as the numerical  solution to 

an appropriate governing system of  partial differen- 

tial equations (PDEs). For  these numerically gener- 

ated, incompressible,  2D flow fields the velocity vector 
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(or streamfunction) is prescribed only at discrete spa- 
tial and temporal points, on some finite interval of 
time. The velocity field to be analyzed contains the 
full dynamics of the governing dynamical equations 
as opposed to analyzing a system of ordinary differen- 
tial equations (ODEs) derived under certain simplify- 
ing assumptions (for example, modal truncation in the 
PDE or linearization of the dynamical equations about 
some base flow). Invariant manifold techniques appro- 
priate to time-periodic vector fields have been applied 
to numerical simulations of the governing equations 
in cases where the initial conditions evolve asymptot- 
ically to a time-periodic solution [3,11,27]. However, 
generically we expect the time dependence of numer- 
ically generated velocity fields to be neither periodic 
nor quasiperiodic, requiring that the PDE solutions be 
tracked for much longer time intervals and that meth- 
ods be developed for characterizing transport in ape- 
riodic flows. 

Motivated by Lagrangian observations of the Gulf 
Stream [6], there has been much interest in understand- 
ing the mixing and fluid exchange associated with 
meandering jets. The flow analyzed here is a numer- 
ical model of a meandering jet, where the governing 
equation is the barotropic, r-plane, potential vortic- 
ity equation with viscosity. The purpose for studying 
this particular model is to evaluate the effect of vis- 
cosity on transport and mixing in a flow simulating 
a meandering jet with relatively simple time depen- 
dence and where the full nonlinearity has been ac- 
counted for in the velocity field (see the related work 
by Rogerson et al. [22]). Using vector fields which 
satisfy the full nonlinear dynamical equations is an 
improvement over earlier models in which the vec- 
tor fields are either purely kinematic [5,10,12,26], or 
constructed from the superposition of linear neutral 
modes [9,18,20]. The viscosity is required for numeri- 
cal stability as well as being motivated by recent work 
regarding the relationship of potential vorticity con- 
servation and chaotic transport in incompressible, 2D 
flows [2,7]. 

With the vector fields prescribed only at discrete 
spatial and temporal grid points and the data base 
being quite large in many cases, just integrating 
individual particle trajectories requires considerable 

numerical machinery. Moreover, one would hope that 
the methods for reconstructing the Lagrangian particle 
paths are efficient enough that it is feasible to investi- 
gate the flow interactively with a dynamical systems 
package such as DsTool.  In this respect, it is expected 
that the identification of geometric structures such as 
invariant manifolds and their associated lobes will not 
depend strongly on the particular numerical schemes 
used in reConstructing trajectories. Results of numer- 
ical experiments are discussed in Section 8 verifying 
that these geometric structures are indeed robust with 
respect to variations in the numerical schemes. On 
the other hand, small changes in the numerics can 
have a significant effect on individual trajectories, 
particularly for fluid particles passing near regions of 
strong hyperbolicity. 

The meandering jets investigated here are close to 
being periodic in time when viewed in a reference 
frame moving along with the propagating meander 
and, as a first approach to quantifying the fluxes 
between different flow regimes, the dominant time 
dependency in the moving frame is used to define 
a time-periodic flow which approximates the aperi- 
odic flow. The Poincar6 map for this periodic flow 
defined from the truncated data set  has hyperbolic 
fixed points and transversely intersecting invariant 
manifolds, and the lobe dynamics are analyzed in 
the usual way. In Section 5, the techniques used to 
identify these hyperbolic fixed points and their in- 
variant manifolds are detailed and transport estimates 
presented. 

The main goal of the work presented here is to de- 
velop techniques for characterizing and quantifying 
transport in flows having more general time depen- 
dencies and, to this end, these flows for meandering 
jets serve well as a first step away from time-periodic 
flows. All of the simulations have regions of strong 
hyperbolicity which remain well-separated from one 
another and nearly stationary in the reference frame 
moving with the meander. Moreover, these hyperbolic 
regions exist for times much longer than the period 
used in the periodic approximation and it is possible 
to generate lobe structures very similar to the lobes 
computed for the Poincar6 map. Though the partition- 
ing of the phase space into different flow regimes is 
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no longer fixed for all time, we expect that there is 
still a clearly defined exchange of fluid between dif- 
ferent flow regimes via the mechanism of intersecting 
manifolds and lobe dynamics, with the transport no 
longer independent of time. It is important to note that 
an advantage to working with a periodic flow is that 
the manifolds can be iterated to any length making it 
possible to follow several iterations of a lobe, using 
only a fixed amount of data. However, for the aperi- 
odic data, tracking the lobes over several iterations is 
limited by the available length of the data set. 

The rest of the paper is organized as follows. 
Section 2 presents the numerical model used to sim- 
ulate a meandering barotropic jet and describes the 
time dependency of the solution sets. Section 3 is a 
discussion of the numerical methods used to recon- 
struct Lagrangian trajectories from these numerical 
databases. Section 4 introduces the method of lobe 
dynamics and the characterization of transport within 
time-periodic, 2D flows. In Section 5 we describe our 
approach for estimating the fluxes in a time-periodic 
flow which approximates the aperiodic flow field. The 
main result of the paper is in Section 6 where the 
analysis of lobe dynamics is successfully applied to 
the fully aperiodic vector field, with some discussion 
of these results to follow in Section 8. 

2. Model for a meandering barotropic jet 

A meandering jet flow is simulated numerically us- 
ing the model of Flied et al. [13]. The governing PDE 
is the nondimensional barotropic potential vorticity 
equation with a viscosity term added, 

Dq _ (Re)_ lV2q"  (1) 
Dt  

Using ~(x ,  y, t) to denote the streamfunction for the 
incompressible 2D flow, the barotropic potential vor- 
ticity is given by q = V2~/r q-/3y, where/3 is the lin- 
ear variation in the planetary vorticity as determined 
by the latitude of the jet. Instead of the superviscosity 
used in [13], this formulation uses a Newtonian vis- 
cosity term as described in [22]. Rewriting the PDE 
in terms of the streamfunction, 
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O V 2 ~  ~- J ( ~ ,  V2~)q-  f l ~  = ( R e ) - I v 4 ~ .  (2) 

Here V 2 denotes the Laplacian, J ( f ,  g) = f xgy  - 

f ygx  is the Jacobian of (f ,  g), and the inverse of the 
Reynold's number (Re) -1 characterizes the strength 

of an eddy-type viscosity. 
The PDE is in two spatial dimensions with x denot- 

ing the eastward direction and y pointing to the north. 
The equation in (2) was solved numerically in a square 
domain of dimension Lx = Ly = 25.6 with doubly 
periodic boundary conditions, using a pseudo-spectral 
code with both 64 x 64 Fourier modes and 128 × 128 
modes. The initial data for ~ is a weak perturbation 
of an unstable zonal jet, 

~ ( x , y ,  0) = - - e l f (y )  q- 2 y / L y  

+ 6 exp(--y 2) sin(k0x). 

The wave number k0 is constrained by the periodic- 
ity, k0 = 2:rno/Lx ,  for some positive integer no and 
the body of the jet flows in the eastward direction, 
centered at y = 0. The work of [13] identified param- 
eter values of/3 and no such that the unstable initial 
flow evolves into a jet with large-amplitude and nearly 
steadily propagating meanders. Fig. 1 shows snapshots 
of the potential vorticity contours as the PDE solu- 
tion evolves from its initial state into a nearly steady 
meandering jet, for parameter values (Re,/3,  no) = 

(104, 0.207, 4). In a reference frame moving with the 
meander there are three distinct regions to the flow: 
the meandering "jet core" or "prograde" region where 
the flow is eastward, the "recirculation" or "vortex" 
regions lying to the north and south of the jet in be- 
tween meanders, and the far field where the flow is 
westward or "retrograde". 

The PDE in (1) implies that potential vorticity is 
nearly conserved when the Reynold's number is large 
and therefore, the potential vorticity contours give 
some indication of the dynamics of the Lagrangian 
transport within the evolving flow. When viewed in a 
stationary frame the data for the meandering jet simu- 
lation has a dominant time dependency associated with 
the propagation speed and spatial frequency of the me- 
ander. Having identified the dominant time period To, 
the propagation speed of the meander is determined 
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Fig. 1. Level sets of potential vorticity showing the evolution of the PDE solution into a jet with large-amplitude meanders propagating 
with speed c. The solution has been computed on a 64 x 64 spatial grid covering the domain 0 < x < 25.6 and - 12.8 _< y < 12.8. The 
parameter values for the simulation shown here are (Re, fi, no) = (104, 0.207, 4). The potential vorficity contours are incremented 
in steps of 0.10. 

by c = Lx/ (no  To). Though  the flows are not  strictly 

quas iper iodic  in t ime, there is an approximate ly  re- 

current  behavior  to the vec tor  field when  v i ewed  in a 

re ference  f rame m o v i n g  with  the meander.  This  recur- 

rence, wi th  t ime per iod  T1, is observed  as an osci l la-  

t ion in the meande r  ampl i tude  and a rotat ion o f  the 

potent ial  vort ic i ty  contours  wi thin  the vor tex  regions  

o f  the flow. An  example  o f  this is shown in Fig. 2 for  

the case  (Re, fi, no) = (104, 0.207, 4). 

In all the data sets invest igated it is clear  f rom 

the evolut ion o f  the potential  vort ici ty contours  that 

the largest  exchange  of  fluid is taking place  be tween  

the vor tex region and the retrograde region,  whi le  the 

strong potent ial  vort ici ty gradients near  the axis o f  the 

j e t  act as barriers to transport. However ,  more  than jus t  

observ ing  where  the transport  is taking place,  our  goal  

is to quant i fy  the v o l u m e  of  fluid be ing  exchanged  be-  

tween different  regions o f  the flow using techniques  
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Fig. 2. Detail of potential vorticity contours in the vor- 
tex region as viewed in the moving reference frame for 
(Re, fl, no) = (104, 0.207, 4), computed O n a 64 x 64 grid, 
These snapshots cover one time period TI as used in defining 
the time-periodic flow. Note that the potential vorticity is more 
homogeneous than in Fig. 1 and the contours are now incre- 
mented in steps of 0.05. 

from dynamical  systems. As described in Section 4, 

the method of  lobe dynamics is well established as a 

tool for studying transport in t ime-periodic 2D flows, 

where the fluxes are characterized via the transverse 

intersection of  stable and unstable manifolds associ- 

ated with saddle-type fixed points of  the Poincar6 map. 

The area of the lobes resulting from these transverse 

intersections averaged over the time period of  the map 

determines the flux across the particular boundary. 

As a first approach to estimating the transport, the 

lobe dynamics are computed for a periodic flow which 

approximates the aperiodic flow in the moving refer- 

ence frame. The period of  this t runcated flow is just  

the dominant time period of  the velocity field in the 

moving reference frame, T1. The details of  this ap- 

proach are described in Section 5 where the results are 

presented for the case (Re,/3,  no) = (10 4, 0.207, 4) 

computed on a 64 x 64 spatial grid. A more com- 

plete dynamical  systems analysis for the periodic flows 

is included in [22] where results are presented on 

four different data sets, (Re,  r ,  no) = (104, 0.103, 3), 
(103 , 0.103, 3), (104 , 0.207, 4), and (103 , 0.207, 4), 

109 

computed on the finer spatial grid, A x  = Ay ----- 0.2, 

using 128 x 128 spatial Fourier modes.  The emphasis 

in this paper  is on applying similar methods to the full 

aperiodic data set as presented in Section 6. 

3. Reconstructing Lagrangian trajectories 

In this section we discuss the methods used in recon- 

structing Lagrangian trajectories from the PDE solu- 

tion described in Section 2. Consider a 2D flow where 

u(x ,  y, t) and v(x ,  y, t) are the components of  the ve- 

locity field as determined from a governing system of  

PDEs. Lagrangian trajectories of  fluid parcels satisfy 

the system of  ordinary differential equations, 

dx dy 
- -  = u ( x ,  y ,  t ) ,  - -  = v ( x ,  y ,  t ) .  (3) 
dt dt 

For incompressible 2D flows the velocity components 

may be given as derivatives of a scalar streamfunc- 

tion ~ ( x ,  y, t) with u = - ~ y  and v = ~x.  We wish 

to solve the system in (3) when the vector field is 

known only at discrete spatial and temporal grid points 

as a numerical solution to the PDE. We refer to this 

database for the vector field of  the ODE as a numeri- 

cally generated velocity field. 

The spatial domain is assumed rectangular with di- 

mension Lx x Ly.  The discretized mesh is uniform 

with grid spacings Ax  a n d  Ay,  and the spatial grid 

points denoted by (xj ,  y~), for 0 _< j _ J and 0 _ 

k < K.  Here x0, Y0 denote the lower boundaries and 

x j  and yK the upper boundaries. With this notation, 

the spatial dimensions satisfy Lx = J • AX and Ly = 

K .  Ay. In the numerical  simulation o f  the meandering 

je t  discussed in Section 2, the computational domain 

is doubly periodic with x j  = xo and YK = YO. 

The database consists of  N slices of data where the 

nth slice is the computed PDE solution at time tn = 

to + n • At ,  for n = 0, 1 . . . . .  N -- 1. Each data slice 

is a 2D array of  data defining the velocity field (or 

streamfunction) on the ( J  + 1) x (K + 1) spatial grid 

points, at a fixed time tn. For vector fields periodic 

in time with period T = N • At,  the slice at t = tN is 

identical to the slice at t = to. The time to represents 

the first t ime in the PDE at which the solution is written 
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to the database. Here to is chosen to be some time at 
which the flow has settled into a statistically steady 
configuration. 

3.1. Integrating the numerical vector field 

Integrating the ODEs for a numerically generated 
vector field requires interpolation in the full 3D space 
to find the velocity field at arbitrary points (x, y, t). 
We treat the 1D interpolation in time separately from 
the 2D interpolation in x - y  space. The temporal in- 
terpolation i s  determined by the stepsize At of the 
data set and the choice of stepsize in the ODE solver, 
both of which we have control over. All the results 
presented here are computed using the fourth-order 
Runge-Kutta method to integrate the vector field. To 
solve (3) without using any temporal interpolation, the 
Runge-Kutta uses an integration stepsize of h = 2. At, 
and any interpolation in time should necessarily be 
a local interpolation since nonlocal methods will be 
very inefficient. 

The most accurate reproduction of Lagrangian tra- 
jectories will occur if the PDE solution is output at 
every time slice available from the PDE solver. In 
practice this may lead to prohibitively large data files 
and we expect to analyze the PDE data at a coarser 
timestep depending on the time scales present in the 
solution. For the dynamical systems analysis presented 
in Section 6 numerical experiments indicate that the 
results are not affected significantly by using a data 
base with a coarser timestep, but rather, with regard 
to the lobe analysis, it is more valuable to have the 
data set cover a larger interval of time. Using inter- 
polation to integrate the coarser data set at a smaller 
stepsize h is shown to have even less effect on the re- 
sults. Observations from these numerical experiments 
are discussed in Section 8. 

This process of computing particle trajectories from 
a numerically generated vector field has been inte- 
grated into DsTool, the dynamical systems package 
developed at Cornell, enabling us to interactively view 
the dynamics of these flows. However, many of the 
fixed point and invariant manifold computations could 
not be performed adequately from within this package 
and had to be computed using code designed specif- 

ically for handling the numerical database in a more 
efficient manner. 

3.2. Interpolation in x - y  space 

The usual approach to interpolating in the 2D phase 
space is to use local polynomial approximations, typ- 
ically of sixth-order (see [1]). Local polynomials give 
good accuracy and are computationally efficient, re- 
quiring just the value of the scalar function at a num- 
ber of nearby grid points. For example, the sixth-order 
method uses a fifth-order polynomial in x and y to fit 
the scalar function at the nearest 36 nodes. The inter- 
polation is performed independently for each of the ve- 
locity components with the resulting field continuous 
in x and y, though the interpolated functions will not 
have continuous derivatives. This lack of smoothness 
in the local polynomial interpolation serves to break 
the Hamiltonian structure of incompressible 2D flows. 
For incompressible flows the velocity vector (u, v) is 
defined at each of the grid points (xj, yk, tn) as the 
spatial derivatives of a streamfunction ~r(Xj, Yk, tn). 

The interpolations for 7z, u, and v are done inde- 
pendently of one another, and although each of these 
functions is continuous, the relationships u = -TZy 
and v = 7Zx will not be satisfied at arbitrary points 
(x, y, tn). The flow as determined by polynomial in- 
terpolation is no longer area preserving. To maintain 
the Hamiltonian structure in the system of ODEs it 
is necessary to interpolate the streamfunction with a 
scheme that provides smoothness through at least the 
first derivatives. We have considered three approaches 
which provide additional smoothness: a (local) bicubic 
interpolation, trigonometric interpolation, and bicubic 
splines. 

Bicubic interpolation is a local method requiring 
values of ~ ,  7Zx, ~y and l~rxy at the four nearest grid 
points. The interpolation uses a third-order polyno- 
mial to fit the scalar function ~p and its three deriva- 
tives at the four surrounding nodes (see [21]). Since 
we are only provided with the streamfunction, the 
first and second derivatives must be approximated 
using ~p evaluated at the grid points. Numerical 
differencing is the quickest way to estimate the deriva- 
tives, or if Fourier coefficients are readily available, 
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the derivatives can be determined to spectral accuracy 
by a simple multiplication in the frequency domain. 

All orders of  smoothness can be obtained by using 
a 2D trigonometric interpolation, where the Fourier 
coefficients of  the streamfunction are denoted by 
^ x Y 

(corn, COn, tk ),  

^ . --iw~x --iwYy 
ap(x, y, t~) = Z Z lp(co], J ,  tn)e ~ e ~ . 

j k 

(4) 

This method provides full spectral accuracy and is as 
smooth as we need but computationally costly unless 
a large number of  spatial modes can be removed with 
little effect on the results. When the spatial domain is 

periodic, spectral interpolation can provide a bench- 
mark for comparing other interpolation schemes. 

Bicubic splines also provide the necessary global 
smoothness and only require evaluations of  the scalar 

function. However, this is a nonlocal method always 
incorporating knowledge of  the function over the en- 
tire spatial domain. One motivation is to keep the pro- 
cess as efficient as possible to facilitate interactive 
viewing of  the dynamics. For this reason the prefer- 

ence is to work as much as possible with local numer- 

ical schemes. Some numerical observations discussed 
in Section 8 indicate that the lobe analysis in Sections 5 
and 6 does not depend significantly on variations in 

interpolation schemes. 
For much of  the analysis presented here, local bicu- 

bic interpolation is used to compute the vector field 
during the integration of  the ODEs. As discussed in 
Section 2, the spatial domain is doubly periodic and 
the PDE solver uses a pseudo-spectral code. The nec- 
essary derivatives are precomputed using the spectral 
representation of  the streamfunction. The resulting 

derivatives are transformed back to x - y  space and 
local bicubic interpolation is used to compute the 
vector field during the integration of  the vector field. 

This extensive use of  fast Fourier transforms is not 
very efficient but is required only when loading a 
new block of  data slices into active memory. This 
approach is a compromise between accuracy and 
computational efficiency. We retain the Hamiltonian 
structure of  the 2D flow with full spectral accuracy at 

the points, as well as gaining some of  the efficiency 

of  a local interpolation scheme. 

4. Chaotic transport in time-periodic 2D flows 

Transport in the numerical simulation of  the jet will 

first be estimated using a truncated data set which 

serves as a periodic approximation to the aperiodic 
data set. As way of  background, we present a brief 

description of  chaotic transport via lobe dynamics for 
time-periodic 2D flows where the Lagrangian trajecto- 
ries of  the fluid parcels are governed by the system of 

ODEs in (3). I f  the flow is incompressible, there exists 
a scalar streamfunction 7t (x, y, t) which determines 

the velocity components by u ---- -~py and v = aPx. In 
the case where u(x, y, t) and v(x, y, t) are periodic in 

t with period T, we use the periodicity of  the vector 

field to define the Poincar6 map (or first return map) 
relative to time to, 

79 . [~2 ~ ~ 2 ,  79(X0) = ~b(t0 + T; x0, to), (5) 

where x(t) = ~b(t; x0, to) denotes the solution to (3) 

satisfying x(t0) = x0. 
For time-periodic flows much of  the phase-space 

transport can be understood by studying the dynamics 
of  the associated Poincar6 map. The key structures we 
wish to study are hyperbolic fixed points and their as- 

sociated invariant manifolds. Transverse intersections 
of  stable and unstable manifolds imply the presence 

of  chaotic dynamics and the transport of  fluid between 
regions of  phase space having qualitatively different 
behavior. It is the exchange of  fluid across "bound- 

aries" which is of  the greatest interest here and we 
first present the terminology and general description 
of  lobe dynamics (see [17,25,28]). 

Let f : R  2 ~ ~2 be a differentiable, orientation 
preserving map, with f k  denoting the kth iterate of  

the map. In the context of  this paper the map is the 
Poincar6 map associated with the time-periodic sys- 

tem of ODEs. Consider fixed points p which are of  
saddle-type, that is, the Jacobian D f ( p )  has one stable 
eigenvalue, 0 < )~1 < 1, and one unstable eigenvalue, 
)~2 > 1. For incompressible flows the eigenvalues sat- 
isfy )~l • )~2 = 1. The stable manifold WS(p) is a 1D 
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Fig. 3. Chaotic transport computed for a time-periodic flow 
modeling a meandering jet in [18]. The transverse intersections 
of WU(pl) and WS(p2) result in large fluxes across the bound- 
ary separating 7~ 1 and 7~2, with turnstile lobes Ao and B 0. 
The transverse intersections between WS(pl) and WU(p2) are 
nearly negligible and there is little exchange of fluid between 
T~ 2 and 7~ 3. 

curve consisting of all points q such that fk(q) ~ p 
as k ~ cx~. Similarly, the unstable manifold WU(p) is 

the set of all points asymptotic to p as k --> - e c .  

Suppose Pl and p2 are distinct hyperbolic fixed 
points of the map with the unstable manifold 
WU(pl) intersecting transversely the stable mani- 

fold WS(p2) (see Fig. 3). Points in the intersection 
WU(pl) fq WS(p2) are heteroclinic points, asymptot- 

ically approaching Pl under backward iteration and 
asymptotic to p2 under forward iteration. From the 
invariance of W u and W s and the fact that the flow 

is time-periodic, a single intersection point implies 
infinitely many intersections. Given an intersection 
point q, it is convenient to use U[pl, q] to denote 

the segment of WU(pl) joining pl to q, and S[p2, q] 
to denote the segment of WS(p2) joining p2 to q. A 
point of intersection q is called a primary intersection 

point (pip) if the segments U[pl, q] and S[p2, q] 
intersect only at q. The map f being orientable en- 
sures that if q is a pip, then fk(q) is a pip for all 

iterates k. A lobe is defined as the region bounded 
by segments of stable and unstable manifold joining 
an adjacent pair of pips. Lobes get mapped to lobes 
under the map f ,  and for incompressible flows, the 
area of the lobe remains constant under iterations of 
f .  For the invariant manifolds WU(pl) and WS(p2) 
shown in Fig. 3 all of the lobes are generated by 

iterations of the two lobes labeled Ao and Bo. That 

is, A k  = f~(Ao) and Bk = fk(Bo) for any integer 

k. More generally, if the intersections are transverse, 
there will be an even number of lobes which generate 

the entire infinite set of lobes under iterations of the 

map f .  
Observe that the phase space in Fig. 3 has three dis- 

tinct regions with qualitatively different motion. In the 
lower region T¢I the flow is left to right (prograde) and 

trajectories are unbounded. Trajectories are also un- 
bounded in the upper part of the phase space, denoted 

~3, with the motion fight to left (retrograde). Within 
the vortex region T~2 the fluid circulates with a coun- 
terclockwise rotation. The invariant manifolds W u (Pl) 
and WS(p2) intersect transversely and the strong in- 

tersections result in rather large lobes bounded by 
segments of stable and unstable manifolds. The struc- 

ture of these lobes provides a geometric description 

of fluid exchange between the prograde region and 
the vortex region. Segments of the stable and unstable 
manifolds are used to partition the phase space into 
distinct regions. Choosing a pip qo defines a bound- 
ary between the two regions 7¢1 and T~ 2 by the union 

of the two segments U[pl,  qo] and SIP2, qo]. With 
this definition of a boundary, lobe Ao lies inside re- 

gion 7¢1, while A1 lies inside 7~2. Similarly, lobe Bo 
lies inside 7¢2, whereas BI lies inside 7gl. Fluid has 
been exchanged between regions 7-¢1 and ~2, and the 

lobes just preceding this exchange, Ao and Bo, are 
called the turnstile lobes. The area of lobe Ao gives 
the amount of fluid passing from ~1  to 7-~. 2 in the 

course of one time period and dividing this area by 
the period of the Poincar6 map gives an average flux 
across the boundary. This exchange of fluid between 
distinct regions of the phase space is also illustrated in 
Fig. 3 by following a patch of fluid particles through 
several iterations of the map. The parcels are initial- 

ized in lobe A-1 within region T¢I and enter region 

7-¢2 after two time periods, remaining inside the cir- 
culating region of the flow for several more time pe- 
riods. At the same time fluid in lobe Bo exits the 
vortex region in one time period and is transported 
downstream in the body of the jet. We note that in 
the upper part of the figure the manifolds WS(pl) and 
WU(p2) also intersect transversely but the transver- 

sality is considerably weaker and very little exchange 
takes place. 
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5. Transport in the time-periodic flow 

In the following sections we present the results of  

the dynamical systems analysis using the data set with 

(Re ,  fi, no) = (104, 0.207, 4). The numerical solution 
is computed on a 64 x 64 spatial grid, with the solution 

saved at timesteps of  At = 0.25 beginning with to = 

300. As described in Section 2, the meander propa- 
gates in the eastward direction with a nearly constant 

speed and the Lagrangian trajectories are computed in 
a reference frame moving along with the the meander, 
greatly reducing the time dependence in the velocity 

field. For this set of  parameters the time period asso- 
ciated with the meander propagation is To = 38.50 
corresponding to the propagation speed, c ----- 0.1662. 

The coordinates in the moving frame are (~, y, t) with 

= x - c t ,  and the trajectories with respect to this 
translating frame are governed by the system of ODEs, 

d~ 
= u(~ + c t ,  y , t )  c, 

dt (6) 
dy 

= v ( ~ + c t ,  y , t ) .  
dt  

The flow is incompressible with the velocity field 
determined from the streamfunction ~p(x, y, t). The 
spatial derivatives 7%, 7ty and l~xy are computed at 
the grid points using the spectral representation of  

the streamfunction and interpolated to intermediate 
points using the local bicubic method described in 

Section 3.2. The velocity field is integrated using the 
fourth-order Runge-Kutta method with stepsize h = 

0.50, requiring no interpolation in time. In the dynam- 
ical analysis the time of  the initial slice in the data set 
is referred to as t = 0. 

In this section the full data set is approximated with 
a periodic mmcated data set with period Tt determined 

by the dominant time dependence in the vector field 
as viewed in the moving frame. The data set is trun- 
cated at the slice preceding 7"1 ; that is, the data set to 
be used for computing trajectories runs from t = 0 
through t = T1 -- At. When the integration reaches 
t = T1 the computation returns to the data set at t = 0. 
In this way the data set is forced to be periodic with 
period T1, exactly matching the PDE solution for one 
period, but deviating from the PDE solution fo r  times 

P l  P2 

j 

8 I 0  12 14  16  18  X 

4 

3 

2 

1 
y 

0 

- 1  

- 2  

- - 3  

- - 4  

Fig. 4. Time-averaged streamfunction for (Re, B, no) = 
(104 , 0.207, 4). Our analysis identifies saddle-type fixed points 
in the Poincar6 map which are close to the saddle points Pl 
and P2, with transversely intersecting stable and unstable man- 
ifolds. Lobe dynamics pictured in Fig. 5 are computed just for 
the vortex region lying between Pl and P2. 

beyond one period. The Poincar6 map for this peri- 

odic flow is defined in the usual way by using the pe- 
riod of  the flow to define the time period of  the map. 

Letting ¢( t ;  x0, to) denote the solution to the initial 
value problem with x(t0) = x0, define the Poincar6 
map with to ---- 0 as the reference slice, 

p ( x )  = ¢(T1; x. 0), (7) 

mapping each point in phase space to the location of  
its trajectory at the end of  one time period. 

In this moving frame, the time-averaged vector field 

defines an integrable flow with two rows of  cat 's eyes 
(see Fig. 4). Each cat's eye is defined by a pair of  het- 

eroclinic orbits connecting an adjacent pair of  saddle- 
type critical points (see pl  and p2 in Fig. 4). For 
the time-periodic flow we search for saddle-type fixed 
points to the Poincar6 map existing in the vicinity of  

the saddle-type critical points for the time-averaged 
flow. If  saddle fixed points exist for the map we gener- 
ically expect that their stable and unstable manifolds 
will intersect transversely, creating a lobe structure as 
described in Section 4. The areas of  the turnstile lobes 
associated with the intersecting manifolds quantify the 
exchange o f  fluid between different regimes over one 
time period of  the flow, serving as an estimate for the 
fluxes in the full aperiodic flow. 
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5.1. Hyperbolic fixed points and invariant manifolds 

The fixed point of the map 79 : ~2 _+ ~2 is deter- 

mined by finding the zero of the function G = 79 - I, 
where I is the identity map in ~2. Newton's method 
for finding zeroes will be successful if the initial guess 

is sufficiently close to the fixed point, and in that case, 
the convergence is very fast. However, the saddle-type 

fixed points in these maps have unstable eigenvalues 
on the order of 103 , and with these large stretching 
rates the Newton iteration quickly leaves the neigh- 

borhood of the initial point, even for very good initial 

guesses. As a rough estimate, if Y denotes the fixed 
point and )u the unstable eigenvalue at Y, we should 

expect Xn satisfying Ixn -Yl  << 1/~ u to ensure that the 
next iteration moves much less than an O(1) distance 

away from the current iteration. This is consistent with 

observations that the standard Newton method was of- 
ten unsuccessful for initial guesses within as little as 
10 -3 of the fixed point. 

In cases where we can make good initial guesses 
for the fixed points adding backtracking to the Newton 

method has been successful. In this method the next 
iteration is given by 

Xn+l = Xn -- Iz[DG(xn)] -1 " G(xn), (8) 

where /z lies in the interval 0 < /z _< 1 (see [21]). 
This chooses the next iteration to lie somewhere along 
the line segment joining the current iteration and the 

standard Newton iteration. If the standard Newton step 
(/z = 1) is not closer to satisfying G ---- 0, the algo- 
rithm backtracks toward the current iteration (/z ---> 

0 +) to find a new iteration which reduces [G[. By 
also restricting the distance between adjacent itera- 

tions the algorithm is able to make incremental im- 
provements while staying in a small neighborhood of 

the initial guess, until the rapid convergence of the 
Newton method takes over. 

The 1D invariant manifolds for the saddle-type fixed 
points can be approximated by iterating initial points 
clustered about the fixed point. When iterating for- 
ward, the points undergo strong stretching along the 
unstable direction and strong contraction in the stable 
direction, with the result that the points quickly align 
with the unstable manifold. Similarly, under back- 
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wards iteration the points lie near the stable manifold. 

A better initialization is to choose a linear segment of 
initial conditions which lie along the direction of the 

appropriate eigenvector for the fixed point. However, 

this simple approach can be rather ineffective for sad- 
dle points with large unstable eigenvalues. After sev- 
eral iterations of the map, the points will bunch up 
along some portions of the invariant curve while leav- 

ing other portions completely unresolved. Increasing 
the density of the initial cluster of points may improve 
the resolution but the effect is always very nonuniform 

over the length of the manifold and eventually be- 

comes too inefficient, requiring excessively long com- 
putation times. 

The algorithm used here for computing the unsta- 

ble manifold begins by iterating a single point lying 

very near the fixed point in the direction of the un- 
stable eigenvector. The segment defined by the initial 

point and its iteration is then iterated under the forward 
flow as many times as necessary to generate the un- 
stable manifold to a desired length. Similarly, the sta- 
ble manifold is approximated using the time-reversed 
flow to iterate points which initially lie along the stable 

eigenvector. Wherever the manifold is not sufficiently 

resolved after the kth iteration, additional points are 
inserted via linear interpolation of the unstable mani- 

fold at the k - 1 iteration. These additional points are 
mapped through a single iteration and merged with 
the existing curve of points. This approach assumes 

that after each iteration the curve is sufficiently re- 

solved such that the interpolation provides an accu- 
rate approximation to the curve. The efficiency of this 

method lies in the fact that the map is iterated only for 
points which are likely to enhance the resolution of 
the curve. (This method is similar to the algorithm de- 
scribed in [14].) For the manifolds presented here the 

maximum distance between any two adjacent points 
on the invariant curve is 0.02. 

5.2. Lobe dynamics and transport 

The Poincar6 map for the periodic truncated flow 
has two rows of hyperbolic fixed points just as the 
time-averaged flow in Fig. 4 has two rows of saddle- 
type critical points. We use this periodic flow to 
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Fig. 5. Computed stable and unstable manifolds for (Re, t ,  no) = (104, 0.207, 4) and the resulting lobes, using the periodic truncated 
flow. (a) Across the exterior boundary fluid leaves the recirculation region in moving from A t to A2 and enters the recirculation 
when mapped from B1 to B 2. Co) The interior boundary has four distinct turnstile lobes but with considerably less area than the 
lobes in (a). Only the two largest lobes, E and F, are identified in (b). 

estimate the Lagrangian transport between the three 
distinct regions of the flow, the eastward flowing (pro- 
grade) meandering jet, the vortex regions bounding 
the jet to the north and south, and the westward flow- 
ing (retrograde) regions outside the rows of vortices. 
Exchange of fluid between the recirculation regions 
and the retrograde regions is referred to as exchange 
across the exterior boundary, exchange between the 
recirculation regions and the body of the jet is re- 
ferred to as exchange across the interior boundary. In 
all of the numerical solutions simulating meandering 
jets the most significant exchange of fluid takes place 
between the recirculation regions and the retrograde 
region outside of the jet. A more detailed analysis of 
the lobe dynamics and transport calculations for the 
periodic flow can be found in [22] where the PDE 
solution was computed for four different sets of pa- 
rameter values using the higher resolution 128 × 128 
spatial grid. 

With the periodicity in x and the symmetry about 
y = 0, it is sufficient to study a single vortex structure 
and its corresponding pair of hyperbolic fixed points. 
The computations are done for a single vortex struc- 
ture lying to the north of the jet axis so in all the pic- 
tures to be presented the exterior boundary is the upper 

boundary and the interior boundary is to the south. The 
fixed point on the left is labeled Pl and the fixed point 
on the right P2. Fluxes across the exterior boundary 
are characterized through the transverse intersection of 
the stable manifold WS(pl) and the unstable manifold 
WU(p2), while exchange across the interior boundary 
is through the transverse intersection of WU(pl) and 
WS(p2). The fluxes are found b y  computing the ar- 
eas of the lobes associated with the principal intersec- 
tions of stable and unstable manifolds. The principal 
intersection points are accurately estimated with the 
help of the computational package Matlab. Using the 
location of the pips, the manifolds can be separated 
into segments corresponding to distinct lobes and the 
lobe areas accurately estimated using an application 
of Green's Theorem. The area of a lobe existing be- 
tween pips p and q is calculated by integrating the 
one form x dy - y dx around the closed boundary of 
the lobe formed from the union U[p, q] tO S[p, q]. 

In each of the parameter cases investigated we found 
that the most significant exchange of fluid takes place 
across the exterior boundary of the jet between the 
vortex region and the retrograde region. Fig. 5 shows 
the invariant manifolds for the Poincar6 map derived 
from the flow with (Re, t ,  no) = (104. 0.207, 4) on 



116 P.D. Miller et al./Physica D 110 (1997) 105-122 

the 64 x 64 grid where the nondimensional time period 

of  the map is T1 = 3050.  In (a) the exterior bound- 

ary is defined by the union S[pl ,  qe] U U[p2, qe] and 

there are two turnstile lobes, denoted A1 and B1. The 

mapping A1 7~> A2 takes fluid from the vortex re- 

gion to the retrograde region, and lobe B1 7~> B2 is 

fluid entering the vortex in forward time. The com- 

puted nondimensional lobe areas are 1.1366 for both 
sets of  lobes, A and B, and these areas remain con- 

stant for all iterations of  the lobes. Along the inte- 

rior boundary (b) there are four turnstile lobes though 

the flux is considerably less than across the exterior 
boundary. The total area of  the lobes entering the vor- 

tex from the jet is 0.2113, same as the amount of  fluid 
leaving the vortex across the interior boundary. 

6. Transport in the aperiodic flow 

The lobe dynamics presented in Section 5.2 are for 
a periodic flow which approximates the aperiodic flow 

computed from the PDE. In this section we compute 

similar geometric structures for the full aperiodic ve- 
locity field covering four time periods of  the Poincar6 
map, 0 < t < 122. As a means of  comparison with 
transport estimates from periodic flows we also repeat 

the lobe calculations in Section 5 for periodic flows 

defined on each of  the four time intervals, 0 < t < 

30.5, 30.5 < t < 61.0, 61.0 < t < 91.5. and 91.5 < 
t < 122.0. 

For general time dependence in the 2D vector field 
it is convenient to consider the dynamical system as 
a flow on the extended phase space ~2 × ]~. The 
equations in (6) are augmented in a trivial manner 

by adding a third differential equation for the time 
variable. 

= u ( ~ + c t ,  y , t )  c, 

= v(~ + ct, y, t), (9) 
i = 1 .  

When the vector field is time-periodic the Poincar6 
map is a natural reduction to two dimensions. As 
viewed in this full 3D flow, a hyperbolic fixed point of  
the Poincar6 map is a hyperbolic periodic trajectory, 

denoted F(t). The set of  initial conditions which are 

asymptotic (at an exponential rate) to F (t) in forward 
time define a 2D invariant set, the stable manifold, 

We. The set of  initial conditions which are asymp- 
totic to F (t) in backward time define the 2D unstable 

manifold, W~. The 1D stable and unstable manifolds 
for the Poincar6 map are just the intersection of  these 

2D manifolds with the time slice t ----- to. The inter- 
section points for the map lie on heteroclinic trajec- 

tories, solution curves in the extended flow which are 
asymptotic to F(t) in both backwards and forwards 
time (t --+ 4-oo). Choosing a different cross-section 

in t changes the position of  the lobes and intersection 
points, and therefore changes our definition of  bound- 
aries separating the different flow regimes, though the 

choice of  reference time for defining the map does not 
affect either the interpretation of  the lobe dynamics or 

the value of  the time-averaged flux. 

For the aperiodic flow we want to identify a dis- 
tinguished hyperbolic trajectory which plays the same 
role in the Lagrangian mixing as the periodic trajectory 
y (t) for the time-periodic flow. However, in contrast 

to the periodic flow, we now have a strict limit on the 
length of  time which we can follow trajectories and 
we can no longer rigorously define asymptotic struc- 

tures such as stable and unstable manifolds. Rather, 
we will define this distinguished trajectory as the in- 
tersection of  two invariant surfaces (invariant relative 

to the finite time interval) which are constructed in the 

same way as the stable and unstable manifolds for the 

periodic flow. 
To understand the construction of  the manifolds for 

the aperiodic flow, first consider how the manifolds are 
approximated for the time-periodic flow. The strong 
hyperbolicity in the neighborhood of  the periodic or- 
bit enables us to get reliable numerical approximations 
to the invariant manifolds. For initial points near the 

periodic trajectory the vector component in the stable 
direction sees a strong contraction in forward time and 
the solution should lie exponentially close to the un- 
stable manifold in a very short time. At the same time, 
the distance from the fixed point will increase rapidly 
along the unstable eigendirection. Now consider ini- 
tializing the periodic flow with a short line segment of  
initial conditions which lie along the unstable eigen- 
vector of  the fixed point but such that the fixed point is 
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interior to the interval (we say that the segment strad- 

dles I the hyperbolic trajectory). Integrating the flow 
forwards in time, the line segment now stretches in 
opposite directions, approximating both "halves" of 
the unstable manifold. At any fixed time slice the hy- 
perbolic periodic trajectory remains straddled by the 

1D section of the unstable manifold. In fac t, such a 
straddling technique could be used to find a good ap- 

proximation to the unstable manifold without first de- 

termining the precise periodic trajectory, as long as 
the initial line segment is close to the fixed point. 

For the finite-time, aperiodic data sets we construct 

a 2D invariant manifold in the extended phase space 
by evolving forwards in time a short segment of ini- 

tial conditions. For this "finite-time" unstable mani- 
fold, the initial line segment is chosen to straddle the 

hyperbolic region at t = 0 and aligned with the unsta- 

ble eigendirection. The hyperbolic region is said to be 
straddled if the two ends of the curve stretch rapidly in 
opposite directions relative to an interior point of the 

segment. Similarly we construct a "finite-time" stable 

manifold, by evolving backwards in time a short seg- 
ment of initial conditions chosen to straddle the appro- 

priate hyperbolic region at t = 122 and aligned with 
the stable eigendirection. 

The initialization for the unstable manifold uses the 
fixed point and eigenvector information from the time- 
map defined on the interval 0 < t < 30.5. The evo- 

lution of the unstable manifold is shown by the solid 
curve in Fig. 6. The initial line segment chosen at t = 

0 (Fig. 6(a)) is aligned with the unstable eigenvector 
and made to straddle the hyperbolic region denoted by 

P2. Under the forward flow (follow Figs. 6(a), (b), (c), 
etc.) the solid curve stretches rapidly in opposite di- 
rections, always straddling the region of hyperbolicity. 

Note that in Fig. 6 we have clipped half of the unstable 
manifold which forms the interior boundary be tween  
the jet core and the adjacent recirculation region. 

The initialization for the stable manifold uses the 
fixed point and eigenvector information from the 
time-map defined on the interval 91.5 < t < 122.0. 
The evolution of the stable manifold is shown by 

1 We are borrowing here a term originally coined by Yorke 
and collaborators; see, for instance, [29]. 

the dashed curve in Fig. 6. The initial line segment 

chosen at t = 122.0 (Fig. 6(e)) is aligned with the 
stable eigenvector and made to straddle the hyper- 
bolic region denoted by Pl. Under the time-reversed 
flow (follow Figs. 6(e), (d), (c), etc.) the dashed curve 
stretches rapidly in opposite directions, always strad- 

dling the region of hyperbolicity. Again, in Fig. 6 we 
have clipped half of the stable manifold which forms 

a boundary for the neighboring recirculation region. 
The computed manifolds are plotted in Fig. 6 at 

the time slices t ----- roT1, for m = 0, 1 . . . . .  4, where 

T1 = 30.5 is the period used in the Poincar6 map. 
The sections of invariant manifolds show an approxi- 
mately recurrent behavior very similar in appearance 

to the iterated lobes for the Poincar6 map as shown 

in Fig. 5. As with the invariant manifolds for the map 
we can also define lobes by the transverse intersection 

of the stable and unstable manifolds. However, for the 
aperiodic flow the manifolds are not easily computed 
to arbitrary lengths making it difficult to define very 

many lobes. For example, the unstable manifold is not 

known at t = 0 and is still not very long at t = 30.5. 
Similarly, the stable manifold is not well known at 
t = 122.0 and t = 91.5. Identifying more turnstile 

lobes or following additional iterations of the existing 
lobes requires saving the PDE solution on longer time 
intervals. 

For the time interval used in this analysis we are 

able to follow the evolution of six lobes created by the 
intersection of these stable and unstable manifolds. In 

Fig. 6 the lobes are labeled C - H  and the iteration in- 
dices 0 . . . . .  4 correspond to the time slices, t = 0, 

t = 30.5, t = 61.0, t = 91.5 and t ---= 122.0, respec- 
tively. For comparison with the Poincar6 map, lobes C, 

E and G correspond with the iterations of the A lobes 

and D, F and H are similar to the B lobes. For the 
aperiodic flow the exterior boundary may be changing 

in time, but nonetheless it is quite clear which regions 
of phase space are going from retrograde motion to 
vortex motion and which regions of fluid are leaving 
the vortex. That is, these finite-time stable and unsta- 
ble manifolds clearly delineate regions of phase space 
having qualitatively different Lagrangian motion. For 

example, in going from t = 30.5 to t = 61.0 fluid in 
lobe E1 passes out of the vortex into the retrograde 
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Fig. 6. Finite-time "stable" and "unstable" manifolds for the aperiodic flow. The cross-sections are plotted at multiples of the period 
T1 = 30.5 for comparison with the lobes from the periodic flow in Fig. 5. We are able to identify six distinct lobes, C . . . . .  H. 

region (lobe E2) and continues in retrograde motion 

for at least another time period (lobe E3). At the same 

time fluid in lobe D1 will exit from retrograde mo- 

tion during the next time period, entering the vortex 

(lobe D2). Although the definition of our boundary 

may change from slice to slice, we can still identify 

turnstile lobes and quantify a time-averaged flux be- 

tween the two regions. The lobe areas are summarized 
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Table 1 
Estimated transport f o r t h e a p e N o d i c  flow covefing 0 _ _ < t <  122 

Lobe Exchange Period Area T' 

C vort  --+ retr 0.0-30.5 1.112 1.137 
D retr --+ vort  30.5~51.0 0.982 1.037 
E vort  --+ retr 30.5-61.0 1.055 1.037 
F retr --+ vort  61.0-91.5 0.955 0.992 
G vort  ~ retr 61.0-91.5 1.004 0.992 
H retr --+ vort  91.5-122.0 0.889 0.931 

The labels vort  and retr refer to the vortex and retrograde 
regions, respectively. "Period" indicates the time interval in 
which the exchange takes place. The final column 7 ~ is the lobe 
area from the Poincar6 map for the corresponding time period. 

in Table 1 showing that the flux is slowly decreasing 

with time. For comparison, the Poincar6 map was com- 

puted using a periodic truncation on each of the four 

time intervals. The flux estimates computed from the 

maps for these truncated periodic flows are included 

in Table 1 along with the time-dependent fluxes com- 

puted from the full aperiodic data set. 

7. Robustness of lobe calculations 

In this section we remark on the robustness of the 

lobe calculations. There are a number of numerical 

issues affecting the calculation of particle trajectories; 

the temporal resolution of the data base, the time 

stepping used in integrating the vector field, the spa- 

tial interpolation, and the numerical differentiation. 

To test the sensitivity of these transport calculations 

to changes in numerical parameters a number of ex- 

periments were conducted using the data set with 

( R e ,  fi, no) = (104, 0.207, 4). As a benchmark we 

use the results computed in Section 5 for the trun- 

cated periodic flow using the numerical velocity field 

from the interval 0 < t < 30.5. Recall the numerical 

parameters for the calculations in Section 5; the reso- 

lution of the data base is At = 0.25, the stepsize for 

the fourth-order Runge-Kutta  is h = 0.50, interpola- 

tion in x - y  space uses the local bicubic scheme, and 

all spatial derivatives are computed in Fourier space 

providing full spectral accuracy at the nodes. Com- 

parisons are made with respect to the location of the 

fixed point Pl  and the computed areas for three iter- 

ations of the A lobes along the exterior boundary as 

119 

Table 2 
Summary of experiments with variations in numerical 
parameters 

At Interpolation Derivatives Change Area of A lobes 
in Pl 

0.25 bicubic  spect  0.0 1.13658-1.13663 
0.05 bicubic  spect  0.0328 1.13639-1.13645 
0.25 LP (6x6) spect  0.0018 1.13669-1.13824 
0.25 bicubic  cdiff 0.0070 1.13150-1.13159 

The resolution in the numerical vector field is denoted At 
and the timestep used in the ODE solver is h ---= 2. At. Spa- 
tial interpolation uses either the local bicubic interpolation de- 
scribed in Section 3 or the Lagrange polynomial on a local 
6 x 6 grid. Spatial derivatives are computed in Fourier space 
or by centered differences. The column "change in Pl" records 
the location of fixed point Pl relative to the results in the first 
row. The last column lists the range of areas computed for the 
three iterations of the A lobes shown in Fig. 5. 

shown in Fig. 5. The results from these experiments 

are summarized in Table 2. 

The first experiment compares results for different 

temporal resolutions in the numerical vector field. The 

analysis was performed on a data set with the solution 

written at intervals of At = 0.05, the smallest interval 

available from the PDE solver. The ODEs were inte- 

grated at a timestep h = 0.10 requiring no temporal 

interpolation. The fixed point Pl  shifted by a distance 

0.006, insignificant relative to the distance between 

adjacent hyperbolic points, and perhaps more impor- 

tantly, the area of lobe A2 changed from 1.1366 to 

1.1364, less than 0.02%. We also note that results ob- 

tained from the coarser data set (At = 0.25) using 

h = 0.05 and different orders of temporal interpola- 

tion showed negligible difference from the benchmark 

results obtained using h = 0.50, also an indication 

that the data set is adequately resolved in time. 

The second experiment analyzed the data set us- 

ing the Lagrangian polynomial interpolation on a lo- 

cal 6 × 6 grid to compare with the lower order, though 

smoother, bicubic interpolation. The average area of 

the A lobes is within 0.2% of the area computed us- 

ing bicubic interpolation though, as expected, there 

is greater variation in the areas of the lobes from it- 

eration to iteration since the interpolations are done 

independently, resulting in some loss of Hamiltonian 

structure. Over three iterations of the A lobes the vari- 

ation in area is 0.00155, about 0.14% of the total area. 
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By comparison, the areas of the same set of A lobes 
computed using bicubic interpolation never varied by 
more than 0.00009, less than 0.01% of the total area. 
Even though the variation in area using Lagrangian in- 
terpolation is more than an order of magnitude greater 
than with the bicubic interpolation, the variation ap- 
pears to be insignificant in this case. 

The final experiment performed the lobe analy- 
sis using centered differences to compute the spatial 
derivatives, ~x, ¢ty, and ~xy. The advantage for the 
incompressible flows studied here is that the neces- 
sary derivatives can be computed efficiently from just 
a single scalar function. Of all the experiments, this 
change had the largest impact on the computed trans- 
port with the areas of the A lobes differing from the 
benchmark by approximately 0.4%, still a relatively 
insignificant difference. 

The insensitivity in the lobe calculations with re- 
spect to variations in the numerical parameters makes 
this an attractive tool for studying the dynamics of nu- 
merically generated flows. The robustness of the cal- 
culations may just be due to the structural stability of 
hyperbolicity in dynamical systems. The dynamical 
systems analysis for characterizing transport is based 
on the existence of certain geometric features associ- 
ated with hyperbolic regions of the flow. Changes in 
the numerical parameters are equivalent to small per- 
turbations in the vector field which do not significantly 
affect the hyperbolic structure of the flow, resulting in 
small differences in the computed transport dynamics. 

8. Discussion 

The main result in this paper is the implementation 
of dynamical systems techniques for identifying lobe 
dynamics within 2D vector fields that are numerically 
generated solutions to the fully nonlinear governing 
PDEs. The computed lobes, defined by intersections of 
stable and unstable manifolds, effectively characterize 
and quantify the exchange of fluid between adjacent 
flow regimes within the phase space. We emphasize 
that the objective in this paper is to characterize the 
local fluxes between adjacent flow regimes, existing 
on some finite-time interval, rather than the long-time 
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global transport associated with fluxes across many 
boundaries within the flow. 

The lobes are first constructed for the Poincar6 map 
associated with a periodic flow that approximates the 
aperiodic vector field. Then, for the full aperiodic 
velocity field, "stable" and "unstable" manifolds are 
constructed from trajectories which emanate from re- 
gions of strong hyperbolicity, just as the invariant man- 
ifolds of the fixed points in the Poincar6 map are 
approximated by trajectories initialized near the hyper- 
bolic periodic orbit. These invariant manifolds inter- 
sect transversely and their cross-sections, defined by 
fixing a time slice, show lobe structures very similar to 
the lobes for the time-periodic flow. The fact that the 
geometry of the lobes has a strong time-recurrence, as 
shown in Fig. 6, is a reflection of the nearly periodic 
time dependence of the underlying flow. That this time 
period of recurrence agrees so well with the dominant 
time period T1 used in defining the periodic flow in- 
dicates that T~ is the correct time scale for describing 
the exchange of fluid between regions of retrograde 
motion and regions where the fluid is circulating. 

For the data set analyzed here it is possible to gen- 
erate several iterations of lobes for the aperiodic flow 
because the crucial hyperbolic regions persist for times 
much longer than the time scale T1 associated with 
the local flux of fluid across the boundaries defining 
the recirculation region. Our ability to characterize the 
lobes over a relatively long-time interval is again a re- 
flection of the nearly periodic time dependence in the 
data set. 

Near-integrable flows which are almost periodic 
in time may lend themselves to rigorous asymptotic 
results regarding existence of stable and unstable 
manifolds as well as finite-time analytical transport 
estimates such as established for near-integrable, time- 
periodic flows in [23]. Moreover, lobe dynamics have 
been rigorously established for planar Harniltonian 
systems with general time dependence by exploiting 
the singular perturbation structure of adiabatic sys- 
tems [15]. In the analysis presented here however, we 
are interested in identifying the geometric structure of 
flows given as numerical solutions to the governing 
equations, situations in which the dynamical system 
is not necessarily near-integrable and the integration 
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is not easily extended to longer and longer time inter- 
vals. In the meandering jet simulations investigated 

here it is clear that the almost periodic time depen- 
dence plays an important role in enabling us to find 

meaningful structures for describing fluid exchange 

in the flow. 
Quantifying fluxes in the flow requires that we de- 

fine boundaries between different flow regimes using 

segments of  the computed manifolds. For the time- 
periodic case this choice of  boundary is well under- 

stood and provides af ixed  partition of  the phase space 
(see Section 4). For flows with general time depen- 

dence a strategy is needed for defining the boundary 
at different time slices and the partition of  phase space 
will no longer be fixed for all times. The strong peri- 

odic component in the velocity field for the meander- 
lng jet made it quite natural to slice the 2D manifolds 
at time intervals equal to the dominant time period 

(T1 = 30.5). At these intervals the boundaries appear 
nearly fixed and very similar to the boundaries for the 
periodic approximation. 

The dynamical systems analysis for the aperiodic 
flow, summarized in Table 1, indicates that the fluxes 
across the recirculation boundary are decreasing 

with time, whereas for the periodic approximation in 
Section 5 the flux necessarily remains constant for 

a l l  time. This decrease in the exchange of  fluid is to 
be expected since the viscosity is dissipating energy 
in the higher modes. Perhaps a more interesting ob- 

servation is that the flux estimates for the aperiodic 
flow show more fluid leaving the vortex region than 
entering during each time cycle (compare lobes D 

and E, and lobes F and G in Table 1). This can be 
explained by the fact that the entire vortex structure 
is shrinking as time evolves, again due to the dissi- 

pation of  energy, and there is necessarily a net flux 
out of  the recirculation region. On the other hand, 

the vortex region in the periodic flow, as defined by 
segments of  the stable and unstable manifolds, must 
necessarily remain constant and this effect of  the pe- 

riodic truncation is reflected in a slightly larger flux 
of  fluid entering the vortex. 

In summary, this numerical simulation of  a mean- 
dering jet has served to motivate the development of  
strategies and software tools for using lobe dynamics 

to characterize fluxes in numerical simulations of 2D 

geophysical flows, where the time dependence is not 
necessarily periodic. We find that the computed lobe 

structures and flux calculations are quite robust with 

respect to variations in the numerical schemes. The 
particular velocity field presented here is a mild de- 

parture from periodicity and, as a result, the interpre- 
tation of  the lobe dynamics is not significantly more 

difficult than the time-periodic case. A natural pro- 
gession from here would be to consider flows with 

considerably stronger aperiodic time dependence but 
such that the crucial hyperbolic structures still persist 

for long times relative to the dominant time period of  
the flow. The persistence of  the hyperbolic structures 

may still enable one to identify sufficiently long finite- 
time stable and unstable manifolds while the stronger 
aperiodicity should make the analysis of  the lobe dy- 

namics significantly more difficult and theoretically 

more interesting; 

Acknowledgements 

We gratefully acknowledge support from the Office 

of  Naval Research, contract N00014-92-J-1481 for 
PDM and CKRTJ, N00014-89-J-1182 for LJP, and 

N00014-93-1-1369 for A M R .  AMR also acknowl- 
edges the support of  the National Science Foundation, 

grant OCE-9503014. 

References 

[1] S. Balachandar and M.R. Maxey, Methods for evaluating 
fluid velocities in spectral simulations of turbulence, J. 
Comput. Phys. 83 (1) (1989) 96-125. 

[2] S. Balasuriya, C.K.R.T. Jones and B. Sandstede, Viscous 
perturbations of vorticity conserving flows and separatrix 
splitting, preprint. 

[3] D. Barkley, G.E. Karniadakis, I.G. Kevrekidis, Z. Shen 
and A.J. Smits, Chaotic advection in a complex annular 
geometry, Phys. Fluids A 3 (1991) 1063-1067. 

[4] D. Biegie, A. Leonard and S. Wiggins, Chaotic transport 
in the homoclinic and heteroclinic tangle regions 
of quasiperiodically forced two-dimensional dynamical 
systems, Nonlinearity 4 (1991) 775-819. 

[5] A. Bower, A simple kinematic mechanism for mixing fluid 
parcels across a meandering jet, J. Phys. Oceanography 21 
(1) (1991) 173-180. 



122 P.D. Miller et al./Physica D 110 (1997) 105-122 

[6] A. Bower and T. Rossby, Evidence of cross-frontal 
exchange processes in the gulf stream based on isopycnal 
rafos float data, J. Phys: Oceanography 19 (9) (1989) 1177- 
1190. 

[7] M.G. Brown and R.M. Samelson, Particle motion 
in vorticity-conserving, two-dimensional incompressible 
flows, Phys. Fluids 6 (9) (1994) 2875-2876. 

[8] R. Camassa and S. Wiggins, Chaotic advection in 
Rayleigh-B6nard flow, Phys. Rev. A 43 (2) (1991) 
774-797. 

[9] D. del Castillo-Negrete and EJ. Morrison, Chaotic 
transport of Rossby waves in shear flow, Phys. Fluids A 
5 (4) (1993) 948-965. 

[10] J. Duan and S. Wiggins, Fluid exchange across a 
meandering jet with quasiperiodic variability, J. Phys. 
Oceanography 26 (1996) 1176-1188. 

[11] J. Duan and S. Wiggins, Lagrangian transport and chaos 
in the near wake of a cylinder in the time-periodic 
regime: A numerical implementation of lobe dynamics, 
preprint. 

[12] S. Dutldewicz, A. Griffa and D.B. Olson, Particle diffusion 
in a meandering jet, J. Geophys. Res. 98 (1993) 16487- 
16 500. 

[13] G. Flier1, E Malanotte-Rizzoli and N. Zabusky, Nonlinear 
waves and coherent vortex structures in barotropic/3-plane 
jets, J. Phys. Oceanography 17 (9) (1987) 1408-1438. 

[14] D. Hobson, An efficient method for computing invariant 
manifolds of planar maps, J. Comput. Phys. 104 (1) (1993) 
14-22. 

[15] T. Kaper and S. Wiggins, Lobe area in adiabatic 
Itamiltonian systems, Physica D 51 (1) (1991) 205-212. 

[16] M.S. Lozier, L.J. Pratt, A.M. Rogerson and ED. Miller, 
Exchange geometry revealed by float trajectories in the 
Gulf Stream, J. Phys. Oceanography (1997), to appear. 

[17] R.S. MacKay, J.D. Meiss and I.C. Percival, Transport in 
Hamiltonian systems, Physica D 13 (1984) 55-81. 

[18] P. Miller, C.K.R.T. Jones, G. Hailer and L. Pratt, Chaotic 
mixing across oceanic jets, in: Chaotic, Fractal and 

Nonlinear Signal Processing, ed. R. Katz, AlP Conf. Proc., 
Vol. 375 (Alp Press, New York, 1996) pp. 591-604. 

[19] J.M. Ottino, The Kinematics of Mixing: Stretching, Chaos, 
and Transport (Cambridge University Press, Cambridge, 
1989). 

[20] L.J. Pratt, M.S. Lozier and N. Beliakova, Parcel 
trajectories in quasigeostrophic jets: Neutral modes, J. 
Phys. Oceanography 25 (6) (1995) 1451-1466. 

[21] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. 
Flannery, Numerical Recipes in C: The Art of Scientific 
Computing (Cambridge University Press, Cambridge, 
1992). 

[22] A.M. Rogerson, P.D. Miller, L.J. Pratt, C.K.R.T. Jones and 
J. Biello, Chaotic mixing in a barotropic meandering jet, 
preprint. 

[23] V. Rom-Kedar, Homoclinic tangles - Classification and 
applications, Nonlinearity 7 (1994) 441-473. 

[24] V. Rom-Kedar, A. Leonard and S. Wiggins, An analytical 
study of transport, mixing and chaos in an unsteady vortical 
flow, J. Fluid Mech. 214 (1990) 347-394. 

[25] V. Rom-Kedar and S. Wiggins, Transport in two- 
dimensional maps, Arch. Rat. Mech. Anal. 109 (1990) 
239-298. 

[26] R.M. Samelson, Fluid exchange across a meandering jet, 
J. Phys. Oceanography 22 (4) (1992) 431-440. 

[27] K. Shariff, T.H. Pulliam and J.M. Ottino, A dynamical 
systems analysis of kinematics in the time-periodic 
wake of a circular cylinder, in: Vortex Dynamics and 
Vortex Methods, eds. C. Anderson and C. Greengard, 
Lectures in Mathematics (American Mathematical Society, 
Providence, RI, 1992) pp. 613-646. 

[28] S. Wiggins, Chaotic Transport in Dynamical Systems, 
Interdisciplinary Applied Mathematics, Vol. 2 (Springer, 
Berlin, 1992). 

[29] H. Nusse and J. Yorke, Dynamics: Numerical Explorations 
(Springer, Berlin, 1994). 


