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ABSTRACT

Whereas long-wave theories have proved successful in describing the nonlinear effects of single obstructions
on narrow flows, the theories can fail when several obstructions are present. This failure is demonstrated using
a simple laboratory flow which is predicted by long-wave theory to be unstable, but which is stabilized in
practice by short-wave effects. A nonlinear dispersive theory leads to an interpretation of the short waves as
a combination of cnoidal and solitary waves, and upstream control is found for the second (downstream)

obstacle only.

1. Introduction

Among the simplest theories of fluid flow which
retain full nonlinearity are long-wave theories. The
long-wave approximation typically assumes the cross-
stream scales of motion to be small compared to the
along-stream scale, and often allows the equations of
motion to be reduced to a quasilinear set of the form

)

where g; is a function of the dependent variables u;
and the along-stream coordinate x. For an inviscid
fluid the forcing term J; is a function of at most %; and
x, and it typically contains the geometric constraints
(such as bottom topography) imposed on the flow.

Long-wave theories have been successfully applied
to a number of problems involving steady flow over
and around obstructions. It is often possible to obtain
closed-form steady solutions, as accomplished by Long
(1954) for single and multilayer flow over an obstacle;
by Whitehead et al. (1974) and Gill (1977) for flow
through a rotating channel containing an obstacle or
side contraction; by Gill and Schumann (1979) and
Roed (1980) for a coastal current about a cape or bay;
and by numerous other authors in hydraulics and gas
dynamics. These investigations typically reveal the ex-
istence of a controlled solution for which the height
or width of the obstruction determines the state far
upstream. It will be shown here that the presence of
two (or more) such obstructions leads to a situation
inadequately described by long-wave theory, and that
an appeal to short-wave dynamics must be made in
order to obtain a solution. Discussion will be restricted
to homogeneous, free-surface flows, although the long-
wave failure described will likely occur in any problem
which admits a controlled solution.

Consider a steady, homogeneous, inviscid flow with
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velocity # and depth A which passes over an obstacle
of elevation b(x) mounted on a flat bottom of elevation
b(x) = 0 (Fig. 1a). The long-wave theory for such a
flow is based on the assumption that the ratio of the
fluid scale-depth H to the horizontal length L of the
obstacle is small, i.e., H/L < 1. The dependent variables
in (1) then become

o) e ) (7).

where u is the horizontal velocity, 4 the fluid depth,
g the acceleration due to gravity, and the horizontal
velocity u is independent of elevation. If these are sub-
stituted into (1), the result can easily be integrated and
put into the cubic form

(hfhoY’ — (1 = (b/ho) + Fd*/2)(h/he) + Fd?/2 = 0,
(3

where Fd = uy/(gho )" is a Froude number based on
the fluid depth A, and velocity u, upstream .of the
obstacle. The general nature of the solution to (3) de-
pends upon Fd and the dimensionless sill height b1/
ho of the obstacle above the flat bottom (Long, 1954),
In general, four types of solution are possible, de-
pending upon the signs of Fd and the discriminant
D= (bl/hy) — 1 + g Fd?3 — %Fdz. @)
An example of each solution is sketched in Fig. 1. Of
the four solutions, two have free-surface profiles which
are symmetric with respect to the topography, while
two are antisymmetric. The two symmetric solutions
(Figs. 1a and b) are characterized by D < 0, while the
antisymmetric solutions (Figs. 1¢ and d) both have
D=0
Much is revealed about the differences between the
solutions in Fig. 1 by their characteristic curves (also



1 APRIL 1984 LAWRENCE J. PRATT 1215
101 (Q) G bl (b)
4. < SUBCRITICAL T SUPE.PCRITICAL
> /+ /* / - = 5 - ad
2.0 2.0
1.0 1.0
. //
0.0 X/ 0.0
L
(hebirbl ey (hebl/b]
2.044, v In 204
T I}bi T— T T *X/L Tt
-2.0 20 40 -20 ool 20 40
b=bf
vt (C) tvger ()
4 TRANSITIONAL 4 TRANSITIONAL
2.0-. 2.0+
1.0 10
0.0 0.0
(hebl/b!
o (/7+b}/§lo
201 NS 2.0
1T T T >X/L . T —r—r—r—T"X/L
-20 00 20 40 -20 00 20 4.0
(heb)/bl A (e)
5.0~k
D SO S
et
OF @
el 1T el 1Y N0
& LB N : . —>-X /L
0.0 .0 bt=b2 2.0 3.0

FIG. 1. Examples of the four general solutions to Eq. (3) and the characteristic curves of each.
Dashed lines are X, characteristics while solid lines are X_ characteristics. The dimensionless
flow rate Q/(g'?b1*?) = 3.0 for each solution. (a) Subcritical, free-surface flow with definition
sketch; b1/he = 0.2, Fd = 0.37. (b) Supercritical flow: bl/hy = 1.0, Fd = 4.0. (c) Controlled
flow: b1/hy = 0.24, Fd = 0.45. (d) Unstable transitional flow: b1/h, = 0.42, Fd = 1.12. (¢) Long-
wave solutions for flow over two identical obstacles, using above parameters; the obstacles are

parabolic in each case.

shown in Figs. 1a-d). These curves determine the po-
sitions X.(7) that small amplitude, long gravity-waves
would map out propagating with or against the steady
flow (as denoted by plus or minus signs). Since the
speeds of such waves are u + (gh)'/?, the characteristic
curves are determined by

dX./dt = u x (gh)'2

In all cases dX /dt > 0, so that the X, -characteristics

tilt downstream, as shown by the dashed lines. How-
ever, the first symmetrical solution is characterized
everywhere by dX_/dt < O (Fig. 1a) while the second
symmetrical solution (Fig. 1b) has dX_/dt > 0. In the
first case, small disturbances are able to propagate up-
stream, while in the second case they are not. These
solutions are termed “subcritical” and “supercritical,”
respectively. Both tend to be obtained experimentally
when the obstructing obstacle is small in the sense
D < 0.
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The two antisymmetrical solutions are, on the other
hand, essentially nonlinear and cannot, for example,
be obtained from a theory of infinitesimal topography.
Both are transitional with respect to the characteristic
speed dX_/dt. In the first case (Fig. 1c) the flow is
subcritical upstream and supercritical downstream of
the obstacle’s sill. The X_-characteristics thus tilt away
from the sill with a single vertical characteristic at the
sill. A small disturbance generated over the obstacle
will therefore spread upstream and downstream, even-
tually covering the entire flow field. This is the con-
trolled solution mentioned above. The other transi-
tional solution (Fig. 1d) is supercritical upstream and
subcritical downstream of the sill. The X_-character-
istics here become asymptotic as ¢ — oo to the vertical
characteristic at the sill. This solution is unstable to
the formation of free-surface shocks since disturbances
following X_-characteristics become focused at the sill.
When posed as an initial condition, the flow of Fig.
1d will undergo an adjustment which ends with the
establishment of the controlled flow in Fig. 1c. None
of the laboratory experiments dealing with free-surface
flow (e.g., Long, 1954) are able to reproduce the so-
lution of Fig. 1d, nor is this solution commonly men-
tioned in textbooks and papers on hydraulics.

Suppose now that a second obstacle is placed down-
stream of the first. If the two obstacles have identical
heights, the four possible steady solutions are those
sketched in Fig. le. Note that both transitional solu-
tions are no longer entirely stable. Branch 1-2 (numbers
are circled in the figure) is stable over the first obstacle
but not the second, while branch 3-4 is stable over
the second but not the first. Furthermore, it is not
possible to construct a steady, stable solution by piecing
together stable segments from 1-2 and 3-4 using hy-
draulic jumps, for 1-2 and 3-4 contain identical energy
levels and a connecting jump would necessarily dis-
sipate energy.' One is left with the curious result that
no stable, hydraulically controlled solution exists for
flow over two obstacles.of identical sill elevations.

2. A numerical experiment

To examine the situation predicted above, a nu-
merical integration of the time-dependent long-wave
equations (1) and (2) was performed using the initial
conditions

u(x, 0) = U,

hx, 0) = H,

(5a)
(5b)

! That two connecting solutions must have identical energy levels
follows from two facts. First, the volume flow rate Q = uh must be
preserved by a stationary hydraulic jump. Second, the characteristic
speed u — (gh)"/?> must vanish for both solutions at either sill. If these
facts are combined, the Bernoulli constant (energy/unit volume) is
found to be B = gQ)** + ghl, where bl is the elevation of the
sills above the flat bottom. Since Q is the same for either solution,
B must be preserved.
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and the topography
b/H

1 1 ’ 3
o [1 n cos(51rx/3L):] for (0 < |x/L| < §)

_ 2 2
%[1 - (g) (Ix/LI - %) ] for (% < |x/L| < 1)
0

for (1 < [x/L}),
(6)

where U/(gH)'? = 0.6. Thus, the initial flow is uniform
and subcritical and must adjust to a double-silled ob-
stacle. The obstacle is sufficiently high to preclude ad-
justment to one of the nontransitional solutions, and
end boundaries are isolated far enough upstream and
downstream of the obstacle to make the x-domain
effectively infinite. The solution is computed using a
Lax-Wendroff method (Lax and Wendroff, 1960) sim-
ilar to the scheme employed by Pratt (1983a). The
method allows free-surface shocks to arise while in-
suring that mass and momentum flux continuity is
maintained. Such shocks have been found to be im-
portant in similar adjustment problems involving sin-
gle-silled obstacles (e.g., Houghton and Kasahara,
1968).

~ The numerical solution is shown in Fig. 2. The initial
adjustment (Fig. 2a) is similar to the adjustment to a
hydraulically controlled state that occurs when a single
sill is present (Houghton and Kasahara, 1968). The
main feature is a bore which moves upstream and
partially blocks the approaching fluid by increasing its
depth but decreasing its flow rate. The flow on the
downstream face of the obstacle tends toward a su-
percritical state followed by a hydraulic jump. This
situation is only temporarily realized, however, as a
new bore forms near the right-hand sill and moves
upstream (Figs. 2b and c). This chain of events is re-
peated periodically and the solution never settles down
to a steady state.

Although these results seem to bear out the predic-
tions of steady long-wave theory, numerical integration
over a long term leads to a result which is apparently
spurious. Each bore that propagates upstream tends
to block the upstream flow by decreasing the flow rate
and increasing the upstream depth. Eventually, the
flow rate is decreased to a fraction of the value that
would be obtained if the obstacle had a single sill; a
counterintuitive result, to say the least.

Several similar numerical experiments were carried
out using obstacles of various shapes and horizontal
spacings for the same initial conditions. Although an
unsteady state and consequent flow-rate reduction was
found in each case, the time scale of the instability (as
measured by the elapsed time between successive up-
stream-propagating bores) was variable. However, no
systematic study was made to link this time scale with
the geometry of the topography. In view of the labo-
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FIG. 2. Numerical results showing long-wave adjustment to the sudden obtrusion of a double-silled obstacle into
a uniform flow of velocity U and depth H, with U/(gH) = 0.6. Free-surface and obstacle elevations have been
nondimensionalized by H, and time by L(gH) '/, where L is the obstacle length.

ratory results (see below), such a study would be purely
academic,

3. A laboratory experiment

The apparent failure of the time-dependent long-
wave equations to give a realistic result suggests the
need for a laboratory experiment. Such an experiment
was performed using the Woods Hole Oceanographic
Institution’s flume. As shown in Fig. 3, water is cir-
culated through the flume by a variable-speed pump.
The fluid enters from the left under a sluice gate, flows
through the flume, and spills into a holding tank. In
the midsection of the flume two obstacles constructed
of flexible sheet metal are attached. The second (down-
stream) obstacle is fastened at one end to a movable
shaft, allowing the obstacle’s height b2 to be changed.
The horizontal spacing between obstacles can also be
changed through the use of a movable false bottom,
so that a wide variety of topographic settings are pos-
sible. The ratio of obstacle height to length is at most
0.08, so that the topography always takes on a long-
wave character. The general procedure is to fix the
flow rate and obstacle spacing and explore different

flow regimes created by varying the relative difference
Ab = (b2 — b1)/b1 in obstacle heights.

The experiments were carried out over a range of
upstream Froude numbers (0.1 < Fd < 0.8), relative
height differences (—1.0 > Ab > 0.4), and with hori-
zontal obstacle spacings of zero to five obstacle lengths
(although all measurements were made with the ob-
stacles four lengths apart). The most striking finding
is that throughout this parameter range the flow is
steady, despite the predictions of long-wave theory.
Fig. 4a contains a sketch of the typical surface profile
that is obtained for various values of Fd and obstacle
spacings when the obstacles have identical sill heights
(Ab = 0). A photograph of the flow (Plate 1) shows
that the fluid surface between the two obstacles looks
nothing like that of a long-wave flow. Instead, a regular
train of lee waves exists between the two obstacles.
Although slight contamination arises from frictional
and three-dimensional effects, the most striking de-
parture from long-wave conditions is in the predom-
inantly two-dimensional lee waves. In all experiments
the flow upstream of the first obstacle is uniform and
subcritical, while that downstream of the second ob-
stacle is uniform and supercritical; the waves exist only

=
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F1G. 3. Cross-section of laboratory flume.
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Fi1G. 4. Sketches of experimentally-found flow regimes. The flow
is subcritical upstream of the left-hand obstacle and supercritical
downstream of the right-hand obstacle in each case. (a) b1 ~ b2;
laminar lee-waves between obstacles. (b) b1 < b2; long-wave, sub-
critical flow between obstacles. (c) b1 > b2; breaking lee-waves. (d)
b1 > b2; long-wave, supercritical flow between obstacles (solid line)
or containing hydraulic jump (dashed line). See text and Fig. 5 for
descriptions and parameters.

between the obstacles. Single-obstacle flows with su-
percritical upstream states are possible (Ippen and
Harleman, 1956) but a supercritical upstream flow is
difficult to produce with the Woods Hole equipment.

The parametric extent of the flow regime described
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above is mapped out in Fig. 5 in terms of Ab and Fd
for the case in which the obstacles are spaced four
lengths apart. The region in which the previously-de-
scribed lee waves occur is delineated by the solid lines.
Other flow regimes exist to the right and left. For ex-
ample, if the height of the second obstacle is increased
over that of the first, causing Ab to become increasingly
positive, the amplitudes of the lee waves gradually de-
crease and the free surface eventually takes on the -
long-wave appearance sketched in Fig. 4b, This regime
occupies the right-hand side of Fig. 5. Lowering the
height of the second obstacle below that of the first
causes the lee waves to break, as sketched in Fig. 4¢
and represented by the left-hand portion of Fig. 5. If
the second obstacle is lowered further, one of two pos-
sible long-wave states is eventually established. The
first (indicated by the solid profile in Fig. 4d) contains
a supercritical flow at all points downstream of the
first obstacle, while the second (dashed profile in Fig.
4d) contains a hydraulic jump in the lee of the first
obstacle. Instances can be found in which each of the
two states occur for the same values of Ab and Fd.
Which of the two possibilities is realized in a given
experiment depends on the manner in which Ab and
Fd are set. For example, the flow containing the jump
can be established by decreasing Ab from a value of
zero to a fixed value (Ab), < 0, whereas the jump may
vanish if Ab is further decreased and then raised back
to (Ab)y. This behavior is not surprising in view of
similar types of hysteresis found by Pratt (1983a) in
connection with single-obstacle single-layer flows, and
by P. G. Baines (personal communication, 1983) in

PLATE 1. Photograph of experimental flow for the case Ab = 0 and Fd = 0.41.
The obstacles are outlined in white.
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FiG. 5. Experimental results showing different flow regimes as
function of Ab = (b2 — b1)/b1, and Froude number Fd = uy/(ghy)'"*
measured upstream of first obstacle. The relative amplitude a/hg of
the laminar wave nearest the upstream obstacle is indicated by the
type of dot, as defined in the figure.

connection with single obstacle, two-layer flows. How-
ever, determination of the boundary between the
breaking lee-wave and long-wave regimes is under-
standably difficult, and has not been made here. In
any case, the boundary will lie to the left of the
boundary between laminar and breaking lee waves in
Fig. 5. '

Within the region of laminar lee waves there are
considerable variations in wavelength and amplitude.
The approximate length A and amplitude a of the lee
wave nearest the first (upstream) obstacle are indicated
in Figs. 5 and 6, respectively. For small values of Fd,
the lee waves tend to have small lengths and amplitudes
and are concentrated near the upstream obstacle in
the manner of an undular jump (Figs. 5 and 6). As
Fd increases, the lee waves lengthen and grow in relative
amplitude while taking on narrow crests and broad
troughs. For values of Fd > 0.8, A becomes greater
than the distance between the two obstacles, preventing
measurement of A and a.

While the general character of the laboratory flow
is sensitive to Ab and Fd, it is generally insensitive to
the spacing between obstacles, particularly within the
laminar lee wave region. Increasing the distance be-
tween obstacles merely increases the number of lee
waves without changing the lengths or amplitudes of
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the existing waves. Also, experiments with other ob-
stacle shapes, including the shape used in the numerical
experiment (Fig. 2), were carried out. In each case,
steady flows of the previously-described character are
produced. Only the details of the wave amplitudes and
lengths are found to depend on obstacle shape. No
attempt was made to quantify this relationship.

One further result, which will enter prominently in
the theory to be described below, is that the obstacle
heights are reduced to zero as the upstream Froude
number Fd approaches unity. This information does
not appear in Figs. 5 or 6, but it is consistent with
long-wave theory in the sense that bl/hy — 0 as
Fd — 1 in Eq. (4) with D = 0.

To summarize, the unsteady behavior predicted by
long-wave theory fails to appear in any laboratory case.
Furthermore, the long-wave equations fail to predict
the free-surface profile between the two obstacles over
a considerable range in values of Ab. For example,
laminar lee waves exist at Fd = 0.4 for values of Ab
as large as 0.3 and as small as —0.35, as shown in Fig.
5. (The theoretical discussion in Section 1 concerning
the stability of the long-wave solutions was restricted -
to Ab =0.)

4. Theory

I now seek a more quantitative dynamical expla-
nation for the experimental results described above.
Although a theory covering the entire parameter range
of Fig. 5 would be intractable, some progress can be

A
e e
N
laminar lee waves
Fd= “o/"/—g_ho
1.0 N
T ° )\/ho-5.0

° )\/ho=l.0—5.0
© A/hy=0.1-1.0

| | 1
0.0 0.2 0.4

b2-b1
b1
FIG. 6. As in Fig. 5, but showing measurements of the length A

of the laminar lee-wave nearest the upstream obstacle, as represented
by the type of dot as defined in the figure.

Ab=
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made if attention is restricted to the upper portion of
the diagram (approximately 0.6 < Fd < 1.0). In this
parameter range the upstream flow is slightly subcrit-
ical, the lee waves tend to be nonbreaking, and the
typical lee-wave length is large in comparison with the
depth. Thus, the vertical aspect ratio é (=\/h), based
on the upstream depth, tends to be moderately small.
A further parameter restriction results from the ex-
perimental finding, mentioned earlier, that the obstacle
heights are small in comparison to /4, for values of Fd
near unity.

The wave-like flow observed in the laboratory ex-
periment will be explained in terms of inviscid pro-
cesses. Viscosity is thought to be unimportant in that
the viscous boundary layer thickness along the bottom
and side walls of the flume are several orders of mag-
nitude less than the depth and width of the flow. Only
in the case of breaking waves or very short laminar
waves (as occur for small values of Fd in Fig. 6) should
viscosity be important.

The inviscid two-dimensional equations of motion
and mass conservation describing the steady flow are

U, + wi; = —px/p, (7a)
Uwy + ww, = ;Pz/P - & (7b)
U, + w, =0, (7¢)

where w is the vertical velocity of the fluid, p the (con-
stant) density, p the pressure, and z is the vertical
coordinate. Other variables retain the meanings as-
signed earlier, although it should be noted that the
horizontal velocity u is no longer necessarily indepen-
dent of z.

The flow is also assumed to be irrotational:

U — wx = 0. (7d)
At the free surface, where z = h + b, the pressure
is taken as zero:

p=0, at z=h+b, (7e)

while the surface and bottom kinematic conditions are

w = ud(h + b)/dx, (71)

w = db/dx, (78)

If X and A, are chosen as horizontal and vertical
length scales, (g/)"? and g'/*h3/*/\ as horizontal and

vertical velocity scales, and pgho as a pressure scale,
the following dimensionless variables can be defined:

at z=h+b,
at z=b.

x' = x/A, z' = z/hg,
u' = uf(ghy)'?, w = wh/g"?h3",
D' = ploghy, b' = b/hy.

Substitution of these new variables into (7a-g) results,

upon dropping primes, in the dimensionless set
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uu, + wu, = —py, (8a)
(uw, + ww,) = —p, — 1, (8b)
u,+w, =0, (8¢c)

u, — Fw, =0, (8d)
p=0, at z=h+b, (8e)

w = ud(h + b)/dx, at z=h+ b, (8f)

w = udb/dx, at z=b. (8g)

The experimentally observed smallness of the vertical
aspect ratio & = hy/A for 0.6 < Fd < 1.0 suggests an
expansion of the dependent variables in powers of 42,
Thus, we write

u=u®+uV +F#u?+ ..., (9a)
w=w® + 2w + @+ ..., (9b)
p=p9+8pM + %@+ .o, 9¢)
h=hO 4 520 4 @ + o ., (9d)
b =6+ 5bD + . . . (%e)

The assumption 5@ = 0 is based on the previously
noted observation of obstacle smallness.

If (9a-e) are substituted into (8a-g), the result, to
lowest order is

u@u® + wO® = —pO, (10a)
0=-p® -1, (10b)

u® + w® =0, (10c)

u® =0, (104d)

p®@ =0, at z = hO, (10e)

WO = yOgHOdx, at z = hO,  (10f)

w® =, . at z=0. (10g)

It is immediately evident that the horizontal pressure
gradient and velocity are independent of elevation. If
(10b) is integrated with respect to z and (10e) applied,
the O(0) pressure is found to be

PO = KO~z

If this pressure is substituted into (10a), and (10d) is
applied, the resulting momentum equation is

uOdu®dx + dh®/dx = 0. (1n

Similarly, (10c) can be integrated from z = 0 to z
= 19 and the boundary conditions (10f, g) apphed
resulting in

hOdu®/dx + u®dh®/dx = 0. (12)

This equation along with (11) comprises the homo-
geneous version of the long-wave theory (1) and (2).
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Since topographic forcing is absent, the only solutions
are uniform flows:

1@ = constant, (13a)
H® = constant, (13b)
w® =0, (13¢)
To O(8%), Egs. (8a-g) become
uuP = —p, (14a)
0= —p®, (14b)
uD 4+ wid) =0, (14¢c)
u =0, (14d)
PO =P+ bV =0, at z=hO, (14e)

w® = 4 OGED + pOY/dx,
at z = HO, (14f)
wh = 4 OdbVy/dx, (14g)

where (10b) and each of equation of (13) have been
used to simplify various terms. Also, the boundary
conditions (14e-g) have been applied at the elevations
z = h and z = b through the usual Taylor expansions
about z = /@ and z = 0.

The O(%) fields continue to be of long-wave char-
acter, as evidenced by the independence of u‘" and
p'" on elevation z. Proceeding as before, (14b) can be
integrated with respect to z, (14e) applied, and the
result substituted into (14a) to form the momentum
equation

at z=0,

uOduVsdx + dnVydx = —dbVidx.  (15)

Integrating (14c) from z = 0 to z = h'® and applying
(14f) and (14g) gives

"OduVsdx + uOdy®tdx = 0. (16)

Equations (15) and (16) can be combined to form a
single expression for 5\

dnVdx = W — KO hOdpDydx.  (17)

The structure of #'" in (17) depends on the value
of u® — KO, If 4@ — KO # 0, Y is simply pro-
portional to 4" and no wave-like behavior independent
of the topography is possible. If, on the other hand,
u©®* = O, the situation is more complex. First of all,
the O(8%) topography 5V must vanish to prevent dn"/
dx from becoming unbounded. In this case (15) and
(16) are redundant and 5" is indeterminate. The in-
terpretation of this behavior is clear: Long-wave dis-
turbances propagating against the O(0) flow move at
dimensionless speed @ — A@"*, In order for steady
disturbances to exist independent of topography, this
speed must be zero; 4@ = A®'?. However, this critical
condition causes the O(6?) dynamics [i.e., Egs. (15)
and (16)] to become degenerate and the structure of
73 (and u{})) becomes sensitive to the delicate balance
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of forces and accelerations at O(3%). This behavior is
not unlike the “critical level” phenomenon (Booker
and Bretherton, 1967) often encountered in connection
with internal gravity waves in shear flows. [It must be
cautioned that the degenerate behavior of the linear
equations (15) and (16) is not a feature of the nonlinear
equations (11) and (12). Solutions to the former are
arbitrary functions of x for u@* — A = 0, while so-
lutions to the latter are constants regardless of the value
of @ — p®]

Since the present analysis is designed for flows with
upstream Froude numbers near unity, it is now for-
mally assumed that the O(0) uniform flow be critical:

O = p0) (18)

(This formally restricts discussion to the upper portions
of Figs. 5 and 6). Equation (17) then demands that

' b =0, (19)

The only information now given by (15) and (16) is
the following relationship between #" and "%

HOUM = —y OV 4 1 OA (20)

obtained by integrating (16) and using (18). The in-
tegration constant A determines an O(6%) correction
to the basic flow rate u@h©, Also, the O(8%) vertical
velocity, obtained by integrating (14c) and applying
(14g) to the result is -

wl = —zduW/dx. 1)
To O(8*), Egs. (8a-g) are

uOu@ + p@ = -y, (22a)
uOwd = —pP, (22b)
u? + wd =0, (220)
u® —wd =0, (224d)
pP=9P+b?, at z=h" (22e)

w? = u(o)d(n(z) + b(z))/dx + d(u“)n“))/dx,
at z=H? (22f)
w® = 4 OdpD/dx, at z=0. (228

If (21) is used to substitute for w'" in (22b), the
result integrated with respect to z, and the boundary
condition (22¢) applied, the O(6*) pressure is found to
be

pAx, 2)

= 1@ + BD + 2 1022 — KM Vydx? (23)

The pressure is no longer hydrostatic, a crucial de-
parture from the lower-order dynamics.

The O(5* horizontal velocity can be obtained by
using (21) to substitute for w' in (22d) and integrating
with respect to z. The resuit is
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u®(x, z) = u®@(x, K + % (M3 — zHd*uVydx*.  (24)
Note that the horizontal velocity is no longer z-in-
dependent. If the above expression for #‘® is now sub-
stituted into (22c), the result integrated from z = 0 to
z = 9, and the boundary conditions (22f, g) applied,
the free-surface horizontal velocity u@ (x, /%) is found
to be given by

d_u(Z)(x, h(O)) — 1 h(o)z d3u(l)
dx« 3 dx3
dn® Dy
_ h“”'[ 9" dx d(udx ):|. 25)

The horizontal momentum balance (22a) can now
be evaluated by substituting the above expressions for
u? (x, z) and p® (x, z) and writing #‘V (x) in terms
of 7V (x) with the aid of (20). If this is done, the result

is
(1Yo 1 (1)
2 d  3\n9) @
0)2 (1) (2)
+2(u0)(A_§n(1))dL_ fii.
o 2 dx dx
Since 4@ = 4©, the right-hand side of the above equa-
tion must vanish, leaving

HO?

d®yV/dx? = 6(A -3 n‘”)dn“’/dx — 3dbP/dx, (26)

where b® =
to x yields

KO’ A single integration with respect

A2V d? = g (% A— 17(1))77“) ~3}@ + BV, (27)

Since (26) is a momentum equation, its integral (27)

can be interpreted as an energy equation with the in-
tegration constant B‘Y representing the Bernoulli con-
stant. If one removes the dispersive term d’n"/dx?
from (27), the result is a simple quadratic equation,
the solutions of which behave in a similar way to the
long-wave solutions of Fig. 1. The dispersive term owes
its existence to the nonhydrostatic effects which arise
at O(6%.
_ The homogeneous form of Eq. (26) has also been
derived by Keller (1948) and Benjamin and Lighthill
(1954) in connection with studies of stationary waves
in steady flows over a flat bottom. The basic approach
used here is similar to Keller’s, although the notation
and ordering of terms in his derivation are somewhat
different.

5. Cnoidal and solitary wavés and nonhomogeneous
solutions

Closed-form solutions to (27) are difficult to obtain
unless the bottom topography 53 is trivial or assumes
a special form. However, some insight into the behavior
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of solutions for general topography can be gained by
introducing the free surface slope Y = dnV/dx as a
dependent variable, so that (27) becomes

Vg =22 A —
dYWydx 2(3A

an/dx = YO, (29)

The behavior of (28) and (29) can be discussed using
the phase plane (Poincaré diagram) in which solutions
are mapped out in terms of the dependent variables
7' and YV, with the independent variable x appearing
as a parameter determining position along each phase
curve. However, since 5® is a predetermined function
of x, (28) and (29) are nonautonomous and the shapes
of the phase curves vary with x over nonflat sections
of the bottom. To momentarily avoid this complica-
tion, it will temporarily be assumed that 5@ is constant,
so that the bottom is flat.

First consider the equilibrium points of (28) and
(29), for which dY"/dx = dynV/dx = 0, and which
therefore correspond to uniform flows. The locations
of such points are given by

Y® =0
334 1 ()1/2
. 2 1
250+ 1p ) ]

ng)——[Ai(Az—

Two real and distinct equilibrium points exist for

n‘”) M _ 35 4 B0 (28)

(30)

> 250 -2 BO, 31)
and these points coalesce when
=25 2 BO. (32)

In the latter case, the O(8%) surface displacement is
given by (30) as
n = =2 A, (33)
Now consider the Froude number for the uniform
flows described above:

Fd = (u® + SuO)HO + 870y 172

= 4O/ 4 5zu(0)( A— % 17“’) / KO 4 O(5%)

~ 1+ 52h<°>“(A - % n"’) , (34)
where (18) and (20) have been used in the final step. .
If (32) and (33) hold, so that a single uniform value
of 7'V exists, then the O(8%) term in (34) vanishes. In
this case the criticality of the flow is preserved at O(8?).
If, on the other hand, (31) holds, there exist two distinct
uniform values 3" and #" such that

2 2
>34, 10 <TA4
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corresponding to slightly subcritical and slightly su-
percritical uniform flows, in view of (34). A bifurcation
thus occurs at the point 7 = 3A; the uniform critical
flow being split into subcritical and supercritical parts.

Figure 7 contains two phase planes; one correspond-
ing to 5® = 0, the other to 5® = 0.5, and both with
BWM =0 and A = —1. First consider the ¥® = 0 plane
(Fig. 7a). Since (31) is satisfied, two uniform flows
exist, and these appear on the 7" axis as #»{> = 0 and
7Y = —%. The former is a stable center point corre-
sponding to a slightly subcritical flow and is surrounded
by closed phase trajectories. These trajectories represent
periodic cnoidal waves (Keller, 1948) containing broad
troughs and narrow crests, as evidenced by the asym-
metry of the trajectories with respect to 7‘"). Bounding
the cnoidal waves is a phase trajectory representing a
wave with a single crest, and troughs which merge into
the uniform flow at (—4/3, 0). This trajectory represents
a solitary wave, and the point (—4/3, 0) a uniform,
slightly supercritical flow. Outside the solitary wave
the phase trajectories extend infinitely far from the
equilibrium points, indicating a lack of boundedness
in the corresponding solutions.

The effect of increasing the bottom elevation to
5@ = 0.5 is shown in Fig. 7b. The uniform flows now
appear at 1’ = —0.33 and #") = —1.0, and the envelope
of bounded solutions has been shrunk.

3.0

(a)

~(2)

Y (X)) o b =0
-1.0
-20
-30
-2.
(b)
~i2)
b =0.5

FIG. 7. Phase plane diagrams for Eqs. (28) and (29), with constant
5@ and A = —1.0. (@) b = 0; (b) b? = 0.5.
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Now suppose that the bottom is no longer flat but
contains two obstacles of the same general configu-
ration used in the laboratory experiment. The flat por-
tions of the bottom are assumed to have zero elevation,
so that the solutions of Fig. 7a are valid there. If the
upstream flow is uniform and slightly subcritical, as
in the experiments, then the upstream solution lies at
the origin. Consider the behavior of the solution curve
over the first obstacle. As the fluid moves up the face
of the first obstacle, 5® increases and the center point
is drawn to the left. The initial tendency of the actual
solution curve, however, is t0 remain at the origin
(since dn'"/dx is initially zero). As closed trajectories
are swept past the origin, the solution curve takes on
a phase velocity tangent to the passing trajectories as
indicated by the dashed lines in Fig. 7a. As the first
obstacle is passed the trajectories expand back to their
original shapes, but the net effect is to place the solution
curve on a trajectory away, in general, from the center
point. There are four possibilities in all, as indicated
in Fig. 7a. The first (labeled C, ) places the downstream
solution back at the center point, implying a uniform,
slightly subcritical flow downstream of the first obstacle
(also see Fig. 8a). In this case, the upstream and down-
stream states are -identical. The second (labeled C,)
connects the center point with one of the periodic
trajectories. In this case the flow downstream of the
first obstacle contains lee waves. The third possibility
(labeled C3) places the downstream solution on the
limiting trajectory corresponding to the solitary wave.
In this case the solution approaches a uniform, slightly
supercritical state downstream of the first obstacle. The
final possibility (labeled C,) joins the center point to
one of the open trajectories outside the solitary wave,
leading to an unbounded state. Examples of the three
bounded solutions have been computed numerically
and appear in Figs. 8a—c. Of these three possible
bounded solutions, it is interesting that two (Figs. 8a
and c) resemble the long-wave solutions shown in Figs.
1a and c, while the third (Fig. 8b) is completely new.

If a second obstacle appears in the channel, the
number of possible steady configurations is again in-
creased threefold. (For 7 obstacles there are 3" possible
steady configurations.) Of the nine possible bounded,
steady configurations, the one selected in the laboratory

" experiment contains cnoidal waves downstream of the

first obstacle, and the partial solitary wave downstream
of the second (see Fig. 8d). This raises several questions.
First, why should the partial solitary wave occur at all,
as the phase plane seems to indicate that the solitary
wave is a rather special solution? Second, why should
the partial solitary wave occur always downstream of
the second obstacle and never the first? Finally, what
determines the values of B(" and A in a given exper-
iment?

Recall that one outcome among the possible solution
curves in Fig. 7a is an unbounded downstream state.
This behavior would indicate that the upstream con-
ditions are improperly specified. Under such conditions



1224

b'%'(x) 6.4

2 |
F 4 0.0 1 x)
a8l 7
- J-e
32k 7
E H-3.2
16| b
L a s
ool 1. . i [ S S
00 2000 4000
2.00
0.0
1.20 - -0.4

1 1 L L
0.0 400.0 8000

10.21
- 0.0
:-0.20
-0.40
L AT N s L . 1
0.0 400.0 800.0

F1G. 8. Numerical solutions to (28) and (29) for the topography:

o - {0 (lx — 301 > 1)
B2 {1 — [(x/30) — 217} (Ix— 30| < 1)

in (a), and

A2 —

{0 (Ix — 60| > 1)

Bu{1 = [0/60) — 217} (b = 60 < 1)

in (b), (c), and (d). The upstream flow is uniform and subcritical in
each case with 7" = 0.0 and BY = 0.0. (a): bpax = 4.0, A = ~-3.0.
(b): bmax = 0.4, A = —0.3. (¢): bpax = 0.8, A = —0.3. (d): bmax
= 0.8, A = —0.31 with identical obstacles centered at x = 60 and
x = 660. The steady solutions in (a), (b), and (c) correspond roughly
to ‘C], Cz, and C3 in Flg 7.

it can be expected that a time-dependent adjustment
takes place during which the upstream flow (here de-
termined by B and A) is altered a sufficient amount
to allow a bounded solution. This is essentially the
“control” mechanism which is exercised in long-wave
flows. In hydraulics, for example, it is well-known
(Pratt, 1983b) that the adjustment proceeds according
to certain minimal principles which dictate that the
upstream flow be altered the smallest amount necessary
for a bounded solution to be established. (Thus the
hydraulically controlled state contains the minimum
upstream energy necessary to surmount the obstacle.)
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Should such minimal principles also hold for solutions
to (28) and (29), the partial solitary wave will be a
preferred solution. This follows from the fact (evident
upon inspection of Fig. 7a) that, of all the bounded
solutions, the solitary wave is the “outermost.”

It becomes apparent from the above remarks that
the partial solitary wave should be a more common
solution than might be expectetd on the basis of steady-
state considerations. That this solution should occur
in the lee of the second obstacle and not the first ap-
parently follows from the marginally stable character
of the solitary wave trajectory; should the partial sol-
itary wave occur in the lee of the first obstacle, the
perturbing influence of the second would likely cause
the downstream flow to blow up. It is also apparent
that B and A are controlled by the second obstacle
and not the first, even if their heights are identical.
This follows from the fact that the topography of the
first obstacle can be changed a small amount without
necessitating changes in the upstream flow.

The theory described above depends upon the flow
being “nearly critical.” In the laboratory experiments,
however, the nearly critical flows are the most difficult
to measure owing to the large wavelengths which occur
when Fd approaches unity. This experimental finding,
while troublesome, can be shown to be at least con-
sistent with the theory. Consider the cnoidal wave so-
lutions to (28) and (29) over a flat bottom of elevation
b, These solutions surround the equilibrium point
(nV, 0) in phase space. The lengths of the waves can
be estimated by writing (27) as

d*nVldx? = = — g = 1L),  (35)

with 7 given by (30). If waves of small amplitude
7D = 9 + 2O, with |5V < 4 — 7 are now con-
sidered, (35) can be put in the linear form

d*iV7dx* + () — 1O = OG™).  (36)

The wavelength of periodic solutions is thus 2x(n"
— 7)~12 which grows without bound as the critical
state 7 = n" is reached [cf. Eq. (33)]. Thus, the small-
amplitude waves of the system lengthen without bound
asFd — 1.

As a cautionary note, it should be mentioned that
the terms “supercritical” and ‘subcritical” must be ap-
plied with some care when the O(5%) uniform flows
are being described. The terms have been used here
to indicate the value of the Froude number relative
to unity that would be measured in the laboratory,
with no implications concerning the ability of distur-
bances to propagate upstream against the flow.

Finally, note that there is no.exclusive relationship
between the obstacle heights A, and BV, Unlike long-
wave theory, the obstacle shape now becomes impor-
tant as well.

6. Discussion

The remarks concerning the establishment of the
solution of Fig. 8d are intended as intuitive implications
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of the experimental results and not as formal proofs.
The steady equations (28) and (29) are embedded in
a time-dependent equation, and verification of the
minimal principles of control would require integration
of the more general equation. Such an exercise would
undoubtedly prove interesting, because the exact means
of upstream control by the topography would be re-
vealed.

One might inquire about the failure of the numerics
to give a meaningful solution. Presumably, the failure
occurs during the second stage of adjustment (Figs. 2b
and c¢) when the long-wave equations indicate for-
mation of a shock wave between the two obstacles. In
reality this shock is probably suppressed by dispersion,
leading to the wavelike flow found experimentally. The
numerical result emphasizes the importance of accurate
specification of the lower boundary condition, a feature
commonly lacking in numerical models of atmospheric
flow over mountains. If the obstacle in Fig. 2 is
“smoothed” to the point of having a single sill, a steady
asymptotic state is obtained (Houghton and Kasahara,
1968).

As mentioned in the Introduction, other long-wave
theories predict the same instability seen in the present
problem. The effects of dispersion are likely similar to
those found here, since the nonlinear dispersive equa-
tions found to govern nearly-critical states are often
of the form (28) and (29). One example, that of a
nearly critical rotating-channel flow over topography,
has been worked out by Pratt (1984).
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