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ABSTRACT

Two methods for assessing the hydraulic criticality of an observed or modeled overflow are discussed. The
methods are valid for single-layer deep flows with arbitrary potential vorticity and cross section. The first
method is based on a purely steady view in which the flow at a given section is divided up into a group of
“streamtubes.” A hydraulic analysis requires an extension of Gill’s functional formulation to systems with
many degrees of freedom. The general form of the critical condition and associated compatibility condition
for such a system are derived and applied to the streamtube model. As an aside, it is shown by example that
Gill’s original critical condition can fail to capture all possible critical states, but that this problem is fixed
when the multivariable approach is used. It is also shown how Gill’s method can be applied to certain
dispersive or dissipative systems. The second method of assessing criticality involves direct calculation of
linear, long-wave speeds using a time-dependent version of the streamtube model. This approach turns out
to be better suited to the analysis of geophysical datasets. The significance of the local Froude number F is
discussed. It is argued that F must take on the value unity at some point across a critical section.

1. Introduction

Hydraulic criticality and control are concepts that
date back to work by Reynolds (1886) and Hugoniot
(1886) in the area of gas dynamics. The same ideas hold
for steady, shallow flow over a dam and have more
recently been applied to deep ocean overflows. In these
applications, “critical flow” refers to a steady state that
supports stationary nondispersive waves of small am-
plitude. In most cases the nondispersive waves are
“long” waves, but there are exceptions (e.g., Baines and
Leonard 1989). Changes in topography at a section of
hydraulically critical flow lead to changes in the over-
flow transport and other properties. “Critical sections”
often occur at points of constriction such as the crest of
a dam or the narrowest section of a wind tunnel. It is
also normal for the flow upstream of the constriction to
be “subcritical,” meaning that long-wave propagation
in both up- and downstream directions is permitted,
and for the downstream flow to be supercritical, mean-
ing that propagation only in the downstream direction
is permitted. The transition between subcritical and su-
percritical states occurs at or near the most constricted
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section and the flow there is said to be critical. Gener-
alizations have been made to situations where the flow
is bidirectional and “upstream” and “downstream” are
less clearly defined (e.g., Armi 1986).

Hydraulic transitions and the occurrence of critical
flow have profound implications for the physics of the
flow. A hydraulic transition implies a downstream re-
gion of supercritical flow subject to enhanced mixing
and entrainment and the formation of hydraulic jumps.
Upstream effects are also important and include partial
blocking of the transport and regulation of the stratifi-
cation in the upstream basin. The critical condition can
be used in principle to write down a “weir” formula
relating the transport to hydrographic properties of the
upstream flow (e.g., Whitehead 1989; Borenis and Ni-
kolopoulos 2000). Such formulas potentially serve as a
basis for long-term monitoring of the transport (e.g.,
Hansen et al. 2001). Weir formulas traditionally assume
that critical flow occurs at the sill, but nonconservative
processes such as bottom drag and entrainment can
cause the critical section to lie elsewhere (Pratt 1986;
Gerdes et al. 2002) with consequences for the weir for-
mula. All of these factors make the diagnosis of flow
criticality and the location of the critical section impor-
tant in the analysis of deep ocean overflows and of
other hydraulically driven flows of geophysical rel-
evance.
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For nonrotating, homogeneous, shallow, free-surface
flows, the standard indicator of the hydraulic state at a
given cross section is the Froude number v/(gd)"?, with
vdenoting the depth-independent horizontal velocity, d
the fluid depth, and g the gravitational acceleration.
This result can be generalized to a deep layer flowing
underneath an inactive upper layer, and the appropri-
ate Froude number is obtained by reducing g in pro-
portion to the relative density difference between the
two layers. The flow is subcritical, critical, or supercriti-
cal depending on whether v/(gd)"?is <1, =1, or >1, an
interpretation valid where the variation of v and d
across the flow is weak. Although this assumption may
be valid for certain streams and open channels there are
other applications where such variations are large and
where the appropriate Froude number is not known.
Examples include the deep ocean overflows such as
those of the Denmark Strait, the Faroe-Bank Channel,
the Jungfern Passage, and the Vema Channel. The
combination of rotation and complicated cross-
sectional geometry lead to significant variations in v
and d across the passage in question.

The belief that subcritical-to-supercritical transitions
take place is founded on the observed “overflow” char-
acter itself: the spilling of dense water from one ocean
basin into another. The upstream/downstream asym-
metry and resemblance to flow over a dam has led to
the presumption that hydraulic transitions are taking
place, but this conjecture has almost never been veri-
fied by direct measurement in settings where rotation is
strong. Theories for homogeneous, rotating-channel
flow (i.e., Whitehead et al. 1974; Stern 1974; Gill 1977,
Borenids and Lundberg 1986) have resulted in the for-
mulation of generalized Froude numbers, but applica-
tion is often limited by inherent idealizations such as
restriction to a rectangular cross section or to uniform
potential vorticity. Here we will present two new mea-
sures of criticality that are less restricted. Both are
based on a multiple streamtube representation of an
overflow, constructed by dividing observed flow at a
particular section into transport and energy conserving
subsections. The first measure is obtained by asking
whether a stationary wave can exist at the section in
question. Development of the formal criterion requires
that one generalize the Gill (1977) approach (reviewed
in section 2) to a system with an arbitrary number of
degrees of freedom (section 3). The general form of the
critical condition and associated compatibility condi-
tion for such a system are derived and applied to the
streamtube model (section 4). As an aside, it is shown
by example that Gill’s original critical condition can fail
to capture all possible critical states, but that this prob-
lem is fixed when the multivariable approach is used.
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As it turns out, the criterion is well suited in application
to an analytically or numerically modeled flow, but re-
quires more data than are typically available in field
studies. A second condition based on direct calculation
of long-wave speeds is then developed (section 5) and
shown to be better suited to oceanic data. The wave
speed calculation is based on a time-dependent version
of the multiple streamtube model and the result is di-
rectly tied in to the extended Gill formulation for
steady flow.

This work also addresses several issues closely con-
nected to the concept of hydraulic criticality. One con-
cerns the significance of the local Froude number F in
cases where this quantity varies across the flow (section
6). We discuss the differences between local propaga-
tion of free disturbances and hydraulic control with re-
spect to a normal mode. A result of this discussion will
be the conjecture that F must equal unity at some point
across the section in order for the flow to be hydrauli-
cally critical with respect to a long normal mode. We
also discuss the conditions for hydraulically criticality in
certain cases in which traditional hydraulic approxima-
tions are invalid (appendix A).

2. Hydraulics in a single variable: The Gill (1977)
approach

If “hydraulic criticality” is defined as a steady flow
state that supports stationary long waves of infinitesi-
mal amplitude, then the methodology of Gill (1977) can
be used to write down conditions for critical flow. The
approach applies to a steady, conservative flow in a
conduit or waveguide that varies gradually in the lon-
gitudinal (y) direction. Conserved properties might in-
clude volume and/or mass flux, energy, density (or po-
tential density), and vorticity (or potential vorticity). It
was assumed by Gill that the corresponding conserva-
tion laws can be combined, reducing the number of
dependent variables to a single unknown +y(y). For flow
in a rotating channel of rectangular cross section
v(y) is often chosen as the average of the layer thick-
nesses on the two side walls. Knowledge of y(y) at a
particular “section” y of the conduit determines all the
flow characteristics (depth, pressure, etc.) at that sec-
tion. The conservation laws relate y(y) to the local geo-
metric properties of the conduit 4(y), w(y), and so on
by an equation of the form

Gly(y) h(y), w(y),...sB,Q,...1=C, (21)
where C is a constant. For example, A(y) and w(y)
could represent the bottom elevation and width of a
channel of rectangular cross section. The relation (2.1)
also depends on parameters B, O, and so on, corre-
sponding to the values of the conserved quantities. By
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definition

dG dGdy doGdh 9Gdw

— =t ——F -

dy dydy ohdy owdy
which is often just the differential form of a momentum
or continuity equation.

Now consider the conditions under which free, sta-
tionary long waves of small amplitude exist. By “long
waves” we mean disturbances that vary gradually in the
y direction, just as the steady flow does. By “free” we
mean disturbances that occur spontaneously and are
independent of any forcing mechanism, including bot-
tom slope. When a steady flow becomes hydraulically
critical at a particular section y = y,, it can support a
stationary disturbance at that section. In other words,
the steady state can be locally altered without changing
either the conduit geometry or the upstream condi-
tions. The altered flow must therefore have the same
volume flux, energy, and so on, as the undisturbed flow
and G must have the same value. In formal terms, there
must exist a small disturbance that preserves the value
of G and is free of variations in /4, w, and so on:

=0, (22

G
Sy =0 o To=0. 23

seen

... are held constant while the operation in parentheses
is carried out.

As an example, consider a nonrotating, two-dimen-
sional, free-surface flow passing over a bottom of vari-
able elevation 4 (Fig. 1). If the flow at the sill is hy-
draulically critical, a localized, infinitesimal disturbance
of the fluid depth d and velocity v may exist there. The
amplitude and shape of the disturbance may be re-
garded as arbitrary as long as it is recognized that the
disturbance is small. The disturbed flow (dashed line)
has the same upstream state and therefore the same
volume flow rate per unit width O = vd and energy per
unit mass (Bernoulli function) B = (v*/2) + gd + gh as
the original. Substituting for v in the expression of the
Bernoulli function leads to a conservation law in the
single variable d:

2

G(d; h) = % +gd+gh=B8B (2.4)
2d

with B and Q constant. Applying (2.3) with d now play-

ing the role of vy yields the well-known critical condition

0 = g"2d*?, or v = (gd)"2.

The flow at a critical section is particularly vulnerable
to external forcing. In the case of the 1D flow governed
by (2.4) the stationary wave is a long (and therefore
nondispersive) gravity wave. At a critical section, the
long wave will be resonantly excited by stationary forc-
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ing. Since the group velocity of the stationary wave is
zero, disturbance energy is unable to escape and will
increase with time, presumably leading to a dramatic
change in the background flow. This behavior distin-
guishes stationary long waves from lee waves, which are
stationary waves of finite length. The latter are disper-
sive and allow energy to propagate away even though
the phase speed is zero.

The threat of long-wave resonance suggests that criti-
cal flow can only occur where the topography does not
force the flow. This idea can be put on formal ground
by evaluating (2.2) at a critical section (9G/dy),-, = 0
and assuming that the flow remains smooth as it passes
through the critical section (d7y/dy exists and is bounded
at y.). It follows that

) =
y=ye

This “regularity” condition restricts the locations y = y..
at which critical flow can occur and allow smooth com-
putation of solutions through those locations. These lo-
cations are sometimes called control sections. Applying
(2.5) to (2.4) leads to the conclusion that critical flow
can occur only where dh/dy = 0, as at a sill.

Their nondispersive nature is just one of the proper-
ties that makes long waves (as opposed to other sta-
tionary disturbances) centrally important in hydraulics.
Another is that long waves project exactly on the steady
flows that they modify. In the case of the shallow flow
governed by (2.4) both the steady flow and the long
waves have depth-independent horizontal velocity,
whereas surface gravity waves of finite length have
depth-decaying horizontal velocity. A second reason is
that the long-wave resonance described above makes
steady flow particularly vulnerable to changes the con-
duit constriction. Imagine a steady flow over a dam and
consider the consequences of raising the crest of the
dam slightly. If the depth and velocity of the crest flow
is initially d, and v,, then v, — (gd,)"? is initially zero at
the crest. The change in crest elevation excites a sta-
tionary long waves and its energy builds until the dis-
turbance acquires finite amplitude. Its speed can now
exceed the linear value v, — (gd,)"* and it can break
free and propagate upstream, altering the upstream
flow. Numerous demonstrations of this and similar pro-
cesses can be found in the literature, beginning with
Long’s (1954) towing experiments and including many
numerical extensions Baines (1995) and Pratt et al.
(2000).

In most applications, critical flow occurs at a section
(or sections) y = y. marking the transition between
states supporting wave propagation in different direc-

oG dw

G dh
ow dy *
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FIG. 1. Definition sketch for shallow, homogeneous flow over topography.

tions. Strictly speaking, the flow is able to support sta-
tionary disturbances only at y. and not at points imme-
diately upstream and downstream as suggested in Fig.
1. The stationary disturbances are therefore possible in
theory but are difficult to visualize in most applications.
They should not be confused with stationary lee waves,
which involve waves of finite length.

The form (2.1) of the functional G used by Gill is
based on the presumption that the flow state at a given
y depends only on the characteristics of the conduit at
that y (and on the values of the parameters Q, B, etc.).
Nonlocal dependence on y can occur in systems that
exhibit hydraulic behavior, either as a result of dissipa-
tion or of variations in geometry that are nongradual. In
appendix A, we give two examples of such systems and
show how the Gill approach can be extended and used
to find a critical condition. One involves a system in which
the short, rather than long, waves are nondispersive.

3. Extending the Gill approach to systems with
multiple variables

Reduction of the problem to the single-variable for-
mat envisioned by Gill (1977) is not always easy. It is
often more convenient, and sometimes necessary, to
work with two independent relations in two variables v,
and y,:

Gi(y1, v how,...;B,0,...)=C, (3.1)

and
G2(’Yl?’Y2;haW9'";Bst"‘): CZ‘

The existence of a stationary wave now requires that
small variations dvy, and dvy, can be found such that G,
and G, both remain fixed. Thus

(3.2)

6Gn =gy + D 0 (33)
’ A% Y,
and
6Gn =22y 12924 0 3
o A% Y,

The critical condition is just the solvability condition
for (3.3) and (3.4):

9G,9G, 9G, aG,

v1 9y, 972 97
first obtained by Pratt and Armi (1987). Stationary

waves then involve the tangent displacement (dvy,, dvy,)
as given by (3.3) or (3.4):

G /9y,
dy_dyl[l’—(aGl/ayz . >

where dvy; is small but arbitrary. The displacement vec-
tor contains information about the cross-sectional
structure of the stationary wave.

The generalization of the regularity condition (2.5)
can be found by writing out the identities dG,/dy = 0
and dG,/dy = 0:

0, (3.5

(3.6)

daG, B 0G,dy, 0Gydy, dG;dh 039G dw
dy B dy, dy dy, dy oh dy aw dy *
=0 (3.7a)
and
aaG, B G, dy, 39G,dy, dG,dh 9G,dw N
dy N dy, dy dy, dy oh dy  ow dy o
=0. (3.7b)

Solving for dvy,/dy leads to

dy, _ dy2 \ 9y Y1-72 dy2 \ dy Y172 (3.8)
dy G, 9G, 3G, 3G, ’ '
dy1 9y, 9y, vy

where [3()/dy],, ,, = [00)/ow](awldy) + [3()/oh](dh/dy)
+ - - - is a derivative taken with -y, and vy, held constant.
Critical flow requires that the denominator vanish and
the numerator must then vanish if the flow is to remain
well behaved. The regularity condition is thus

9G, 4G, 4G, 0G,

¥y 9y oy, ay

—0(=1lori=2),

Y1-Y2 Y1-Y2

(3.9)

(The i = 2 version, which follows from developing an
expression for dvy,/dy, is not independent of the i = 1
version.)

Dalziel (1991) showed that two-layer hydraulics with
no rotation can be formulated using two functionals of
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the forms (3.1) and (3.2). He derives the well-known
critical condition (e.g., Armi 1986) equivalent to setting
a composite Froude number to unity (e.g., Armi 1986);
however, (3.5), (3.6), or (3.9) are never explicitly writ-
ten down. The stationary disturbance in this case is an
internal wave and the relationship (3.6) linking dvy; and
dvy, determines the ratio of the amplitudes of the wave
in the two layers.! In Smeed’s (2000) treatment of
three-layer exchange flow, the hydraulics problem is
again reduced to two functional relations of the re-
quired form and (3.5) and (3.9) are derived.

The machinery can be extended to problems gov-
erned by N relations for N independent variables:

Givi(¥), v2(), v3(), - s YY)
h(y),w(y),...,B,0O,...]1=C

Golvi(), v2(), ¥3(¥)s - - YY)
h(y),w(y),...,B,Q,...1=C,

GALY(D) VoD ¥« s TP

h(y),w(y),....B,Q,...]=Cy. ~ (3.10)
The condition for stationary waves is now
> 0G,;
(SGi)hw,A.. E_dyjzo(l 112" ’N)’
=19
(3.11)

and the corresponding solvability condition is the van-
ishing of a generalized Jacobian:

det(a—Gi> =0, (3.12)
ay;
where
G, /oy, 3G, /dyn
(%) | : G13)
IGN/DYy IGN/OYN

The tangent displacement vector (dvy,, dvy,, . . .)., Which
is computed from any member of (3.11), again deter-
mines the transverse structure of the stationary wave.

A generalized regularity condition for critical flow
can also be obtained. Since dG,/dy = 0 it follows from
(3.12) that

"' When d, and d, are used as dependent variables, the relation-
ship (3.6) between the displacements in the two layers is made
trivial by the geometric constraint (3.8). However, if the layer
velocities were used as dependent variables, (3.6) would yield a
nontrivial relation between the velocity perturbations in each
layer because of the stationary internal wave.

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 35

9G; dv,

0G; d
i ’Y2+
dy, dy

. G dyy (GG,-)
dy, dy y’

dyn dy ay
(3.14)

where (9/dy), denotes a derivative with vy,, y,, and so
on, held fixed. From Cramer’s rule, it follows that

e (5 (5.
etl (22) |22
D _ W LW (3.15)
dy (aG,->T ’ :
det| —
Y,

where (0G/0vy,)|(0G;/ay), is the matrix obtained by re-
placing the ith column of (6G;/dy;) by

(0G/dy),

3G, (0G,/dy),
(W)y B :

(@G/ay),

Critical flow occurs when the denominator of the right-
hand side of (3.15) vanishes. To insure that the deriva-
tives on the left-hand side remain bounded, the nu-

merator must also vanish:
ol (7) ()]0
et| | — - = 0.
a'yf ay Y

This is the regularity condition.

When hydraulic models are formulated directly from
the differential form of the equations of motion, as is
sometimes done with two-dimensional, multilayer flow,
a constraint of the form (3.15) is obtained directly (e.g.,
Engqvist 1996). The critical condition is then identified
as the vanishing of the denominator of the right-hand
side, implying (3.16). This provides a link with the Gill
formulation. One must be prepared to explain why the
vanishing of the denominator implies critical flow; here
an insightful person might cite the resonance condition
described earlier.

In some cases, there may be an advantage to working
with a number of dependent variables, even though
that number can be reduced to one by algebra. As an
example, consider the hydraulics of a rotating layer of
zero potential vorticity flowing along a wall and over a
horizontal bottom of elevation 4 (Fig. 2). As shown by
Stern (1980) the flow state at any section can be de-
scribed by its width w, and the value of the alongshore
velocity v, at its free, offshore edge. The alongshore
evolution of these quantities can be calculated from
conservation of volume flux:

1,0 1 v
2we ve_zwe _Q

(3.16)

(3.17)
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FI1G. 2. A zero-potential-vorticity coastal current with width w,,
and alongshore velocity v, at the free edge. The current is hydrau-
lically critical when the slope of the interface (and therefore the
alongshore velocity) is zero at the wall. The stationary wave is
manifested by an infinitesimal uniform displacement of the entire
current, onshore or offshore, as suggested by the dashed line. The
value of v, is unaffected by this displacement.

and energy

2
<

> +h=B

(3.18)
(both in nondimensional form). It can also be shown by
direct calculation of the long-wave speeds for this sys-
tem that the flow is hydraulically critical when w, = v,
or when v, = 0. (However, the latter corresponds to a
limiting case where the water depth and velocity go to
zero all across the flow.)

An unusual feature of (3.18) is that it appears to
satisfy all the requirements for a Gill functional (2.1) in
a single the variable (v,). It would appear that one could
solve the hydraulic problem using (3.18) alone. How-
ever, if one defines G(v,; h) = (Y2 + h and applies
the Gill critical condition dG/dv, = 0, the solution v, =
0 misses the most pertinent condition, w, = v,. If in-
stead (3.17) and (3.18) are treated as a two-by-two sys-
tem and (3.5) is applied, both critical conditions follow.
The physical explanation behind the apparent failure of
Gill’s original approach is that the stationary wave in
question is manifested by an offshore excursion dw, in
the position of the free edge (Fig. 2) with no corre-
sponding variation in the free edge velocity, (i.e., dv, =
0). A search for this stationary wave using the require-
ment dG/du, = 0 comes up empty.

As discussed in appendix B, the above formalism can
be adapted to a continuous system. The index j is re-
placed by a continuous variable such as the streamfunc-
tion . A functional expressing conservation of a prop-
erty such as energy exists for each . We show that the
critical condition for such a system is that a nontrivial
solution to a particular homogeneous equation exists.
The equations contain coefficients that depend on the
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flow state, that these coefficients must be specialized in
order for a nontrivial solution to exist. The result is
analogous to the solvability condition for (3.7) and ex-
amples pertaining to continuously stratified, nonrotat-
ing, and rotating flow have been documented by Kill-
worth (1992, 1995). Unless the homogeneous equation
is quite simple, however, there is no established ana-
lytical procedure for specializing the coefficients. Prog-
ress then requires one to consider a discrete approxi-
mation to the continuous system and to find a solvabil-
ity condition for the resulting finite set of equations, an
exercise tantamount to solving (3.12).

4. Assessing hydraulic criticality using a steady,
multiple streamtube model

Consider a steady, reduced-gravity flow at a particu-
lar cross section of a deep, rotating strait (Fig. 3a). The
elevation of the interface is denoted n(x), where x is the
cross-stream coordinate, and the along-strait velocity v
is geostrophically balanced:

an

fu= g/a . 4.1)

Density stratification is the most commonly mea-
sured physical property of such flows and we will as-
sume that several such measurements have been taken
at discrete positions x;, Xx,,... across the section in
question (Fig. 3b). By identifying the density interface
at each position the values n(x,,) are found. We will also
assume that the topographic height A(x) and the posi-
tions x = x; and x = x,,; of the left and right edges of
the lower layer are known. Then it is convenient to
divide the observed flow into N segments (Fig. 3b), with
the nth element extending from x,, to x,, ;.

We wish to examine the possibility that free, station-
ary, long disturbances can exist in the observed flow. In
so doing, we will think of the sides of each element as
streamlines and the elements themselves as stream-
tubes. The introduction of a stationary disturbance al-
ters the positions of the streamlines but not the volume
flux nor energy within each tube. In other words, the
sides of the elements may move laterally and the cor-
responding values of m,, may change but the volume
flux Q, and energy B, across each element remain
fixed. The statements of volume flux conservation may
be approximated as
d, +d,

2 Xn+1 — xn)

n:vn

!

N g_f(nn+l - Tln)l:nn+l + N — h(x”+l) N h(x")],

4.2)
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FiG. 3. (a) Definition sketch showing channel bottom and interface bounding a deep,
homogeneous layer flowing underneath an inactive upper layer. The along-channel (y)
velocity is in geostrophic balance. (b) Subdivision of the deep current into streamtube ele-
ments.
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where the average velocity v for a given element has
been related to the interface elevation using (4.1). Con-
servation of energy takes the approximate form

!

Ng_/z(nn+l B nn)z

of the N + 1 streamline positions x,, and the N — 1
values of 1, 15, . . ., mn. [Note that the grounding of the
flow at either edge means that the corresponding eleva-
tions m; = h(x;) and My, = h(xy,,) are not indepen-

= g dent of d ] Applying (3.12) therefore leads to
B, =2 +g'n, = + 2 (e + 1) ent of x; and x5 ;.] Applying (3. ere
2 2f? (pr — X7 2 o the critical condition:
4.3
(4.3) det[b] = 0, (4.4)
Equations (4.2) and (4.3) form a system of 2N equa-
tions in terms of 2N variables. The latter are composed  where
dB,/0x,  9B,/0x, 0B,/0xyn., 0By/m, 0B/om; dB,/omy
dB,/ox,  9B,/x, dBy/0xn.,  0B./dm, dB,/oMN
dBN/OX,  IBA/OX, dBN/0Xn.,  OBN/OM,  0BN/OM, dBN/OMN ws)
b= 4.5
001/0x;  901/0x, 001/0xy 41 901/0m, 901/ 00/amy

005/0x;  00,/dx, 005/0xpn 1 90/, 05/0my

00p/0x;  dQp\/0x, ION XN 41 00NN, IQN/OM; CLOINELIN
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(@)

upstream
(subcritical)

(b)

sill
(critical)

(c)

downstream
(supercritical)

X

FIG. 4. Three cross sections showing flow with uniform potential
vorticity in a parabolic channel [see (6.5)] with « = 0.25. The
solutions were calculated using the expressions appearing in
Borenis and Lundberg (1986) with dimensionless transport Q =
1 and with the upstream boundary layer portioning parameter set
at /Q = 0.5. The values of A, are (a) 0, (b) 0.25, and (c) 0. The
flow is viewed from the upstream side.

We consider two applications, both to flow in rotat-
ing channels with parabolic cross sections:
h(x,y) = ho(y) + ax’. (4.6)

If the potential vorticity of the fluid is uniform then
solutions along the whole length of channel can be
found analytically from expressions developed by
Borends and Lundberg (1986). It is also possible to
write down a generalized Froude number giving the
criticality of the flow at a given section. More details are
given in appendix C. We have calculated several solu-
tions for hydraulically controlled flow corresponding to
different upstream conditions. The critical section oc-
curs at a sill corresponding to a maximum in #,. Cross
sections of the flow for a case in which « is held fixed at
0.25 are shown in Fig. 4. Upstream of the sill (top panel)
the flow is subcritical and relatively deep. The interface
slopes up with positive x over most of the section, in-
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dicating positive velocity, although there is a narrow
band of reverse flow on the right wall. At the sill the
flow is critical, the overall layer thickness is smaller, and
there is a more prominent band of reverse flow along
the right wall. At the downstream section, the layer
thickness is quite small, the velocity is positive all across
the section, and the current is strongly banked against
the right wall.

To evaluate the critical condition (4.4), the flow at
each section is partitioned into three segments of equal
width (N = 3), leading to a 6 X 6 matrix b. The value
of det[b] is evaluated at a number of sections extending
from upstream to downstream of the sill. In principle
det[b] should change sign where the Froude number F,
[from (C.1)] crosses through unity, and Fig. 5a shows
that this is very nearly the case. [The actual crossing is
at F'=0.93.] Similar results hold for solutions calculated
with @ = 1 and o = 4, with the zero crossings at F'=0.98
and F = 0.99, respectively; N = 3 therefore appears to
provide reasonably good resolution.

The magnitude of det[b] is quite small in the subcriti-
cal (F < 1) range relative to the supercritical range (Fig.
S5a), also characteristic of the other cases analyzed. If
the analysis had been based on field or laboratory data
with accompanying noise, it is quite possible that the
value of det[b] would be judged indistinguishable from
zero at all upstream sections. This situation would
cloud interpretation of the results. An alternative is to
calculate the eigenvalues xq, X2, X3 » - - - » Xan Of b. Since

det[b] = X1 X2s X35+ -5 XoNo (47)

at least one of y; must be zero where the flow is critical:

Xx; =0 for some j. (4.8)

In the case of the Fig. 5a, the magnitudes of some of the
X; are finite but quite small upstream of the sill, ren-
dering det[b] small. However, the magnitude of the
eigenvalue (y,) that becomes zero at the sill remains
relatively large upstream and downstream. As shown in
Fig. 5b, its zero crossing is clearly defined.

A slightly more ambitious example of application of
(4.4) or (4.8) involves a numerical simulation of an
overflow in a parabolic channel (Fig. 6). Details of the
numerical model and its use in studies of similar hy-
draulic flows in rectangular channels can be found in
Helfrich et al. (1999) and Pratt et al. (2000). In short,
the model solves the single-layer, shallow-water equa-
tions using a finite volume flux-limiting scheme that is
designed to handle the complexities of rotating hydrau-
lic flows (e.g., shocks, jumps, and layer outcropping).
For the run in Fig. 6 the model is initialized in a uniform
parabolic channel with & = 4 and A, = 0 [see (4.6)] with
a flow with uniform potential vorticity (¢ = 1) and
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FiG. 5. (a) The value of det[b] as a function of Froude number for a flow with uniform
potential vorticity in a parabolic channel and for the parameters specified in Fig. 4b. The
magnitude of the eigenvalue x, of b that has a zero crossing where det[b] does. For visual
convenience [y, is allowed to cross the Froude number axis where |yq| becomes zero. The
wave speed ¢, of the corresponding wave mode (i.e., the mode whose speed is zero where |y,|

is zero) is as calculated from (5.1).

semigeostrophic Froude number F, = 1.5 [see (C.1)].
Between ¢ = 0 and 2 a bump with amplitude A4, = 0.5,
centered at y = 0, is introduced into the flow. Figure 6a
shows the free surface elevation at t+ = 60 after the
introduction of the bump. Disturbances have propa-
gated both upstream and downstream leaving a new
hydraulically controlled flow in the vicinity of the
bump. Figure 6b shows F, calculated from (C.1) for the
numerical solution at t = 60 assuming uniform g = 1.
The jagged quality of F, (and of the curves in Fig. 7) is
a numerical artifact caused by the discrete representa-
tion of the edges of the flow on the numerical grid.
While the numerically computed flow does not have
uniform g in the wake of the upstream and downstream
propagating disturbances, the Froude number based on
uniform ¢ indicates a hydraulic transition from sub to

supercritical flow just downstream of the sill crest. The
upstream/downstream asymmetry of the flow also indi-
cates the presence of a hydraulic transition over the
bump.

A direct determination of the critical section can be
made by introducing a small disturbance at some sec-
tion y in the Fig. 6a flow and integrating the model
forward in time. Upstream and downstream propaga-
tion of the disturbance indicates locally subcritical flow
while downstream-only propagation indicates super-
critical flow. For this example, the critical section was
found to lie between 0 = y =1, which is in good agree-
ment with the uniform ¢ prediction.

The value of det[b] based on N = 3 is calculated over
a range of sections upstream and downstream of the sill
(Fig. 7a). As before, this value crosses from positive to
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F1G. 6. Transient adjustment to a single-layer hydraulically controlled flow following the
introduction of an obstacle in a parabolic channel. The initial flow has uniform potential
vorticity ¢ = 1 and F,, = 1.5 in a channel with & = 4 and h, = 0 [see (4.6)]. A bump grows
to a maximum height 4, = 0.5 between ¢t = 0 and ¢ = 2. (a) Contours of the free surface
elevation & + d at t = 60. The solid bounding contours show the location of zero layer depth
(d < 0.001). The dashed lines are the topographic contour 4 = 0.5. (b) The semigeostrophic
Froude number F, at t = 60, computed from (C.1) with ¢ = 1. The critical section was
determined independently to lie between the two vertical lines at y = 0 and y = 1 from the
propagation of small localized disturbances introduced into the flow in (a).

negative values slightly downstream of the sill with rela-
tively small magnitudes over the upstream range. On
the other hand, the zero crossing of the associated
eigenvalue (Fig. 7b) is less ambiguous. However, both
calculations agree quite well with the estimates of the
position of the critical section using F,, and by observa-
tion of wave propagation.

5. Direct calculation of the wave speed

The critical condition (4.4) will be most useful in ana-
lytical models, whereas (4.8) will be better suited to the
evaluation of output from a numerical simulation. Ap-
plication of (4.8) to the ocean, where data are typically
collected at a moderate number of sections, is likely to
be more problematic. The value of a particular eigen-
value x; at a section determines only whether the flow
is critical or possibly not critical. The critical section
(where one of the y; values crosses through zero) will
almost certainly fall between two of the observed sec-
tions. One would therefore have to calculate the value
of x; from one observed section to the next, making
sure that the same eigenfunction (the same j) is fol-
lowed. The bookkeeping is straightforward when the

sections can be spaced closely enough so that x; varies
gradually from one to the next, as in a numerical model.
It is more difficult when the sections are widely spaced
and the eigenfunctions undergo large changes. A pro-
cedure that is less elegant but better suited to observa-
tional data is direct calculation of the linear long-wave
speeds c; of the system. The result allows one to judge
the flow at a particular section as subcritical or super-
critical depending on whether the wave in question has
positive or negative phase speed. Moreover, the eigen-
functions have a physical basis as wave modes that
make them more identifiable from one section to the
next. The following discussion assumes that the wave
speed is real for the hydraulically relevant wave mode.

A method of calculation of ¢; that is convenient and
provides a direct connection with the Gill approach is
based on a time-dependent version of the multiple
streamtube model. Let the observed edge positions
(Fig. 3b) and the corresponding interface elevations be
given by y, = (¥, %5, ..., My, Mo, . . . ). The positions x;
of the cell edges and the corresponding elevations m);,
are now allowed to vary about these background posi-
tions and the resulting fluctuations y" = (x{, x5, ..., 1},
M, ... )" are assumed to have y — ct dependence. As
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FiG. 7. Same as Fig. 5, but for the numerically generated flow
shown in Fig. 6. The Froude number axis has been replaced by the
y axis, with negative values indicating sections lying upstream of
the sill.

shown in appendix D, vy, obeys the linear eigenvalue
relation

[b(vs) — ca(yy)]y’ =0, (5.1)
and thus the wave speeds ¢; are the eigenvalues of the
matrix a'(vy,)b(y,). Both a and b are defined in ap-
pendix D. The matrix b is identical to that defined in
section 4, providing a link with the extended Gill for-
mulation. Since

€1CoC3 X+ = X ¢y = det[a” 'b] = det[a '] det[b],
the critical condition (4.4) implies that at least one of
the speeds ¢y, ¢,, and so on, is zero.

The calculation of ¢; based on the streamtube model
should be equivalent to a calculation based on the dis-
crete representation of the continuous equations for a
linear normal mode. Our approach has a direct tie-in
with Gill’s approach. It also has built in variable cross-

stream resolution, should one portion of the flow re-
quire higher resolution.
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6. The significance of the local Froude number

The “local” Froude number is defined as

u* +vH)'"? 6.1)
- (grd)l/Z :
In traditional, one-dimensional (u = 0, d/ox = 0)

models, hydraulic criticality corresponds to F = 1. The
significance of F for hydraulic control in a flow with
transverse variations (9/dx # 0) is less clear, but this has
not prevented its appearance in discussions of models
and data. For example, Rydberg (1980) based his
theory of deep-water, rotating channel flow on the as-
sumption that the F' = 1 all across the critical section. In
their report on a numerical simulation of the Strait of
Gibraltar exchange flow, Izquierdo et al. (2001) present
two-dimensional maps of the composite Froude num-
ber (the two-layer version of F) based on time-
averaged fields. They show that this quantity falls
above and below unity across certain sections; the
Tarifa Narrows being one. They refer to such sections
as “fragmentary” controls and write

the term “control” is not appropriate to that situation
because such a fragmentary control cannot provide
efficient blocking (of) interfacial disturbances within a
subcritical flow region and, hence, cannot completely
determine the exchange rate in this region.

By “subcritical” they mean regions where the local
composite Froude number falls below unity.

What is the significance of the local Froude number
and how does it relate to stationary long-wave normal
modes? Is it really true that a section in which F falls
above and below unity provides only fragmentary and
inefficient blocking? To resolve these issues, it is help-
ful to review a simple result from shallow water theory,
as laid out by Courant and Friedrichs (1948) using the
gas dynamics analogy. Consider a steady, shallow flow
for which the value of F exceeds unity in a certain re-
gion (and in which the steady shallow water equations
are therefore hyperbolic). If the velocity and depth at a
particular point p within the region are given by u = 0,
v =1, and d = d,, then a localized disturbance gener-
ated at p will initially spread out in a widening circle as
it is advected downstream (Fig. 8a). The radius of the
circle will initially grow at rate (gd,)"* while the center
of the circle will initially move forward at speed v,. If
F = yy/(g'd,)""* > 1 the disturbance will spread within a

wedge of influence that spans the angle 2A, where
A =sin" (F,h. (6.2)

The “Froude” angle A and the edges of the wedge are
analogous to the Mach angle and Mach lines of super-
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Fi1G. 8. (a) The wedge of influence downstream of a point p in
a shallow flow with F > 1. The circles represent a spreading
disturbance generated at p, and A is the Mach angle (or Froude
angle) defined by the edges of the wedge. As the disturbance is
advected downstream, it may become distorted by nonuniformi-
ties in the velocity or depth. (b) Plan view showing a hydraulically
subcritical flow with constant shear s and depth d,, [see (6.3)], with
sw = —0.5,9/(gdy)"* = 0.9, and [from (6.4)], c_/(gd,)"* = —0.13.
(c) The along-channel component S of the local energy flux
vector [(E.2)] for c_. The value of F? — 1 is also shown and it
shows that S® changes signs where F crosses unity.
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sonic flow. The edges also define two of the three char-
acteristic curves of the steady flow, the third being the
steady streamlines. If the flow is nonuniform, as will
generally be the case under rotation, the cone of influ-
ence still takes on the angle given by (6.2) near p but
becomes distorted farther from p. The essential point is
that localized disturbances propagate downstream. If
F < 1, the disturbance circle spreads upstream and
downstream (and the governing equations are no
longer hyperbolic).

While the above description applies to a localized
disturbance, hydraulics is generally concerned (for rea-
sons already discussed) with long waves. These waves
satisfy the sidewall boundary conditions and therefore
have a cross-strait modal structure. Normal modes are
important because the control results from a choking
effect in which the entire flow is squeezed from below
and from the sides. The wave that is instrumental in the
control and blocking of the upstream flow must there-
fore sense the boundaries and satisfy the boundary con-
ditions. It is easy to find examples where such waves
can propagate upstream or remain stationary even
where a portion of the flow across the section in ques-
tion has F > 1. A simple example is the nonrotating
flow with uniform depth and shear:

v=v—sx, u=0, d=d,, (6.3)
confined to a channel that spans —w/2 < x < w/2. A
straightforward calculation show that this flow supports
long, free surface gravity waves with speeds
c. =v+ (gd, + sw4)'?, (6.4)
and thus the flow is hydraulically critical for v = (gd,, +
s*w?/4)"2_ Tt is also easy to find cases where the overall
flow is hydraulically subcritical (¢_ < 0 even though F
exceeds unity across part of the channel cross section.
An example of such a case (Figs. 8b, ¢) shows a band of
flow with F > 1 on the left side of the channel (facing
downstream) and F < 1 on the right.

The example of Fig. 8b may seem paradoxical. The
long wave, which has a normal mode structure extend-
ing all across the channel, clearly propagates upstream
even though localized disturbances must propagate
downstream in the F > 1 band along the left wall. In
addition, the wave is nondispersive and its energy must
propagate upstream at the phase speed. The situation
may be rendered less mysterious by noting that only the
net (width integrated) disturbance energy is required to
propagate upstream for the long wave. Positive energy
flux in the F > 1 region can be offset by a larger nega-
tive energy flux in the F < 1 region. Figure 8c shows the
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FI1G. 9. (top to bottom) Evolution with time of a localized dis-
turbance to a shallow, subcritical flow with constant vorticity. The
background flow is of the form (6.3), with sL/(gd,)"* = 0.1, w/L =
4, and v/(gd,)"* = 1.0, making c_/(gd,)"* = —0.02. Here L is the
scale of the initial disturbance to the free surface elevation: n//d,,
= 0.01 exp{—[2(x + L)L]*> + [(y — 15L)/L)?}. The contours are
surface elevation with dashes indicating negative values. Times
are nondimensionalized by L/(gd,)">.

local, along-channel, disturbance energy flux S©) =
gDV ) + %V(D(va} + g(n*)) (appendix E) plotted
across the channel; S© is positive where F > 1, as ex-
pected from our prior discussion. However, S is nega-
tive over the whole right-hand portion of the channel,
where F < 1.

Further insight into the role of localized distur-
bances, their ability to affect the upstream flow and
their relationship to normal modes can be gained from
two numerical simulations (Figs. 9 and 10). In the first
example, we pose an initially steady flow of the form
(6.3), with v, s, and d,, chosen to make ¢_ < 0 (subcriti-
cal flow) and such that F > 1 (< 1) to the left (right) of
the channel centerline x = 0 (Fig. 9). At¢ = 0, a local-
ized disturbance of small amplitude is introduced into
the flow on the left side (facing downstream) of the
channel, where F > 1. As predicted, the disturbance
initially spreads in the downstream direction (r = 1
frame of Fig. 9). Eventually, some of the disturbance
energy begins to leak into the right side of the channel,
where F < 1 (t = 2) and some of this energy moves

FIG. 10. Same as Fig. 9 except that v/(gd,)" has been increased
to 1.1, making the initial flow supercritical, c_/(gd,)"*> = 0.08.

upstream (¢ = 5). By this time, the disturbance has
become aware of both sidewalls and a normal mode
structure is becoming evident in the upstream portion.
The normal mode is characterized by phase lines
roughly perpendicular to the channel axis and extend-
ing all across the channel. As the disturbance evolves,
this structure becomes more evident (¢ = 20, 100). The
background flow is subcritical with respect to the long-
wave normal mode and this is reflected by propagation
upstream of the original site of the disturbance. Up-
stream propagation is allowed all across the channel
because disturbance energy can propagate upstream
along the right wall and leak into the left side of the
flow as it does so.

Figure 10 shows a similar example in which the initial
flow is supercritical ¢ > 0. Regions with F > 1 and
F <1 still exist on the left and right sides of the channel,
but the F > 1 is expanded slightly from the previous
case. The localized disturbance initially develops as be-
fore and a hint of upstream penetration of disturbance
energy is observed along the right wall at ¢ = 20. This is
not surprising; after all it is this region where F < 1.
However, as the normal mode structure emerges this
trend is reversed and the entire disturbance moves
downstream. Localized upstream propagation of infor-
mation is possible within the F' < 1 region, but only over
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Fi1G. 11. The vanishing of the layer thickness coupled with finite
velocity at the edges of the geostrophically balanced, inviscid flow
means that the local Froude number F is infinite at the edges and
that F will be > 1 along the edges (and perhaps over the whole
cross section). In order for this flow to support a stationary wave,
some region of F < 1 must exist to allow upstream local energy
flux.

the time scale required for a normal mode to form. This
scale is the time required for a free disturbance to
traverse the channel width, reflecting off the channel
walls several times, and therefore should equal 3 or 4
times w/(gd,)"?. This scale equals 12-16 dimensionless
time units of the simulation, about the time it takes for
the normal mode structure to emerge. Thereafter up-
stream propagation is controlled by the speed c_ of the
long normal mode, which in this case is >0.

These ideas also apply to a flow that is hydraulically
critical. The implied nondispersive stationary wave
must have zero group velocity and therefore zero net
energy flux. If the fluid depth goes to zero at the edges
(Fig. 11), and the velocity remains nonzero there, then
F formally approaches « at the edges. We would there-
fore expect to find bands of flow on either side of the
channel in which F > 1. Since the characteristic curves
of flow in these bands require downstream propagation
of disturbance energy, there must exist a region with
F <1 in which upstream propagation of disturbance
energy is permissible. The upstream flux of disturbance
energy in this region must exactly cancel the down-
stream flux in the F > 1 regions, else the nondispersive
wave cannot be stationary. These considerations sug-
gest that for the situation shown in Fig. 11, the local
Froude number F must pass through unity at some in-
terior point in order that the flow be hydraulically criti-
cal. Tt also follows that the flow must be hydraulically
supercritical if F = 1 all across the section, for then not
even local upstream propagation is possible.

The remarks made in this section may not apply if the
flow is unstable.
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7. Discussion

We can now recommend procedures by which an in-
vestigator can establish a critical condition or assess the
criticality of a given flow. If the flow is specified by an
analytical model, (3.12) can be used to formulate a criti-
cal condition in terms of the dependent variables.
Equation (3.16) then establishes a regularity (smooth-
ness) condition that restricts the location of the critical
section. If the model is question is numerical and the
flow is subject to the usual hydraulic approximations
(gradual variations along the channel and conservative)
then (4.4) or its less noise-sensitive sibling (4.8) can be
used to isolate the critical section(s). These formulas
are based on a description in which the cross section of
the flow is divided into N sections (streamtubes). The
optimal value of N based on our numerical simulations
and on the Faroe-Bank Channel flow (J. Girton 2005,
personal communication) appears to lie in the range
3-5. Application requires that a 2N X 2N matrix b [see
(4.5)] be calculated at a series of closely spaced sec-
tions. All results to this point have been derived by
generalizing Gill’s method of treating hydraulically
driven flows.

If the flow is observed and the observations have
been made at a moderate number of sections, then
there are two practical choices. A crude estimate of the
criticality may be made by fitting the actual bottom
topography to a parabola and calculating the parabolic
Froude number F), (Borenés and Lundberg 1986; writ-
ten out in our appendix C). The most problematic as-
pect of this approach is the estimation of the potential
vorticity ¢ of the flow (assumed constant in the theory),
particularly if the observations are limited to hydro-
graphic data. A more general approach is to calculate
the phase speeds of the long, normal modes of the flow
directly. We have laid out a procedure based on the
streamtube description of the flow. The phase speeds
are the eigenvalues of the matrix a~'(y,)b(y,) as de-
fined in section 5. The type of wave is indicated by its
cross-channel structure as reflected in the appropriate
eigenfunction.

Of course, no observed flow is going to conform per-
fectly to usual hydraulic approximations. Perhaps the
most serious departure for deep-ocean overflows is the
presence of turbulence and dissipation. As suggested by
the examples of appendix A, the extended Gill ap-
proach [as highlighted by (4.4)] continues to be valid in
the presence of certain types of dissipation and forcing,
provided that these effects enter the mathematical
problem algebraically (and not as derivatives of the de-
pendent variables). Turbulence and the closure prob-
lem present more formidable difficulties, but Stern
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(2004) has recently suggested a variational criterion for
a hydraulically controlled state in the underdetermined
system.

We have also made some remarks concerning the
significance of the local Froude number F in rotating
hydraulics. In regions where F > 1, the characteristic
curves of the steady flow indicate information propa-
gation solely in the downstream direction. However, we
have also noted that the presence of F > 1 across a
portion of a section does not in itself prevent the up-
stream propagation (or the arrest) of long normal
modes. We have also reconciled these two facts by not-
ing that the local energy fluxes for the normal mode are
directed downstream where F > 1, even though the net
energy flux is upstream. We have further argued that at
a critical section with realistic topography, where the
layer thickness vanishes on the sides, and where the
velocity remains finite on at least one side, that F must
=1 somewhere across the section. This feature may
well be more general, as suggested by Stern’s (1974)
criterion for control in a rectangular channel with posi-
tive v:

w/2 1 )
1—-F)dx=0.
J\w/zvzd( ) *

Again, F must = 1 somewhere in —w/2 < x < w/2. The
property can also be inferred from Stern’s (2004) criti-
cal condition for flow over a sloping bottom. [The re-
lationship following his (4.21) can be used to show that
the right-wall Froude number is <1, whereas the
Froude number on his left wall is infinite.]
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APPENDIX A

Functionals with Nonlocal Dependence in y

The dependence of the flow on the local values of the
geometric functions 4(y), w(y), and so on, is a conse-
quence of the assumptions of gradual variations in y
and of the lack of forcing and dissipation. There are
some flows that exhibit hydraulic behavior but are not
subject to these restrictions. The governing functionals
typically contain nonlocal dependence as expressed
through integrals in y. Two examples, both in nondi-
mensional form, are
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Equation (A.1), which is derived by Pratt (1986), gov-
erns the flow of a shallow layer of depth d(y) over an
obstacle of height A(y). Although conditions are as-
sumed to vary gradually in y the direction, the fluid
feels a bottom drag. Fixed parameters include the vol-
ume transport per unit width ¢ = vd and the drag pa-
rameter a. The presence of drag introduces an integra-
tion from an upstream location y = y, where the depth
and velocity v are known, to the section under consid-
eration. It can be shown independently that critical flow
and hydraulic transitions occur under the usual condi-
tion (v = d'?) for an inviscid, single-layer, one-
dimensional flow. Equation (A.2) governs the flow of a
rotating, shallow layer over a uniform ridge on an infi-
nite plane and can be derived from (5.8) of Baines and
Leonard (1989). This flow is conservative but differs
from traditional cases in that it varies rapidly in the
direction (y) normal to the ridge. The variables d and &
continue to represent depth and topographic height
while F, represents the (fixed) Froude number of the
flow far upstream of the ridge. It has been shown by
Baines and Leonard that critical flow and hydraulic
transitions again occur where v = d"2. In contrast to the
usual result for gradually varying flows, the stationary
waves in this case have zero wavelength (and are non-
dispersive in this limit).

The downstream integrations with respect to y in
(A.1) and (A.2) imply that d(y) depends on the up-
stream history of d and / and not just the local value of
h, as assumed by Gill (1977). Nevertheless, we may
derive the critical condition by following a train of
thought similar to what has been used above. Suppose
that the flow is subcritical or supercritical upstream and
that it evolves in the downstream direction, passing
through a critical section at y = y,.. By definition, a free
stationary disturbance 8d can exist at y = y. but not at
any y < y,. For the disturbance to be dynamically pos-
sible, it must not alter the value of the functional (G or
Ggp) at y = y.. For the case (A.1), it follows that
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and evaluation of this limit leads to the correct condi-
tion v = d"2. A key feature is that the disturbance has
zero amplitude in the interval y, = y < y.and therefore
has no effect on the value of the integral over that
interval. Application of the same principle to (A.2)
yields the same critical condition.

APPENDIX B
The Gill Approach Applied to a Continuous

System of Conservation Laws

Each case discussed thus far has involved a finite
number of degrees of freedom in the cross-stream di-

=0,

rection. Such systems arise when the fluid can be par-
titioned into regions or layers having certain uniform
properties such as density or potential vorticity. When
these properties vary continuously, it is necessary to
replace the index j by a continuously varying cross-
stream coordinate z. This coordinate could be spatial or
could represent a flow-based quantity such as density.
It is assumed that the problem can be formulated in
terms of a single variable, such as the streamfunction s
(v, z). The governing relationship may depend on the
derivatives and integrals of ¢y with respect to z, and thus
(3.10) is replaced with

A Y My
G l’!(Z, )’),5 ) (:)_Zz R (’)Z_M s fl'w’j(gl) d§17 fZ[lp(gZ)] d§2 d%l? e 7h()’)» e »B(lp.)’ s = O (Bl)
Boundary conditions applied at z = z,(y) and z =
z5(v), say, add additional constraints of the form
_ BN _
F {df[z,-(y), Vb hO), } =/ (=12 and j=1N,), (B:2)
where N, is the number of independent conditions at GlY.(2) + el(2), ... ;w(y), h(y),...]=C (B.3)
each boundary.
A hydraulically critical state #,(z) must support and
stationary disturbances and thus a perturbation () ~ _ ()
. ~ : (z;) + =0
e(z) (e < 1) must exist such that ¢.(z)+ ey(z) satisfies FoTbz) + 29z, - sw(), - 1= G
(B.1) and its boundary conditions (B.2) at a partic- (B.4)
ular y: It follows that
oG - Gl (z) + W(z),...;w se =G, .o sw(Y), ...
o (_) ) — tim GL) + 203 w() 1= Gl W o
’ P =i, &0 €
and similarly
) aF - FY) )+ el )y w(y),...]— FY Ny sw(y), ...
(BFUL,, = ( ; > iz = lim () * dz) W) 1= F(z) SUSTPS I
. W) ey, 50 e
G=12), ((=12,...,J). (B.6)

Equation (B.5) is a linear, homogeneous integral-
differential equation for ys(z), subject to the homoge-
neous, linear boundary conditions (B.6). Homogeneity

follows from the fact that ¢ = 0 is clearly a solution, and
this property is related to the requirement that the dis-
turbances are free [w(y), etc., are held fixed]. In gen-
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eral, the homogeneity of (B.8) and (B.6) implies that
nontrivial solutions exist only for special values of the
coefficients, which depend on {.(z). Any ¥.(z) that al-
lows nontrivial solutions is a critical state and thus the
critical condition is essentially a solvability condition.
Examples are presented by Killworth (1992 and 1995).

If the derivatives and integrals in (8G),,, =
[6GP),, ... = 0 are written using discrete approxima-
tions, then it should be possible to express the result in
the form

Ly ()i = 0, (B.7)
where L;({,) is a coefficient matrix and ; is the dis-

crete representation of JJ(Z) The solvability condition
for (B.5) is

detL, = 0,

and this is essentially the same as (3.12).

(B.8)

APPENDIX C

Parabolic Channel Solutions

In the present coordinate system, the layer depth and
velocity profiles for flow with uniform potential vortic-

2
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ity ¢ in a channel of parabolic cross section [see (6.5)]
are given by

1+ 2a . i
d(xd’) = q sinh(qmw) {Sll’lh[q (xl - x)]
— sinh[¢"%(x, — )]V + ¢ '(1 + 2a)
and
1+ 2« "
u(x,y) = 772 sinh(g"n) {cosh[g (x4 — x)]

— cosh[q¢"?(x; — x)]} + 2ax,

where x;(y) and x4(y) are the positions of the left and
right edges of the flow and w = x, — x; is the width of
the flow. See Borenids and Lundberg (1986) for more
details.

The associated semigeostrophic Froude number, as
originally written down by Borenids and Lundberg
(1986), is given by

Tz(x4 + x1)2

where T = tanh(q"?w/2). We have also derived the
long-wave speeds of the system and found

c. =0+ (T *(w—2Tq "»){w —2Tq '
+(T? = Dw — (1 +20)Ta g~ 2T,
(C2)

where ¥ = a(x, + x;). The Froude number (C.1) can
also be deduced from this expression.

APPENDIX D

Long-Wave Speeds for Homogeneous Deep
Overflow

The flow whose cross section is depicted in Fig. 3b is
now allowed to vary with time to the extent that the
positions of the cell walls and the (uniform in x) inter-
facial slope are functions of time. The velocity v = v,
for each cell remains uniform in x but is discontinuous
from one cell to the next. The velocity v, of the over-
lying fluid is assumed to be zero. Consider the y-
momentum equation for semigeostrophic flow, written
in terms of variables evaluated along a material contour

F = 5
P (w—2Tq P)w —2Tq "2 + (7 = Dlw — (1 + 20)Ta " 'q~ ]}

(C.1

lying an infinitesimal distance to the right of the left
edge x = x,,(y, t) of cell n:

9 {vz[xn(y, 0, 1]

%{v[xn(y, D+ %)+ 50 5 T ale(y. 0, t]}

=0, (D.1)

where m has been scaled by a depth scale H, x and y by
(gH)"?If, t by ', and v by (gH )"
The continuity equation for each cell is given by

94, 9Iw,A,)

+ b
ot Jdy

(D.2)
where A, is the cell area, approximately Y2(x,.,; —
x,)(Mps1 — A,eq + M, — h,). If the latter is used along

with the geostrophic relation v, = (1,,.1 — n,)/(X,141 —
x,), the continuity equation becomes approximated by

d
a [(xn+1 - xn)(nn+l - hn+1 + Nn — hn)]

d
+ 5[(’%“ - nn)(nnJrl - hn+1 + L hn)] =0.

(D.3)
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Boundary conditions are imposed by substituting
m = h[x,(y, O] and my.y = Alxy,q(y, 1)] into the n =
1 and n = N versions of (D.1) and (D.3). When com-
bined with the interior versions of the latter, one has 2N
equations for the N + 1 values of x,, and the N — 1
values of m,. After expansion of the differentiated
terms, this system can be written in the form

ap a, 0 0
0 a, aj 0
0 0 as; sz,
0 0 0 AN ANN+1
a =
ant11 An+12 0 0
0 Any22 AN423 0
0 0 an+33 OAN+34
0 0 0 dOonN DN N+1

with a,,, =1+ [2(M,11 = 0,)/(X, 1 — )1 Uppir =1
= 2Mp1 = M)/ (X1 — xn)z]’ Apnin = —[21(x01 —
x,)], Ay N+n+1 = [2/(x,01 — X)) AN+tnn = A
h(xn+1) +m, — h(xn) + (xn+1 - xn)(dh/dxn)]? AN+ npn+1
= 2[nn+l - h(xn+l) +m, - h(xn) - (xn+1 - xn)(dh/
dx, )]s anipnin = 206010 = X)), and Ay nia1 =
2(x,41 — X,),allforn =2,..., N — 1. In addition, a, ,
=1+ {2[m, = h(x)V (e — x1)*} = [2/(x, = x1)] (dh!
dxy), a;, = 1 = {2[n, — h(x)]/(x; — x)%, A N+2 =
[2/(x; = x))s any = 1 + 2[Alxyi1) — (v —
X)) anner = 1= R[A0Gey) = mal/ ey — x0)?) +
[2/(xns1 = xp)] (dhldxy ), anoy = = [21(xn11 = XN)],
any11 = = 2[n, = h(xy)], ant12 = 2[n, — h(xy) — (x
— x1) (dhldx,)), ani v = 200 = X1), ayny = —2[y
— h(xy) + (xni1 = xn) (dhldxp)], @iy ey = 2y —
h(xy)], and aynoy = 2(Xy11 — Xy). Also, a,,,, = 0 for
combinations of n and m other than those indicated.
The matrix b is just a nondimensional version of the
b defined in section 6 and has a similarly sparse form:
by, ={2[n, - R0 = x0)°) + (1 = {2[m, — h(x,))/
(2 = X0 )’W(dhldx,), by o = —{2[ny = h(x)]/(x, — x,)°),
biniz = 1 + {2[my = h(xy))/(x, — )%, byn =
2[hCeni1) = M v = x0)%) bvver = — 207y 1)
= v — x0) )+ U+ 2[Ry ) — /(v —
xn)’(dhldxy 1), byoy = 1 = 2[h(xn+1) — /(1
- xy)’, byiia = —2[m — h(x)|(dh/dx,), Dyyis =
—2[m, — h(x)](dhldx,), byinez = 2[2m, — h(xy) —
h(x)), bony = 2[n — h(xny)](dhdxy), boy iy =
2[ny — h(xp))(dhldxy.q), and bynon = =221y —
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a9y 9y
a—+b—=0, (D.4)
ot Jdy
where
_ T
‘Y - (xlax27 e 7xN’xN+l’ Moo v v s nN) )
and
ay N+2 0 0
ar n+2 ar N+3 0
0 a3 N+3 a3 N+4
0 0 0 anon
AN+1N+2 0 0
Anio N+2  AN+2 N+3
0 AN+3 N+3  ON+3 N+4
0 0 0 NN

h(xy+1) = h(xy)]. In addition, b,,,, = [2(n,1 — m,)
(xn+1 - xn)3]’ bn,n+1 = 7[2(nn+1 - nn)z/(xn+l - xn)3]’
bunin =121 = M)/(X01 — )7, bunini1 =1
+ 21 = M)t — X7, byinn = =21 —
M )(dhldx,), byypnir = =2y — mp)(dhldx,, ),
byinnin = —2[2m, = h(x,) = h(x, 4 1)), and Dy iy v
=2[2m,+1 — h(x,) — h(x,,,)], allforn =2,3,... N —
1. Also a,, ,, = 0 for combinations of n and m other than
those indicated.

If the flow consists of small-amplitude disturbances
vy'(y — ct) propagating on a background state 7, then
linearization of (B.3) about this state leads to

[b(y,) — ca(y,)]ly' = 0.

The possible wave speeds ¢ are the eigenvalues of
a !(y,)b(y,). The dimensional wave speeds are given
by (gH)"?c. The eigenvector vy, contains the departures
of X, X5, . .., My, Mo, - . . from the basic state, and it must
be kept in mind that the each interface elevation de-
parture, m,, is the difference between the elevation on
the moving edge x = x,, and the fixed basic-state eleva-
tion at the nearby mean value of x,,.

APPENDIX E

Energy Flux Vector

Consider the energy flux for a disturbance propagat-
ing on a general background flow v = V(y), u = 0, and
d = D(y) in a rotating channel of variable bottom el-
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evation A(y). Small amplitude disturbances v', ', and 1
with a long-wave character (v = u’ and d/dx > 9/dy)
obey the linear shallow-water equations for long waves:

o E1
fv_gax7 (a)
av’+V8v’+ '8V+ "= on E.1b
at Gy Ty T =gy, (EID)

and

am am oD

vy Y L B
a oy M =0 (Elo)

0x dy

Multiplication by Du’, Dv', and gD, respectively, and
summation of the products leads to the long-wave en-
ergy equation:

a(Dv?*+ gn’
E(T =-V-1|gDbvn

1
+5 V(Dv'? + gnz)}j + gDu'ni}

”de . ab
u'v dy gundy.

For a disturbance proportional to ¢’ “-? and with ¢
real, it can easily be shown from (E.1a) that v’ and n are
in phase in the y direction, whereas (E.1b) implies that
u' is out of phase with either. Therefore the cross-
channel energy flux gDu'm and the kinetic and poten-
tial energy conversion terms [u'v'D(dV/dy) and
g'u’'n(dD/dy)] will vanish after integration with respect
to y over a wavelength. The local, along-channel energy
flux is therefore

) — 4 l 12 2
§7=gDW'n) + 5 V(DY) +g(7),  (E2)

where () indicates an average with respect to y over a
wavelength.
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