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ABSTRACT

A linear theory for the treatment of complex ridges and archipelagos as porous media is presented. The theory
assumes a barotropic, wind-driven ocean with uniform depth. A porous ridge is formed by shrinking the me-
ridional dimensions of the islands and straits (or gaps) composing a meridionally aligned island chain to infin-
itesimal values. The circulation integrals associated with a generalization of the ‘‘island rule’’ for each island
then combine to form an ordinary differential equation. The solution determines the magnitude and structure of
the zonal flow through the ridge. This solution could supply a boundary condition for numerical or inverse
models that cannot resolve the topographic details of the ridge or archipelago. The physics of the throughflow
is explored using a series of examples. It is shown that a concentrated zonal flow approaching the ridge from
the east tends to spread meridionally before it passes through the ridge. If the spreading distance, which depends
on the characteristics of the ridge, is small in comparison with the meridional scale of the zonal flow, the flow
is unimpeded by the ridge. Otherwise the ridge may block or divert the flow. Paradoxically, ridges with high
porosity are just as effective at blocking as are ridges with low porosity. The theoretical results are verified to
a large extent by a barotropic numerical model.

1. Introduction

The Mid-Atlantic Ridge is a topographically complex
collection of bumps and gaps that partially obstructs
deep and intermediate zonal flows. A horizontal slice
through the ridge at 3500-m depth (Fig. 1) reveals its
geometric complexity and points out the difficulty in
properly resolving it in circulation models. The Central
Indian Ridge, the Ninety East Ridge, the East Pacific
Rise, the Indonesian Archipelago, and the Leeward and
Windward Islands are other examples of oceanograph-
ically important boundaries that impede but do not nec-
essarily block incident currents. An obvious but unre-
alized alternative to resolving the topographic details of
these features would be to treat them as smooth, porous
boundaries. The ability of fluid to leak through would
have to be tied to the geometrical properties of the ridge
or archipelago, such as the percentage of the topography
occupied by gaps to the lengths of the gaps and coef-
ficients of friction. Until now, no rational, dynamically
consistent way of making this connection has been sug-
gested. The purpose of this paper is to explore the dy-
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namical implications of such topographic features and
offer a possible approach.

Our ideas will be introduced within the context of a
simple, barotropic model in which the ridge extends to
the surface and all sidewalls are vertical. In this setting
the ridge is really an island chain or archipelago. Since
many of the ridges mentioned above run north and
south, we choose a meridionally aligned series of islands
(Fig. 2). The islands are elongated in the zonal direction
and are separated by straits, a choice motivated by the
orientation of the fracture zones in Fig. 1. The lengths
and widths of the gaps and islands may vary. The cir-
culation in the vicinity of the ridge is assumed to be
linear and to be forced by the wind through an Ekman
pumping velocity. The main problem is to determine
the extent to which the archipelago impedes any im-
pinging Sverdrup flow. We also discuss the case of
ridge-induced circulation within a layered, quasigeo-
strophic system.

The basic theory for the flow in the gaps is based on
circulation integrals and, in particular, on a frictionally
modified version of the ‘‘island rule’’ introduced by
Godfrey (1989). When written down for a chain of is-
lands, the circulation integrals form a set of difference
equations that converge to an ordinary differential equa-
tion in the limit of infinitesimal gap and island widths.
The solution to this equation gives the total meridional
transport to the east of the ridge. The flow through the
porous ridge is given by the divergence of this transport.
The coefficients in the equation depend on the local
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FIG. 1. A slice through the Mid-Atlantic Ridge at 3500-m depth. The shaded areas represent all
shallower topography. The figure is based on the Smith and Sandwell (1997) topography.

length of the ridge and its porosity, both of which are
smooth functions of the meridional variable y. The cir-
culation integrals assume that the infinitesimal islands
do not occupy common latitude bands and therefore the
theory is not applicable to zonally aligned barriers such
as the Indonesian Archipelago. Wajsowicz (1993a,b;
2002) has discussed extensions of the island rule to cases
in which the islands overlap zonally.

The underlying physics of the theory is based on ideas
involving circulation and vorticity. Flow in the infini-
tesimal straits is retarded by bottom friction, and this
introduces a source of circulation along the integration
paths where they pass through the straits. Circulation
sources along the same paths are also provided by the
wind stress (or, in the case of an abyssal flow, by dia-
pycnal mixing) and by meridional fluxes of planetary
vorticity associated with the Sverdrup circulation to the
east of the ridge. These ideas are amplified in a series
of examples designed to further the reader’s physical
intuition and to show how the Sverdrup flow is altered
by the ridge according to different factors, including
variable wind stress curl and porosity. Section 2 presents
the basic theory, including the development of the gov-
erning equation and its boundary conditions at the free
ends of the ridge. Analytical examples are presented in

section 3 along with verifying simulations from a baro-
tropic numerical model. Section 4 discusses the case of
a quasigeostrophic layer model. We show that the field
equation governing the flow through the ridge is essen-
tially the same as in the barotropic case. Section 5 sum-
marizes the findings.

2. Basic theory

We will consider flows governed by the linear baro-
tropic shallow water equations:

]u p t
1 f k 3 u 5 2= 1 diss(u) 1 and (2.1)1 2]t r rH

= · (uH ) 5 0, (2.2)

with f 5 f o 1 by and otherwise standard notation. The
depth H is considered constant. For the present it will
be assumed that the dissipation is entirely due to bottom
friction parameterized as

D ufdiss(u) 5 2 , (2.3)
H

where Df is a drag coefficient.
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FIG. 2. Definition sketch showing hypothetical island chain or ridge. The T and Q represent
volume transports.

Consider a meridional archipelago or ridge consisting
of rectangular islands of variable size separated by
straits of variable width (Fig. 2). Integration of the tan-
gential component of (2.1) counterclockwise about the
contour Gn and use of (2.2) and (2.3) yields

]
Hu · t ds 1 bd Tn n5]t Gn

t
5 · t ds 2 D u · t ds, (2.4)f5 5rG Gn n

where t and n are unit tangent and normal vectors to
Gn, dn is the meridional thickness of the island, and Tn

is the total meridional transport between the island and
the eastern basin boundary. If the flow is steady and
dissipation is negligible, the transport is given by the
‘‘island rule’’ (Godfrey 1989):

t
· t dsE r

Gn

T 5 . (2.5)n bdN

If the straits to the north and south of the island are
narrow, dissipation may not be negligible where Gn runs
through them. With free-slip conditions along the walls
the zonal velocity in each strait will become uniform as
its width Dn is reduced to zero. In this case, the con-
tribution to the dissipation integral in (2.4) is

D L Q Qf n n21 nD L (u 2 u ) 5 2 ,f n n21 n 1 2H D Dn21 n

where Qn is the transport in the nth strait. In many cases,
the above expression will represent the predominant
contribution of friction about the entire contour Gn. For
example, the zonal velocity in the straits may be much
larger than that in the interior. Or, the value of the drag
coefficient Df may be substantially greater than in the
interior. An example of the latter occurs when the layer
in question is imagined to be detached from the bottom
away from the archipelago, as might be the case for a
deep layer in the Atlantic Ocean that contacts the bottom
only at the Mid-Atlantic Ridge. The dynamics of such
a layer are clearly not barotropic, but the physical setting
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provides ample motivation for considering a locally en-
hanced value of Df .

Since, by continuity, Qn 5 Tn11 2 Tn, it is possible
to rewrite the dissipation integral as

D L Q Qf n n21 nD u · t ds ù 2f 6 1 2H D Dn21 nGN

D L T 2 T T 2 Tf n n11 n n n215 2 2 ,1 2H D Dn n21

(2.6)

and substitution into the steady version of (2.4) leads,
after some rearrangement, to

bd HD D Dn n n nT 5 1 1 1 T 2 Tn11 n n211 2D L D Df n n21 n21

HD tn2 · t ds. (2.7)6D L rf n Gn

One could iterate this map to find all Tn provided that
two consecutive values are known. In cases in which
the geometric parameters dn, Dn, and Ln vary abruptly
(and perhaps even randomly) with n, this is the approach
that must be used to find the transports and, from them,
the fluxes through the gaps. Alternatively, one could
assume that the geometry, and along with it the transport
Tn, vary gradually from one island to the next. Reducing
dn and Dn then leads to a differential form of the map,
as we now show.

Define a continuous transport function T(y) that takes
on the values Tj at the discrete values y 5 yj corre-
sponding to the central latitudes of the islands. It is
further assumed that Tj and yj vary sufficiently gradually
so that T(y) has smooth first and second derivatives. A
continuous L(y) can be defined similarly. Then, the dif-
ferences between neighboring Ti are related to the first
derivative of T(y) by

dT T 2 Tn11 nù and (2.8a)yn11/21 2dy 1
(d 1 d ) 1 Dn n11 n2

dT T 2 Tn n21ù , (2.8b)1 2dy 1
yn21/2 (d 1 d ) 1 Dn n21 n212

where yn11/2 5 ½[½(dn 1 dn11) 1 Dn] and yn21/2 5
½[½(dn 1 dn21) 1 Dn21] are the midpoints between yn

and yn11 and between yn and yn21. Substitution into (2.6)
leads to the estimate

D u · t dsf 6
Gn

1
(d 1 d ) 1 D n n11 nD L(y) 2 dTfù 2  1 2H D dyn y n11/2

1
(d 1 d ) 1 D n n21 n212 dT 

2 .1 2D dyn21 y n21/2

Next define the porosity function p(y) to fit through
the values of Dj/[½(dj 1 dj11) 1 Dj] at the midlatitudes
yj11/2. Note that p(y) is the local percentage of ridge
meridional coastline occupied by gaps. Thus

D u · t dsf 6
Gn

D L(y ) 1 dT 1 dTf nù 2 25 6[ ] [ ]H p(y) dy p(y) dyy yn11/2 n21/2

D L(y ) 1 dT 1 dTf n
5 2 25[ ] [ ]H p(y) dy p(y) dyd /2 2d /2n n

1 d 1 dT
1 y 2 dn11/2 n1 2[ ]2 dy p(y) dy d /2n

1 d 1 dT
2 y 1 d .n21/2 n1 2 6[ ]2 dy p(y) dy 2d /2n

The second step involves the approximation through
Taylor expansion of the values of

1 dT[ ]p(y) dy yn61/2

at y 5 6dn in terms of its values at the edges y 5
yn11/2.)

Shrinking the d and D to zero while maintaining their
relative proportions leads to

D L(y) d 1 dTfD u · t ds 5 2 df n6 [ ]H [1 2 p(y)] dy p(y) dyGn

21 O(d ). (2.9)n

If the steady version of (2.4) is now divided by dn,
the limit dn → 0 is taken, and (2.5) and (2.9) are used,
one obtains1

1 If the straits (rather than the islands) are each perfectly rectan-
gular, then it can be shown that (2.10) is replaced by

d L(y) dT [1 2 p(y)] [1 2 p(y)]
2 T 5 2 T (y). (2.10a)1[ ]dy p(y) dy d dS S
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d 1 dT [1 2 p(y)] [1 2 p(y)]
2 T 5 2 T (y),1[ ]dy p(y) dy d L(y) d L(y)S S

(2.10)

where dS 5 Df /(bH) is the characteristic thickness of
a standard Stommel western boundary layer and

6 (t /r) · t ds
Gn

T (y) 5 lim (2.11a)1 bdd →0 nn

is the transport to the east of an individual island pre-
dicted by the original island rule. If the wind stress curl
varies only with y, which is assumed henceforth, then

(x)L(y) 1 D (y) ] tET (y) 5 2 , (2.11b)1 [ ]b ]y r

where DE is the distance from the east coast of the porous
ridge to the eastern basin boundary. Note that Tl is just
the total Sverdrup transport across the line extending
from the position of the west edge of the ridge to the
eastern basin boundary (and assuming the ridge was
absent).

Any divergence in T(y) implies a flow through the
porous ridge. The velocity

1 ]T
u (y) 5 (2.12)R H ]y

is the zonal velocity through the ridge averaged over a
small interval in y that includes both gaps and solid
material. This velocity also provides a boundary con-
dition on the flow to the west of the ridge. The actual
velocity in the infinitesimally thin straits [equivalent to
the u arising in (2.6)] is given by uR/p. One measure of
the effect of the ridge is the difference between uR and
the zonal velocity that would occur in the absence of
the ridge. The latter is just the zonal Sverdrup velocity
us evaluated, say, at the west edge (x 5 2L) of the
ridge:

DE1 ] t
u (2L, y) 5 curl dx. (2.13)S E 1 2bH ]y r

2L

Equation (2.10) governs the y variation of transport
to the east of the porous ridge. For the case of constant
L and p, such variations clearly involve the length scale

1/2(d L)Sl 5 , (2.14)
1/2 1/2p (1 2 p)

which is proportional to the characteristic thickness
(dSL)1/2 of the diffusive boundary layer that occurs along
meridional boundaries in a Stommel circulation model
(Pedlosky 1968 and also see Faller 1960). It will be
shown that l is the meridional distance that an isolated
band of impinging zonal flow must spread before it can
pass through the ridge. Note that l is quite large for a
relatively impermeable ridge (p K 1) as well as a highly

porous ridge (p k 1). The former case is no surprise:
a nearly solid ridge should spread disturbances out over
very large meridional distances. The latter case is less
intuitive: one might think that a highly porous ridge
would allow the flow to pass through with little merid-
ional spreading. A careful examination of the steady
version of the circulation integral (2.4) for an individual
island shows that the real situation is more complicated.
For simplicity, assume that the strait widths and the
island widths are uniform (dn 5 d) and (Dn 5 D). In
the limit of vanishing d and D each of the terms in (2.4)
tends to zero. The terms involving the transport Tn and
the wind stress each go to zero in proportion to d, mean-
ing that the dissipation term must go to zero at the same
rate. The latter is proportional to (un 2 un21). Now
suppose that in the limit p → 1 the meridional spreading
scale remains finite, implying that d2T/dy2 remains fi-
nite. From the previous results it can easily be shown
that

2d T DH(u 2 u )n n215 .
2 2dy (d 1 D)

If d K D, which is the case for p → 1, then the above
relation suggests that (un 2 un21) goes to zero in pro-
portion to D, not d. In other words, the dissipation about
an individual island that is implied when the boundary
is very porous and when the meridional spreading scale
is finite is too large to balance the other terms in the
circulation integral. Essentially, a finite variation in dT/
dy implies an unacceptably large velocity difference be-
tween the north and south sides of the disproportionately
thin island.

Suppose that the north and south tips of the archi-
pelago, which lie at latitude yN and yS, are well separated
from any basin boundaries or other islands. Then bound-
ary conditions on T at y 5 yN and y 5 yS can be for-
mulated by evaluating (2.4) around the southernmost
and northernmost islands. Consider the south tip, as
defined by island n 5 1. The dissipation in the gap
between the strait immediately to the north can be cal-
culated as before, while the dissipation along the south-
ern boundary of the island is different. As discussed by
Pedlosky et al. (1997) and Pratt and Pedlosky (1998) a
diffusive boundary layer whose thickness increases to
the west can be expected (Fig. 3). The velocity in the
boundary layer is given in appendix A and the corre-
sponding contribution to the dissipation integral in (2.4)
is2 2(dSL1/p)1/2[bT1 2 (⅔L1 1 DE) curl(t/r) ]. WithyS

these representations of dissipation, the steady form of
(2.4) becomes

D Lt f 1
2bd T 5 2 · t ds 1 2 (T 2 T )1 1 2 16 r D H1G1

1/2
d L 2 tS 11 2 bT 2 L 1 D curl .1 1 E1 2 1 2 1 2[ ]p 3 r

y1

2 See, for example, Eq. (A.5) of Pratt and Pedlosky (1998).
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FIG. 3. Definition sketch for the diffusive boundary layer on the south face of the
southernmost island in the chain.

In the limit d1 → 0 (and D1 → 0), the first two terms
vanish, while the third can be related to the derivative
of T using (2.8). The remaining balance of terms re-
quires that the net dissipation (and therefore the net
tangential velocity) about the southern island be zero.
After a bit of further manipulation this requirement can
be written as

 2
L 1 D E]T p 3 t 

5 2 T 2 curl (y 5 y ).S 1/2 1 2]y (d Lp) b rS  
(2.15a)

A similar calculation about the island forming the north-
ern tip of the ridge yields

 2
L 1 D E]T p 3 t 

5 22 T 2 curl (y 5 y ).N 1/2 1 2]y (d Lp) b rS  
(2.15b)

3. Examples

We now present some simple examples designed to
provide insight into the influence of a porous ridge upon
a flow that is otherwise controlled by Sverdrup dynam-

ics. It will be useful to compare the porous ridge so-
lutions with the flow that would occur if the ridge were
solid. In this case the meridional transport TR to the east
of the ridge would be constant and would in many set-
tings be well approximated by the original island rule3

for the ridge as a whole. The correct formula is obtained
by replacing Gn in (2.5) with GR, the contour circling
the area occupied by the ridge plus the area to the east
of the ridge. Thus

6 (t /r) · t ds yN1GR
T ù 5 T (y) dy. (3.1)R E Ib(y 2 y ) y 2 yN S n S yS

The final expression shows that TR is just the merid-
ional average over the latitude band of the ridge of the
total Sverdrup transport TI(y) between the west edge of
the ridge and the eastern basin boundary (if one ima-

3 Pedlosky et al. (1997) tested the island rule in barotropic simu-
lations of wind driven flow around islands of different sizes and
shapes. One of the few cases of failure of the physical assumptions
underlying the island rule occurs when the meridional dimension of
the island is much smaller than its zonal dimension. In this case the
transport to the east of the island can still be predicted using a mod-
ified formula. The original island rule remains robust for other shapes,
provided the island is well separated from basin boundaries.
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FIG. 4. Schematic diagram showing the circulation around (a) a
solid ridge as opposed to (b) a porous ridge under conditions of
uniform wind stress curl.

gines that the ridge is absent). It is sometimes conve-
nient to think of TR as being composed of two parts,
the first being the meridional average of the Sverdrup
transport over the area to the east of the ridge and the
second being the meridional average over the footprint
of the ridge. As (2.11b) shows, variations in the pre-
specified function TI are due to variations in the wind
stress curl or in the dimension L 1 DE. Such variations
introduce divergence in the meridional Sverdrup trans-
port, giving rise to a zonal Sverdrup velocity toward (or
away from) the ridge. In the case of a solid ridge this
impinging flow would be diverted into a western bound-
ary layer on the east coast of the island. With a porous
ridge, some fluid might pass directly through the ridge
or be diverted into a leaky western boundary layer.

The examples will be worked out using nondimen-
sional versions of the governing equations with

˜ ˜ ˜L 5 L L( ỹ), (T, T ) 5 (T, T )/T ,o I I o

1/2 1/2u 5 ũT /H(d L ) , and y 5 ỹ(d L ) ,o s o S o

where Lo and To are typical values of L and TI. Intro-
ducing these new variables into (2.10) and its boundary
conditions (2.15a,b) and dropping the tilde notation
leads to

d 1 dT [1 2 p(y)] [1 2 p(y)]
2 T 5 2 T , (3.2)I[ ]dy p(y) dy L(y) L(y)

]T 2p
5 [T 2 a T ] (y 5 y ), and (3.3a)S 1 S]y Ïp

]T 2p
5 2 [T 2 a T ] (y 5 y ), (3.3b)N 1 N]ỹ Ïp

where

2
L 1 DN,S E3

a 5N,S L 1 DN,S E

and where (2.11b) has been used to write curl(t/r) in
terms of TI. In most applications (dSLo)1/2 will be much
less than the meridional extent of the ridge and therefore
ỹN 2 ỹS k 1 in our examples.

a. Constant wind stress curl with constant L and p

Consider the flow produced by a uniform wind stress
curl (i.e., TI 5 const) past a ridge with constant width
L and porosity p. The value of L can be set to unity
with no loss of generality. With negative wind stress
curl (TI 5 21) the uniform meridional Sverdrup ve-
locity is southward everywhere, with some flow im-
pinging on the north coast of the ridge (Fig. 4). Since
the meridional Sverdrup transport is nondivergent, there
is no zonal flow impinging on the ridge. The original
island rule (3.1) for a solid ridge would require that all
the impinging flow from the north be deflected east and

then southward past the northeast corner, where it would
form a Stommel western boundary layer (Fig. 4a). The
diversion of the flow would take place within a diffusive
boundary layer of the type discussed above. The total
transport to the east of the ridge would equal the sum
of the Sverdrup transport there and the Sverdrup trans-
port impinging on the northern boundary. The western
boundary layer would eventually round the southeast
corner and be reabsorbed into the Sverdrup regime to
the south of the ridge.

When the ridge is porous, the situation described above
occurs over the interior latitude range of the ridge (away
from the northern and southern boundaries). This follows
from the fact that T(y) 5 TI (521) is a solution to (3.2),
though not the boundary conditions (3.3a,b). Departures
from this ‘‘interior’’ solution occur within distance [p(1
2 p)]21/2 of the end points y 5 yS 5 0 and y 5 yN of
the ridge. As long as yN k [p(1 2 p)]21/2, the full solution
can be approximated as

1 2 a
T(y) 5 21 1

1/2Ïp(1 2 p)
1 1

1/22p
1/2 1/2 1/2 1/22p (12p) y p (12p) (y2y )N3 [e 1 e ]

1/2 1/22p (12p) yN1 O[e ]. (3.4)

The corresponding nondimensional zonal velocity
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FIG. 5. The perturbation zonal velocity just to the west of a porous
ridge with p 5 0.2 according to the theory (dashed curve) as cal-
culated by (3.5) and the numerical model (solid curve). The ridge is
located between y 5 0.2 and y 5 0.8 (indicated on the figure by the
squares). The curves have been extended to show the zonal velocity
to the north and south of the ridge tips. The theoretical velocity for
this case is given by the equations appearing in appendix A. The
velocities have been nondimensionalized by the meridional Sverdrup
velocity to the east of the ridge.

through the ridge is given by the nondimensional ver-
sion of (2.12) as

1/2 1/2dT 2(1 2 a)p (1 2 p)
u (y) 5 5R

1/2dy Ïp(1 2 p)
1 1

1/22p
1/2 1/2 1/2 1/22p (12p) y p (12p) (y2y )N3 [e 2 e ]

1/2 1/22p (12p) yN1 O[e ]. (3.5)

To explain the departure of the solution from the in-
terior solution T 5 TI near the tips of the ridge, it is
helpful to note that the situation depicted in Fig. 4 would
violate the boundary condition at y 5 yN, which requires
that the net dissipation (and therefore the net zonal ve-
locity) about the northernmost ‘‘island’’ be zero. The
deflection of all of the Sverdrup transport impinging on
the north face of the ridge to the east would require an
eastward flow in the first gap to the south of y 5 yN.
This flow would feed into the western boundary layer
on the ridge and increase its transport above the value
predicted by the island rule. In reality it can be shown
that the flow impinging on the northern boundary splits
and flows eastward and westward about a stagnation
point (marked with an X in Fig. 4b). The circulation
can be calculated using the equations describing the
diffusive boundary layer on the north and south coasts
of the ridge (see appendix A). The average zonal ve-
locity along the northern boundary is still eastward and
an eastward gap flow is required to bring the net dis-
sipation to zero. Eastward flows in the gaps farther to
the south are also set up, and the associated transport
is added to the Stommel western boundary layer, raising
its transport to the required value. A similar effect oc-
curs near y 5 yS.

A shallow-water model has been run using a constant
wind stress curl to the east of the western edge of the
ridge for comparison with the theory. The ridge is com-
posed of a series of thin but finite rectangular islands.
The model equations and solution procedure are pre-
sented in appendix B. The difference in the zonal ve-
locity at a position just to the west of the ridge and the
zonal velocity at the same position but with no ridge is
shown by a solid line in Fig. 5. The general character
of the solution is very similar to that predicted by the
linear theory4 (dashed line in Fig. 5). The zonal velocity
through the ridge is zero except near the ridge tips. Just
beyond the tips, the zonal velocity is determined in the-
ory by the solutions (appendix A) for the diffusive
boundary layers that run along the north and south faces
of the tips. The solutions have been used to extend the
analytical velocity profile in Fig. 5 beyond the ridge
tips. The results show strong, alternating zonal flows in
these areas. (The extreme values of the theoretical zonal

4 The shallow-water model uses a different nondimensionalization
than the analytic solutions in the paper. The theory is converted into
the model nondimensional scaling when they are compared directly.

flows are approximately 62 and are not shown here in
order to reveal the boundary layers extending along the
ridge system.) These features also appear in the nu-
merical simulation but with moderately reduced ampli-
tude. The most likely explanation for this discrepancy
is that the analytical theory predicts discontinuities in
zonal velocity at y 5 0 and y 5 yN, a consequence of
the inability of the theory to take corner effects into
consideration. In reality, smoothing of the velocity pro-
file accompanied by diminished velocity extremes
should be expected, and this is what seems to occur in
the numerical results.

b. Linear variation in wind stress curl with constant
p and L

In the previous case, the meridional Sverdrup trans-
port to the east of the ridge is divergence free and thus
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FIG. 6. Schematic representation of the theoretical circulation
around a porous ridge in the presence of a wind stress curl that varies
linearly in y.

no flow through the ridge is forced, at least away from
the north and south tips. Now consider the case of a
linearly varying wind stress curl:

y
T 5 2 . (3.6)l yN

The meridional Sverdrup transport to the east of the
island is now divergent, implying a zonal velocity to-
wards the ridge. The solution T 5 TI 5 2y/yN is valid
for the interior latitude range of the ridge and the cor-
responding flow through the ridge is given by

u 5 dT /dy 5 21/y .R I n (3.7)

This value is identical to the zonal Sverdrup velocity
uS(2L, y) that would exist at x 5 2L if the ridge was
absent. The zonal velocity in each infinitesimal strait
uR/p is also uniform. Although the dissipation along the
north and south faces of each island is finite, the two
contributions cancel in the integration around the island.
Therefore the original island rule (applied about each
island) continues to predict the correct transport to the
east of the ridge interior. The interior ridge has no effect
on the zonal velocity of the flow, even though fluid
parcels passing through feel some dissipation.

The full solution for this case is given by

y 1 1/2 1/22p (12p) yT 5 2 2 e
yN 2p

1/2 1/2y p (1 2 p) 1n [ ]Ïp

2p
21y 1 (1 2 a)N Ïp 1/2 1/2p (12p) (y2y ) 2yN N1 e 1 O(e ).

2p
1/2 1/2p (1 2 p) 1

Ïp
(3.8)

As before, departures from the solution T 5 TI occur
only near the north and south tips (Fig. 6). Near the
north tip the impinging meridional Sverdrup flow splits
and flows eastward and westward about a stagnation
point. The physics is similar to that discussed in con-
nection with case (a) (Fig. 4b). At the south tip of the
ridge the solution looks a little different because of the
fact that the meridional Sverdrup transport at this lati-
tude is zero.

The shallow-water model has been run using a linear
variation in the wind stress curl to the east of the porous
ridge for comparison with the theory. The streamfunc-
tion over the entire model domain is shown in Fig. 7.
The stagnation point on the northernmost island is ev-
ident, as is the narrow southward flowing boundary lay-
er along the eastern flank of the ridge. These pertur-
bations to the wind-driven flow in the absence of the
ridge are consistent with the schematic diagram based
on the theory in Fig. 6. It is also evident from the stream-
line patterns in Fig. 7 that, even though the ridge is 80%
solid, the zonal transport is essentially the same as
would be found in the absence of the ridge.

The difference in the zonal velocity at the western
edge of the ridge x 5 0.4 between the case with the
porous ridge and a case with no ridge is shown in Fig.
8. (solid line). The general character of the solution is
very similar to that predicted by the theory (dashed
line). The values have been normalized by the magni-
tude of the Sverdrup zonal velocity that would exist at
the same location if the ridge were absent. The theo-
retical velocity profiles have again been extended slight-
ly beyond the tips of the ridge using the solution for
the diffusive boundary layers. As before, the pertur-
bations are confined near the ends of the ridge, with
counterflowing zonal jets just to the north and south of
the islands. Meridional smoothing of the discontinuity
in the zonal velocity predicted by the theory is again
found in the numerical solutions.

The end effects of the ridge decay toward the middle
of the ridge with meridional scale l 5 [(dsL)/p(1 2
p)]1/2. This length scale dependency is tested in a series
of numerical model runs in which the porosity p is var-
ied between 0.1 and 0.8. In order to maintain numerical
accuracy, the boundary layer width ds has been in-
creased from 0.005 to 0.01 in the case of p 5 0.8 so
that the width of the gaps remains close to this boundary
layer width. (The theory assumes Dn K ds.) In this case,
the width of the ridge L has been reduced by 50% such
that the product dsL is the same for all experiments.
The meridional scale over which the perturbation in the
zonal flow extends has been derived from the numerical
model by calculating the meridional distance over which
the eastward zonal velocity decreases to 1/e of its max-
imum value near the northern tip of the ridge. The results
are shown in Fig. 9. The general trend of the influence
of the north tip of the ridge extending farther southward
along the ridge as the porosity decreases is reproduced
well by the model. This length scale also increases for
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FIG. 7. Transport streamfunction from the shallow-water model for a calculation with a linear
variation in the wind stress curl between the tips of the porous ridge. The individual islands
composing the ridge are indicated by the white rectangles between y 5 0.2 and y 5 0.8.

large porosity, but it must be kept in mind that, due to
numerical constraints, the assumption Dn K ds is not
well satisfied for this case.

c. Sinusoidal variation in wind stress curl

In the previous example the porous ridge fails to im-
pede the zonal Sverdrup flow impinging from the east
(at least away from the ridge tips). The key element is
that the impinging flow is uniform with respect to y and
the corresponding uniform flow in the gaps yields zero
net dissipation about any infinitesimal island. The sim-
plest way to explore departures from this picture is to
consider a sinusoidal variation in wind stress curl:

T 5 sin(2py/l).I (3.9)

For this case the zonal Sverdrup velocity produced at
the position of the western edge of the ridge would, in
the absence of the ridge, be

2p cos(2py/l)
u (2L, y) 5 .S l

The interior solution to (3.2) is given by

p(1 2 p) 2py
T(y) 5 sin . (3.10)1 2l2(2p)

1 p(1 2 p)
2[ ]l

(To this solution must be added boundary layer correc-

tions to satisfy the boundary conditions at y 5 0 and y
5 yN.) The corresponding zonal velocity through the
ridge is given, relative to the corresponding Sverdrup
velocity, by the constant factor

u (y) 1R 5
u (2L, y) 2S (2p)

1 1
2[ ]l p(1 2 p)

1
5 , 1, (3.11)

2l
2(2p) 1 11 2[ ]l*

where l is the length scale given by (2.14) and l* is
the meridional scale of the zonal Sverdrup flow. The
Sverdrup transport is impeded when the l* is the same
order as l or smaller than l. Strong impedance tends to
occur when the ridge is very nearly solid (p K 1) or
the ridge is very porous (1 2 p K 1). Note that the
interior solution for an arbitrary TI(y) can be constructed
by combining solutions of the form (3.10) as a Fourier
integral over l.

An example of the constant impedance all along the
ridge interior is demonstrated using the numerical model
for a case of sinusoidal wind stress curl, as in (3.9),
with (l/l) 5 0.15. The zonal velocity in the model in
the absence of the ridge is indicated in Fig. 10 by the
dashed line. With a porous ridge, the theory predicts a
reduction in the zonal velocity by a uniform factor, given
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FIG. 8. Comparison between the theoretical and numerical velocity
profiles measured along a position just to the west of the porous ridge
under conditions simulated in Fig. 7. The dashed curve gives the
difference between the theoretical zonal velocity [(3.8)] and the (con-
stant) Sverdrup zonal velocity. The solid curve gives the same quan-
tity based on the numerical solution. In both cases the results are
normalized by the zonal Sverdrup velocity at the west edge of the
ridge. The profiles have been extended beyond the north and south
tips of the ridge (indicated by squares) as before.

by (3.11), of 0.53. The ratio of the zonal velocity with
the ridge to the zonal velocity in the absence of the
ridge from the numerical model at x 5 0.4 is shown in
Fig. 10 (the ratio is not plotted in regions where the
zonal velocity is small or outside the latitude range of
the ridge). The ratio is nearly uniform and reasonably
close to the theoretical prediction of 0.53.

d. Isolated wind stress curl

If the Sverdrup flow impinging from the east is iso-
lated, the effect of the ridge is to smooth out the through-
flow. This behavior can be seen by considering a wind
stress curl that is isolated within a latitude band | y | ,
yo:

21 (y . y )o
T 5 2y/y ( |y | # y ) (3.12)l o o
1 (y , 2y ). o

In the absence of the ridge the zonal Sverdrup velocity
that would occur at the position of the west edge of the
ridge is 21/yo within | y | , yo and is zero otherwise
(Fig. 11). If the ridge extends far to the north and south
of the band | y | , yo, then the solution to (3.2), which
has continuous TI and dTI/dy across y 5 6yN, is

1/2 1/21/2 1/2 2p (12p) (y2y )oa sinh[p (1 2 p) y ]e 2 1o

(y . y )o 1/2 1/2a sinh[p (1 2 p) y] 2 y/yoT 5l ( |y | # y )o

1/2 1/21/2 1/2 p (12p) (y1y )o2a sinh[p (1 2 p) y ]e 1 1o
(y , 2y ), o

(3.13)

where

1
a 5 .

1/2 1/2 1/2 1/2 1/2 1/2y p (1 2 p) {sinh[p (1 2 p) y ] 1 cosh[p (1 2 p) y ]}o o o

The case of isolated wind stress curl is also well repro-
duced by the numerical model. The zonal velocity just
to the west of the ridge is shown in Fig. 11 for both the
numerical model and the theory. The wind stress curl
is confined to the east of the ridge in the latitude band
y 5 0.4 to y 5 0.6 (indicated on the figure by the dotted
lines). The presence of the porous ridge spreads this
zonal flow meridionally such that its influence west of
the ridge can be felt across the entire latitude range of
the ridge. As a result, the maximum zonal velocity is
decreased to approximately 80% of that found in the

absence of the ridge. The total flux of the smoothed flow
is the same as if the ridge was not present.

e. Variable L(y) and p(y)

To this point we have treated the gap length function
L(y) and the porosity p(y) as constant. In reality, these
functions will vary about mean values, perhaps in a
highly irregular way. In order to investigate the effect
of such variations on the otherwise uniform flow
through the porous boundary, we consider several spe-
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FIG. 9. Width of the boundary layer near the northern tip of the
porous ridge as a function of the porosity. The solid line is [dSL/p(1
2 p)]1/2 from (2.14). The boundary layer widths diagnosed from a
series of shallow-water model calculations in which the porosity is
varied are indicated by the circles.

cial cases. We further restrict attention to the ‘‘interior’’
solution (away from the ends of the ridge) by making
the ridge infinitely long and assume that the wind stress
curl varies linearly with y: TI 5 2y.

First note that, if p is constant, T 5 TI 5 2y is the
interior solution to (3.2) for arbitrary L(y). In this case
the flow through the ridge is uniform and the net dis-
sipation around each island is zero, despite the fact that
the islands vary in length.

A more interesting situation occurs when L is fixed
and p is allowed to vary. First consider the case in which
p(y) changes abruptly from one value to another:

p 1 dp (y . 0)
p(y) 5 (3.14)5p (y , 0).

The interior solution is required to satisfy (3.2) away
from y 5 0, to be continuous across y 5 0, and to satisfy
the additional matching condition

1 dT 1 dT
5 , (3.15)) )p 1 dp dy p dy1 2y50 y50

obtained by integrating (3.2) across y 5 0. The velocity
through the ridge associated with the corresponding so-
lution is given by

1/21/2 2[(p1dp)(12p2dp)] y /Lu (y) [2(p 1 dp)(1 2 p 2 dp)] e (y . 0)R 5 21 1 g (3.16)P 1/2 1/21/2 2p (12p ) y /L5u (2L) [p(1 2 p )] e (y , 0),S

where

21 21p 2 (p 1 dp)
g 5 .p 1/2 1/2(1 2 p ) (1 2 p 2 dp)

11/2 1/2p (p 1 dp)

As shown in Fig. 12a, the Sverdrup velocity through
the ridge is enhanced slightly to the north of the dis-
continuity and retarded slightly to the south. This sit-
uation might be thought of as arising in the following
way. Suppose that the zonal transport through the ridge
was uniform and equal to the zonal Sverdrup transport.
Then the actual westward zonal velocity uR/p in each
strait would be greater in the south than to the north
owing to the fact that the porosity (and therefore the
relative width of each infinitesimal strait) is lower there.
This situation would yield a net negative circulation and
therefore a net negative dissipation around the island
centered at y 5 0. According to (2.4) this dissipation
would give rise to a northward anomaly in the transport
T to the east of the ridge. This transport would pass
through and add to the zonal Sverdrup transport to the
north of y 5 0, while the zonal transport to the south
would be diminished. As suggested in Fig. 12a, some-
thing close to this occurs. Note that the discontinuity in

uR becomes smoothed in the uR/p field (Fig. 12b). In
fact, the matching condition (3.15) is simply a statement
of continuity of this velocity component. It is also in-
teresting to note that the westward strait velocity is ac-
tually weaker in the north than the south.

If the porosity varies rapidly in y about some mean
value , then the last example suggests that the through-p
flow should consist of variations in y about the zonal
Sverdrup velocity. Let

p 5 p 1 «p̂(y/«), (3.17)

with « K 1 so that (3.2) becomes

2d T p̂9 dT (p 1 «p̂)(1 2 p 2 «p̂)
2 2

2dy p 1 «p̂ dy L

3 (T 2 T ) 5 0. (3.18)l

A numerical solution to (3.18) for the case TI 5 2y/
yN, 5 0.5, p̂ 5 a sin(y/«), « 5 0.2, and yN 5 20 (solidp
curve in Fig. 13) shows that uR contains rapid fluctu-
ations on the same scale of the fluctuations of the po-
rosity. A smoothed version of the solution would show
the usual Sverdrup interior flow uR 5 21/yN as well as
boundary layers near y 5 0 and y 5 yN.

In order to explore the dynamics of the fluctuations
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FIG. 10. The zonal velocity (dashed line) from the shallow-water
model with a sinusoidal wind stress curl [see (3.9)] and no ridge.
The solid line is the ratio of the zonal velocity for a case with a
porous ridge located between y 5 0.2 and 0.8 [ p 5 0.2, (l/l) 5 0.15]
and the case with no ridge. (The ratio is not plotted in regions where
the zonal velocity is near zero.) The ratio is nearly constant, and close
to the theoretical value of 0.53 for these parameters.

FIG. 11. The zonal velocity to the west of the porous ridge (located
between y 5 0.2 and y 5 0.8) for a case with localized wind stress
curl between y 5 0.4 and y 5 0.6 (indicated by the dotted lines),
normalized by the zonal Sverdrup velocity in the absence of any
islands. Solid line: shallow-water model; dashed line: theory [from
(3.13)].

more thoroughly, we attempt to find an asymptotic so-
lution to (3.18) for the interior flow only. By trial and
error, it can be shown that the appropriate expansion
takes the form

y y
3 ˆT 5 2 1 « T .1 2y «N

Since the nondimensional distance yN is typically large,
1/yN is regarded as O(«). Substitution into (3.18) leads
to the lowest-order problem

1
T̂ 0 1 p̂9 5 0. (3.19)

«y pN

Both terms are associated with dissipation [the first two
terms in (3.18)], and thus the lowest-order balance in-
volves a requirement of net zero dissipation about each
island. The solution to (3.19) can be written as

y /«21 y
T̂ 5 p̂(h) dh 1 c 1 c .E 1 2«y p «N

For the interior region (away from y 5 0 and y 5 yN)
we choose c1 5 c2 5 0 since there is no reason to expect
a linearly growing or constant offset as a response to
the fluctuating porosity. The full zonal velocity asso-
ciated with this solution is given by

21u (y) 2(y p ) [1 1 «p̂(h)] pR N5 5 . (3.20)
21u (2L, y) 2(y ) pS N

As with the example involving the discontinuity in p,
the westward Sverdrup velocity through the ridge is
enhanced where p is higher than average (p̂ . 0) and
retarded where p is lower than average. Note that the
velocity in the straits uR/p is constant. When applied
with the settings used to produce the numerical solution
(Fig. 13), (3.20) yields an approximation (the dashed
curve) that is very close.
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FIG. 12. The zonal velocity produced at the west edge of the ridge
by a discontinuity in porosity. The porosity changes from a constant
value p 5 0.5 to p 5 0.75 at y 5 0. (a) The microscopically averaged
velocity shows a discontinuity, whereas (b) the actual velocity in the
straits is continuous. Note that y has been scaled by (dSL)1/2.

FIG. 13. The dashed curve gives the theoretical zonal velocity [see
(3.20)] at the west edge of the ridge for the interior latitude band of
the ridge when the porosity varies rapidly [p 5 0.5 1 0.1 sin(y/0.2)]
and when the wind stress curl varies linearly in y. The solid curve
corresponds to a numerical solution of (3.18) that satisfies the bound-
ary conditions at the north and south tips of the ridge (y 5 0 and y
5 yN 5 20). Note that y has been scaled by (dSL)1/2 L 5 0.5 and a
5 0.95.4. Formulation for a multilayer, quasigeostrophic

system

If the layer in question is part of a steady, multilayer,
quasigeostrophic model, then it is not too difficult to
show that flow through the ridge interior remains gov-
erned by (3.2) with a few minor modifications. One must
continue to assume that the islands and straits within
the ridge are rectangular and that the sidewalls are ver-
tical over the depth of contact with the layer in question.
The distribution of gaps and islands, and therefore the
porosity and ridge width, may change from one layer
to the next.

Consider layer j, which has undisturbed thickness D ( j )

and actual thickness D ( j ) 1 d ( j )(x, y). Under the as-
sumption of quasigeostrophy, d ( j ) K D ( j ) , a feature cru-
cial to what happens next. As shown by Pedlosky et al.
[(1997), Eq. (A.3)] the linearized circulation integral
analogous to our (2.4) for island n and within layer j is

( j ) ( j ) ( j ) ( j )bd T 5 [F 2 D u ] · t ds. (4.1)n n f6
( j)Gn

Here F ( j ) is a generalized momentum forcing term anal-
ogous to t/r in the previous case. This forcing would
include the vertical transport of horizontal momentum
resulting from entrainment of fluid from the overlying
and underlying layer. If dissipation about term oc-( j )Gn

curs primarily within the straits, then

( j )D u · t dsf6
( j)Gn

0 0

( j ) ( j )ù D u dx 2 u dxf E n21 E n[ ]( j) ( j)2L 2Ln21 n
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0 ( j )Qn215 D dxf E ( j ) ( j ) ( j )5 [D 1 d ]D( j) n21 n212Ln21

0 ( j )Qn2 dxE ( j ) ( j ) ( j ) 6[D 1 d ]D( j) n n2Ln

( j ) ( j )Q Qn21 n( j )ù D L 2f n ( j ) ( j ) ( j ) ( j )[ ]D D D Dn21 n

0 ( j ) ( j ) ( j ) ( j )Q d Q dn21 n21 n n2 D 2 dx .f E ( j ) ( j ) ( j ) ( j ) ( j ) ( j )5 6[ ]D D D D D D( j) n21 n2Ln

The continuity equation has been used to derive the
second line and, in doing so, it has been acknowledged
that the layer depth may vary along the length of each
strait. The layer depth may also vary from strait to
strait. Both types of variations are contained in the
second integral on the final line but this term is smaller
than the first term by a factor d ( j ) /D ( j ) K 1. Neglect
of this term means that the dissipation integral is iden-
tical to the result (2.6) from the barotropic case. The
steps leading to (2.10) are the same as before, and
therefore the transport to the east of the ridge within
layer j is given by

( j ) ( j )d 1 dT [1 2 p (y)]
( j )2 T

( j ) ( j )[ ]dy p (y) dy d L (y)S

( j )[1 2 p (y)]
( j )5 2 T (y), (4.2)l( j )d L (y)S

where

( j )6 F · t ds
( j)Gn( j )T (y) 5 lim .l ( j )( j) bdd →0 nn

It is not the case, however, that the boundary conditions
for (4.2) will remain the same as in the barotropic case.
If the north or south end of the ridge is free, the bound-
ary condition will depend on the dissipation along that
edge. The frictional boundary layer that exists there may
be more complicated than the diffusive layer considered
in the barotropic model. The precise scaling will depend
on the relative size of the various internal deformation
radii and other length scales that arise in the layer model.
The correct condition will depend on the model in ques-
tion.

5. Discussion

We have developed a porous-medium theory for baro-
tropic flow through complex ridges and archipelagos.
The governing field equation also is valid for quasi-
geostrophic, layered flow (though the boundary con-
ditions may differ). The dynamical underpinning of the
theory is the circulation integral over a ‘‘Godfrey’’ con-
tour for each of the bumps or islands that compose the

ridge. Each integral can be expressed as a difference
equation for the meridional transport to the east of the
boundary. When the meridional dimensions of the is-
lands and separating gaps vary gradually and their val-
ues are made infinitesimal, the difference equations re-
duce to a second-order differential equation (2.10) for
the meridional transport. The divergence of the transport
gives the zonal transport through the ridge as a function
of its porosity p(y) and zonal width L(y). The theory
assumes that the gaps separating the islands are orien-
tated zonally, in the manner of fracture zones in the
Mid-Atlantic Ridge, that the primary source of dissi-
pation in the circulation integral is bottom friction acting
in the gaps, that the flow is steady and linear, and that
the flow in each gap becomes uniform as the gap thick-
ness approaches zero.

Analytical examples with verifying numerical simu-
lations have yielded some interesting and unintuitive
results concerning the physics of flow through the ridge.
For example, it can be shown that the throughflow is
associated with the natural length scale l 5 [dSL/p(1 2
p)]1/2, a measure of the meridional extent over which
irregularities in the impinging flow are spread as this
flow is absorbed. Although it is not surprising that l
should tend toward infinity for a solid ridge (p → 0),
it is curious that the same behavior occurs when the
ridge becomes highly porous (p → 1). As explained in
section 2, the latter result stems from the dispropor-
tionally high dissipation that would result around each
island if the islands were thin in comparison with the
gap widths and l remained finite. (This behavior does
occur in the numerical model, though technical prob-
lems make it difficult to explore p values more than
about 0.8.)

If the ridge porosity is uniform the ability of the ridge
to block or divert an impinging zonal flow with merid-
ional scale l depends on l/l. If the impinging flow is
broad (l/l K 1) then it will be unimpeded by the ridge.
As was shown by the example in section 3b zonal ve-
locity at the west edge of the ridge is the same as if the
ridge were absent, though other effects occur within a
distance l of the ends of the ridge. If l/l $ O(1) the
flow must spread meridionally before it can pass through
the obstacle (section 3d). If the impinging zonal flow
consists of alternating bands (section 3c), the spreading
effect leads to cancellation of the eastward and westward
flows. For the case of very narrow bands (l/l k 1) the
cancellation is nearly complete and very little fluid pass-
es through the ridge.

The effect of variable porosity introduces additional
length scales, and when these are small in comparison
with l and l the throughflow can described by an as-
ymptotic theory (section 3e). The value of p is assumed
to undergo weak but rapid fluctuations about a mean.
A solution for sinusoidal fluctuations and a uniform
impinging flow shows throughflow enhancement in ar-
eas of higher p and impedance in regions of low p. It
is not known whether the limit of rapid but smooth
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fluctuations in p reflects the physics of cases for which
the spatial dimensions of the topography vary abruptly
from one ‘‘island’’ or gap to the next. As suggested by
Fig. 1, abrupt and perhaps random variations may be
more realistic than the smooth variations assumed in the
derivation of our governing differential equation. How-
ever, it should be possible to explore the dynamics as-
sociated with abrupt variations by iterating (2.7).

Another allowance one could hope to add is for large
variations in layer thickness through the gaps in the
ridge. Such variations occur when fluid spills from one
basin to the next, giving rise to hydraulic effects and
form drag.
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APPENDIX A

The Boundary Layers on the North and South
Coasts of the Ridge

Under the assumption that the wind stress curl is uni-
form in x, analytical solutions for the velocity in the
diffusive boundary layers along the north and south
coasts of the porous ridge can be found [see Pedlosky
et al. (1997), Eq. (2.34)]. The corresponding expression
for the zonal velocity in the boundary layer on the south
edge is

 ] t t
2(x 2 D )y curl D curlE N E1 2 1 2]y r r y50 y50u yN 2y /(4xd )S5 1 T(0) 2 e 

1/2|u | (2pxd )S St t
(L 1 D ) curl (L 1 D ) curlE E ) 1 2 ) ) 1 2 )r r

y yN N 

t
1/2y L curlN 1 2 1/2r

y50 2y y 2x 2y /(4xd )S1 erfc 2 2 e (2L # x , 0, y # 0),
1/2 1/25 1 2 6[ ](d L) 2(xd ) pS St

(L 1 D ) curlE ) 1 2 )r
yN

where T*(y) is the dimensional transport to the east of
the porous boundary,

T(y) 5 T*(y)b/[(L 1 D ) |curl(t /r) | ]E yN

is the dimensionless counterpart (scaled with the total
Sverdrup transport between the northwest corner of the
ridge and the eastern basin boundary), and all other
quantities may be regarded as dimensional. The scaling
factor | uS | is the magnitude of the Sverdrup velocity
at the west edge of the island that would be produced
when the wind stress curl varies uniformly from zero
at y 5 yS to value curl(t /r) at yN.yN

The corresponding expression for u in the boundary
layer along the north ridge can be obtained from the
above expression by reversing the sign of the second
and third terms on the right-hand side and replacing 2y
by (y 2 yN) and T(0) by T(yN).

APPENDIX B

The Shallow-Water Numerical Model
The nondimensional shallow-water momentum equa-

tions may be written as

R(v 1 v=v) 1 (1 1 by)k 3 vt

215 2=h 2 Cv 1 bt /H(1 1 B Rh),

where v is the horizontal velocity vector, h is the layer
thickness, and t is the wind stress. The continuity equa-
tion is written as

21h 1 R B= · v 1 = · (vh) 5 0.t

The variables have been nondimensionalized by a ve-
locity scale U, a horizontal length scale L, and a vertical
length scale H. The deviation of the layer thickness h
from the motionless value is scaled as f 0UL /g9. The
Coriois parameter is assumed to vary linearly with lat-
itude as f 5 f 0 1 b*y, where f 0 is the Coriolis pa-
rameter at the central latitude of the domain and b* is
the dimensional variation of the Coriolis parameter with
latitude. The reduced gravity between the moving layer
and the deep ocean is g9. Time has been nondimen-
sionalized with the advective timescale L /U and the
wind stress is nondimensionalized by r0Ub*L. This
scaling results in several nondimensional numbers. The
Rossby number R 5 U/ fL is a measure of the strength



2718 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

of the nonlinear terms. The drag coefficient C 5 b*ds/
f 0, where ds is the Stommel boundary layer width, mea-
sures the strength of dissipation. The variation of the
Coriolis parameter over the meridional scale of the do-
main is measured by b 5 b*L / f 0. The Burger number
B 5 (Ld/L)2, where Ld 5 is the internal de-Ïg9h/ f 0

formation radius. The model is integrated on a staggered
C grid and the equations are solved using a second-
order centered finite-difference scheme. Time stepping
is achieved with a third-order-accurate Adams–Bash-
forth scheme. The lateral boundary conditions are no
slip and no normal flow. The model domain is a square
with nondimensional size 1.0. The resolution is 200 3
200, so that the (nondimensional) grid resolution is
0.005. The model calculations are run with D 5 0.005
and the island width L 5 0.1. The calculations are es-
sentially linear with R 5 0.001. The stratification is such
that the deformation radius is equal to the basin di-
mension, B 5 1. The variation in the Coriolis parameter
is important over the meridional extent of the basin with
b 5 0.4.

The porous ridge extends from x 5 0.45 to x 5 0.55
and from y 5 0.2 to y 5 0.8, giving yN 2 yS 5 0.6
(e.g., Fig. 7). Unless stated otherwise, the ridge is made
up of 24 discrete islands each of meridional dimension
D 5 0.02 and the porosity p 5 0.2 so that the gap widths
are d 5 0.005. The model is forced by a steady, zonal
wind stress applied as a force in the momentum equa-
tions. The forcing is confined to the region to the east

of the western edge of the islands (x 5 0.45) and will
be varied for comparison with the theory. The wind
stress curl is kept constant to the north (south) of the
ridge at the same value as at the northern (southern) tip
of the ridge. This allows the meridional transport to
continue smoothly approaching and departing the ridge
system, and for the effects of the northern and southern
boundaries of the model to be isolated from the region
of interest. The model is run until steady state is
achieved.
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