
AUGUST 2003 1651H E L F R I C H A N D P R A T T

q 2003 American Meteorological Society

Rotating Hydraulics and Upstream Basin Circulation*

KARL R. HELFRICH AND LAWRENCE J. PRATT

Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

(Manuscript received 28 August 2002, in final form 16 December 2002)

ABSTRACT

The flow in a source-fed f -plane basin drained through a strait is explored using a single-layer (reduced
gravity) shallow-water numerical model that resolves the hydraulic flow within the strait. The steady upstream
basin circulation is found to be sensitive to the nature of the mass source (uniform downwelling, localized
downwelling, or boundary inflow). In contrast, the hydraulically controlled flow in the strait is nearly independent
of the basin circulation and agrees very well with the Gill-theory solution obtained using the strait geometry
and the numerically determined average potential vorticity in the strait entrance region. This Gill solution,
however, gives a unique value of the upstream boundary layer flux splitting that does not agree with any of the
full numerical solutions. The coupled basin–strait system is shown to select an average overflow potential vorticity
corresponding to the Gill solution with maximum fluid depth on the strait boundaries. This state also corresponds
to one of maximal upstream basin potential energy. This result is robust to changes in the basin geometry, strait
characteristics, the dissipation parameter (linear drag), and the net mass flux. The nonunique relation between
basin conditions and overflow transport is significant with regard to deep overflow transport monitoring. It is
shown that the potential vorticity selection leads to overflow, or ‘‘weir,’’ transport relations that are well ap-
proximated by the zero potential vorticity theory. However, accurate estimates of the transport can only be
obtained if conditions within the strait entrance region, and not the basin, are used.

1. Introduction

The funneling and concentration of ocean currents by
sea straits make these sites strategically advantageous
for long-term monitoring of fluxes. When hydraulically
critical overflows are formed within the the strait it be-
comes possible, in principle, to link the volume flux of
the overflow with some easily observed property of the
stratification in the upstream basin. The great hope of
hydraulic models of rotating channel flow (e.g., Gill
1977) has been to provide insight into the linkage be-
tween the strait and the upstream flow and to establish
transport formulas. Whitehead (1989, 1998), Borenäs
and Nikolopoulas (2000), and others have referred to
such models in an attempt to establish transport relations
for a number of oceanographically important deep over-
flows. Hansen et al. (2001) recently attempted to estab-
lish an empirical relation for the Faroe Bank Channel
overflow.
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In Gill’s (1977) theory for rotating hydraulic sill flow,
which assumes semigeostrophic flow of a uniform po-
tential vorticity fluid through a rectangular cross-section
channel, calculation of the overflow transport requires
knowledge of the ratio of the transports in the boundary
layers on the left and right-hand walls of the upstream
basin (looking toward the sill from the upstream basin),
the uniform potential vorticity of the overflow fluid, and
the sill geometry. In practice, all these pieces of infor-
mation are rarely available. One theoretical simplifi-
cation often made is to limit the upstream approach flow
to the left boundary. This situation could be established
in an infinite upstream basin by breaking a dam at the
sill. A Kelvin wave would then propagate back into the
basin along the left wall to establish flow toward the
sill. In an infinite basin the right wall remains unchanged
since the infinite basin size prevents the Kelvin wave
from returning to the sill region and initiating flow along
the right wall. However, the assumption of an infinite
basin is rarely realistic and a priori elimination of the
right wall flow is not reasonable. For example, the deep-
est outflow through the Faroe Bank Channel is bounded
upstream by the Norwegian and Lofoten Basins, which
are closed at depth except for the Jan Mayen Fracture
Zone.

Another complication to the application of the Gill
model is that the solutions are very sensitive to the value
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of the potential vorticity. For fixed overflow transport
and strait geometry relatively small changes (of order
5%–10%) in the potential vorticity lead to large changes
in the upstream boundary layer flows. One value of the
potential vorticity has flow toward the strait on the left
wall and away from the strait on the right, while a small
increase in the specified potential vorticity reverses the
directions of the boundary layer flows. This emphasizes
the difficulty of extending the Gill model to the case of
a finite upstream basin. Further, the assumption of in-
viscid inertial flow is not likely to be valid very far back
into the basin. And perhaps more important, there is no
reason to expect uniform potential vorticity in the water
approaching the sill. Other factors such as friction, to-
pography, and the beta effect can also be expected to
introduce departures from the idealized Gill (1977) pic-
ture of upstream flow.

Efforts to understand the effects of sills on the deep
circulation must address the issue of flow in the up-
stream basin. These effects may involve substantial
feedback between the basin and the sill flows. For ex-
ample, characteristics of the overflowing water, such as
the potential vorticity, are determined by forcing and
dissipation within the upstream basin. This circulation
may also be affected by the hydraulic control at the sill
which, at a minimum, sets the mean upstream fluid depth
(Pratt 1997). But the determination of this depth in the
Gill model, if indeed it is the appropriate model, depends
on the potential vorticity of the overflow water. The
result is a potentially significant coupling between the
geostrophic and dissipative basin circulation and the
inertial sill flow.

Aspects of these coupled flows have been considered
by Pratt and Llewellyn Smith (1997) and Pratt (1997)
using an asymptotic theory based on the 1½-layer re-
duced-gravity model. Analytical progress is made by
assuming weak forcing and dissipation and by assuming
that the overflow is small in comparison to the strength
of the basin circulation. With these restrictions, flow
within the basin is geostrophic and linear. The strait
appears only as a nonlinear boundary condition that is
not part of the solution, but must be independently spec-
ified. Pratt (1997) used the zero potential vorticity hy-
draulic control relation of Whitehead et al. (1974). Un-
der these conditions the only feature of the basin cir-
culation controlled by the strait was the mean elevation
of the layer. The interior circulation was otherwise un-
affected and controlled by the basin topography, fric-
tion, and mass source characteristics.

Whitehead and Salzig (2001) reformulated Gill’s
(1977) uniform potential vorticity theory, but argued
that for flow initiated by a localized source within the
infinite basin, knowledge of only the right-hand wall
current is necessary for determining the overflow trans-
port. This could be translated to specification of the
Bernoulli function along the right wall in the upstream
basin. But again, the arguments are based upon an in-
finite basin and are suspect when the basin is finite.

They did perform some laboratory experiments of flow
from a source-fed flat basin, drained by flow through a
wide strait with a flat sill using water under air. The
basin is connected to the strait by a region of uniform
slope. They found some agreement between the ob-
served velocity fields in the strait and their hydraulic
theory. They also observed that the flow within the strait
was insensitive to the location of the mass source
(placed adjacent to the basin boundary or in the center
of the basin). Interestingly, the far upstream basin cir-
culation was different in each case. However, in both
cases flow approached the strait along the left wall in
the slope region. To the right of this boundary current
on the slope a sluggish recirculation gyre is present. The
presence of the approach current on the left wall of the
entrance slope can be interpreted as a western boundary
current with the beta effect arising from the topographic
slope. Flow in the basin is too weak to support an inertial
current against the right wall. These observations sug-
gest a partial decoupling between the basin and the strait
and support some of the assumptions introduced by Pratt
(1997).

While there are many observations of flow at and
downstream of deep sills (e.g., the Denmark Strait:
Dickson and Brown 1994; Girton et al. 2001), much
less is known about the structure of the flow in the
upstream basin. Just how are the inertial hydraulic flow
within the strait and the slower geostrophic basin cir-
culation connected? How far back into the basin are the
hydraulic models valid? Is the Gill model useful when
potential vorticity is nonuniform? What are the path-
ways from fluid source to the strait? Mauritzen (1996)
has suggested that the production of overflow waters in
the Greenland, Iceland, and Norwegian Seas occurs as
open ocean convection and near-boundary water mass
transformation. Water also enters the Norwegian and
Lofoten Basins through the Jan Mayen Fracture Zone.
Are these possible different mass sources reflected in
the basin and strait flows?

Some answers to these questions are provided by
Pratt’s (1997) theory and the Whitehead and Salzig
(2001) experiments, yet both are incomplete. Pratt’s the-
ory imposed a hydraulic relation at the sill formally
valid for weak, zero potential vorticity overflow through
a narrow strait. The Whitehead and Salzig experiments
were very limited in number and parameters covered
and produced only qualitative results for the upstream
circulation. Here we explore these issues further using
a 1½-layer reduced-gravity numerical model of coupled
basin–strait flow that explicitly resolves the rotating hy-
draulic flow within the strait. The roles of strait ge-
ometry, basin topography, mass source characteristics,
and friction are all considered.

In section 2 the governing equations, numerical meth-
od, and model domain are discussed. As a background
for interpretation of the numerical results, a basin in-
tegrated potential vorticity constraint is used to antici-
pate upstream basin circulations that are expected for
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FIG. 1. Sketch of a basin and strait systems: (a) plan view and
(b) side view.

various mass sources in section 3. The numerical results
are discussed in section 4. The steady flows within the
straits are remarkably independent of the mass source
characteristics, basin circulation, and friction (linear
bottom drag) and dependent only on the strait and sill
geometry and overflow transport. The coupled system
produces an average overflow potential vorticity in the
strait entrance region that corresponds to the Gill so-
lution with maximum possible fluid depths along the
strait walls. In section 5 the results, in particular the
significance to overflow monitoring of the nonunique
relation between basin conditions and the overflow
transport, are discussed.

2. Model and methods

The coupled basin–strait flow (Fig. 1) is studied
through numerical solutions of the nondimensional re-
duced-gravity (1½-layer) shallow-water momentum,

]u
1 (u · =)u 1 k 3 u 5 2=(h 1 b) 1 D 1 M, (1)

]t

and continuity,

]h
1 = · (uh) 5 2w, (2)

]t

equations on the f plane. The equations are nondimen-
sionalized using for the horizontal velocity u 5Ïg9H
(u, y), the deformation radius LR 5 / f for theÏg9H
horizontal dimensions (x, y), the inverse of the Coriolis
frequency f 21 for time t, and H for the layer depth h
and the bottom topography b(x, y). The scale depth H
is the height of the sill crest above the deepest point in
the basin where b 5 0. Here g9 is the reduced gravity,
k is the vertical unit vector, and = is the horizontal
gradient operator. The vertical downwelling velocity
w(x, y) (,0) is scaled by Hf . The nondimensional mo-
mentum flux due to downwelling (Pedlosky 1996, sec-
tion 4.2) is

w
M 5 2 uQ(2w),

h

where Q(x) 5 1 for x . 0 and 0 otherwise.
In all cases considered, the friction operator D is a

linear bottom drag D 5 2ru with constant coefficient
r (scaled with f ). This choice facilitates comparisons
with Gill’s (1977) inviscid hydraulic solutions (for small
r) and Pratt’s (1997) basin circulation model. As shown
below, some dissipation is necessary for steady solu-
tions to exist.

The numerical model domain (cf. Fig. 3) consists of
a basin of width 8 in the y direction that narrows (a
Gaussian shape centered at x 5 0 with length scale 5
2) to a strait with a rectangular cross section. At the
strait entrance (x 5 0) the channel width is WE and
bottom height b 5 bE. At the sill crest (x 5 6) the width
is WS and the bottom height b 5 bS 5 1. Most runs
have a uniform width channel, WS 5 WE, but several
runs with a narrows, WS 5 0.5 and WE 5 1, were con-
sidered. The sill bottom topography and channel con-
traction have Gaussian shapes centered at x 5 6 with
length scale 5 2. The far basin wall is at x 5 215.
Two basic basin topographies are examined. The first
is a bowl-shaped basin with topographic height b 5 bB

5 bE at the basin periphery. In this case all the geo-
strophic contours f /h within the basin are closed. The
second is a flat basin with bE 5 0. Both of these cases
were also modified to include a slope region just prior
to the strait entrance region (22.5 # x # 0), that
smoothly joins the strait entrance depth bE to the basin
rim depth bB in the bowl basin case, or the flat basin
interior (b 5 0). These topographies are denoted as
bowl, flat, bowl-slope, and flat-slope. Table 1 contains
a list of the geometric configurations considered.

The flow is forced by either of two downwelling dis-
tributions or by inflow through a segment of the basin
boundary. The first downwelling distribution has uni-
form w , 0 throughout the basin (x , 0). The second
is localized downwelling against the upstream wall of
the basin (x 5 215). In this case w was uniform in y
and Gaussian in x centered at x 5 215 with a length
scale 5 2. The boundary inflow is through the upstream
basin wall between 21/2 # y # 1/2 with uniform vol-
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TABLE 1. Basin and strait topographic parameters. In all cases
bS 5 1.

WS WE bE bB Topography

0.5
0.5
1
1
1

0.5
1
1
1
1

0.8
0.8
0.8
0.5
0.8

0.8
0.8
0.8
0.5
0.7

Bowl
Bowl
Bowl
Bowl
Bowl-slope

1
1
2
2

1
1
2
2

0
0.8
0.8
0.8

0
0
0.8
0.7

Flat
Flat-slope
Bowl
Bowl-slope

ume flux in y. The imposed nondimensional mass flux
Q 5 0.01–0.1 and drag coefficients r 5 0.001–0.4.

The numerical model solves (1), in flux form, and (2)
using a second-order finite-volume method developed
to handle flow complexities typical of rotating hydrau-
lics (e.g., flow grounding, shocks, hydraulic jumps). De-
tails of the model development and application to ro-
tating hydraulic flows are given in Helfrich et al. (1999)
and Pratt et al. (2000). The major difference between
those studies and the present is the use of a boundary-
fitted quadrilateral grid. This version of the model uses
a mix of contravariant and Cartesian velocities in the
mapped domain (cf. Bell et al. 1989), but otherwise
employs the same numerical algorithms. All cases con-
sidered used an orthogonal grid with 220 grid cells in
the x direction and 80 cells in the y direction. This gives
Dx ø 0.11 and Dy # 0.1 in the basin, with Dy # WE/80
and Dx ø 0.11 in the strait. The resolution is sufficient
to resolve the hydraulic features of the flow within the
strait (Helfrich et al. 1999; Pratt et al. 2000). The su-
percritical flow downstream of the sill exits the domain
at x 5 9 through an open boundary. The remaining basin
boundaries are no-flux.

The numerical solutions are initiated with the basin
filled with motionless fluid up to the sill crest. The
source is turned on at t 5 0 and the model is integrated
until a steady solution, determined by monitoring over-
flow transport and h and u at several arbitrary points
in the basin (interior and near the boundaries), is ob-
tained. Some runs were made with initial conditions of
motionless fluid dammed behind the sill crest. At t 5
0 the dam is removed and the source initiated. In all
cases tested these runs evolved to the same steady state
as found with the first initial condition. For certain con-
ditions (small r and large Q) steady solutions are not
found and these are briefly discussed below.

To give a sense of the dimensional magnitude of the
parameters considered in the numerical solutions take
g9 5 0.005 m s22, f 5 1.3 3 1024 s21, and H 5 1000
m, values representative of the Denmark Strait and Far-
oe Bank regions. These give a deformation radius LR ø
17 km and the transport scaling coefficient g9H 2/ f ø
40 3 106 m3 s21. Thus the dimensional strait widths

5 8.5–34 km, the dimensional transports Q* 5W*S

(0.4–4) 3 106 m3 s21, and the linear drag timescale
r*21 5 0.25–90 days.

3. Potential vorticity budget

A useful tool for investigating the basin–strait cou-
pling is the basin potential vorticity budget obtained by
integrating the tangential component of the steady re-
duced-gravity shallow-water momentum equation (1)
along a closed contour C (Fig. 1) that bounds the basin
(Pratt and Llewellyn Smith 1997; Pratt 1997; Yang and
Price 2000). The result is

qhu · n ds 5 (M 2 ru) · t ds. (3)R R
C C

The nondimensional potential vorticity q 5 (1 1 z)/h,
where z 5 ]y/]x 2 ]u/]y is the vertical relative vorticity.
Here t and n are, respectively, the unit tangent and out-
ward normal vectors to C and ds is the incremental arc
length along C. The friction term D 5 2ru has been
used. In the model flows considered the interlayer mo-
mentum flux M is typically small in comparison with
D (i.e., | w | /h K r), and in this discussion will be ig-
nored for simplicity. Note that, if w 5 0 at the basin
boundary, the contribution of M to the budget is iden-
tically zero. For steady flows the net potential vorticity
flux through the basin boundary must balance the net
tangential component of friction around the basin
boundary.

Fluid is fed into the basin either by downwelling or
through a boundary inflow. The constraint (3) implies
two quite different basin circulations for these sources.
Consider a bowl-shaped f -plane basin. Downwelling
involves no potential vorticity flux through C, and so
the strait outflow is the only contributor to the left-hand
side of (3), which will be positive for positive q. Equa-
tion (3) then implies a circulation that on average flows
anticyclonically (6C u · t ds , 0) around the basin
boundary (Fig. 2a). The flow approaches the strait on
the left-hand wall and may flow away from the strait
on the right-hand wall. When the inflow is through the
boundary, 6C u · t ds will be small if the inflow and
outflow potential vorticities are nearly the same. If they
are identical, the left-hand side is zero and a solution
that satisfies (3) is for the inflow to split into two bound-
ary currents that round the basin to rejoin at the entrance
to the strait where they flow out of the basin (Fig. 2b).
If the inflow is at the opposite side of the basin from
the strait, the currents will be symmetrical. If the inflow
is near the strait, the flow must still split to form two
asymmetrical boundary currents to satisfy (3). Flows of
these types were found by Pratt (1997). However, one
crucial limitation necessary for analytical progress was
matching of the linear geostrophic basin circulation to
a limited subset of hydraulic models of the strait flow
(e.g., zero potential vorticity outflow).
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FIG. 2. Examples of expected basin circulation for (a) interior
downwelling and (b) boundary inflow.

FIG. 3. Numerical solution for boundary inflow into a bowl-shaped
basin with WE 5 WS 5 1, bE 5 0.8, Q 5 0.05, and r 5 0.01. Contours
of (a) the free surface height h 1 b, (b) the transport streamfunction
C, and (c) the potential vorticity q are shown. The dotted lines in
(a), (b), and (c) are contours of the basin topography b. (d) Transport
Q at the sill (solid) and through the section 0 , y , 4 at x 5 28
(dashed) vs t. In (d) the circle indicates the friction timescale 1/r and
the square indicates the basin residence time based on the volume
below the sill crest.

4. Results

The numerical solution for a bowl-shaped basin fed
by a boundary inflow is shown in Fig. 3. In this example
WE 5 WS 5 1, bE 5 0.8, Q 5 0.05, and r 5 0.01.
Figures 3a–c show the free surface elevation h 1 b, the
transport streamfunction C, and the potential vorticity
q of the steady-state solution. (Note that C, defined by
uh 5 k 3 =C, is valid only for steady flows with w
5 0, conditions which are met in this case.) Figure 3d
shows the sill transport QS and transport QB through a
section along x 5 28 from y 5 0 to y 5 4 as functions
of time. The flow reaches a steady state on a long time-
scale comparable to the residence time of the basin. The
variable transports for very short times are a conse-
quence of Kelvin waves excited by the initiation of the
inflow. They are damped out on a timescale ;r21. As
anticipated in the discussion in section 3, the inflow
splits into two boundary currents that flow around the
basin boundary to rejoin at the strait. However, the rim
currents are asymmetrical. The right-hand wall current
(y , 0) has the larger transport upstream in the basin
(x 5 28); a portion of this flow overshoots the strait
entrance and loops along the left-hand wall just up-
stream of the strait before flowing into the strait. The
net potential vorticity flux through the basin is slightly
positive, which, from (3), requires 6C u · t ds , 0. This
is achieved primarily in the flow along the left-hand
wall upstream of the strait entrance and near x 5 0.
These are regions of intensified boundary layer flows.
The overshoot and looping are part of the ‘‘zonal,’’ or
diffusive, boundary layer structure of the circulation
(Pratt 1997) and the left-hand wall at x 5 0 is nominally
a ‘‘western’’ boundary layer where the fluid crosses geo-
strophic contours. Within the basin the flow is geo-

strophic with only small ageostrophic effects from the
friction. The potential vorticity field within the basin q
ø 1/h, with the relative vorticity becoming significant
only near the strait entrance where z/ f ø 0.3 (Fig. 3c).

Details of the flow in the strait are shown in Fig. 4.
Figures 4a–c show h 1 b, the transport streamfunction
C, and q, respectively, from the numerical solution. The
flow separates (defined by the h 5 0.001 contour) from
the left-hand wall just downstream of the sill crest. To
make a comparison with the Gill (1977) model it is
necessary to determine a representative value of q in
the strait. We choose to use the average potential vor-
ticity in the strait entrance region 1 # x # 2,
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FIG. 4. Details of the flow in the strait from Fig. 3 for (a) h 1 b, (b) C, and (c) q fields from the numerical solution.
Solutions of the Gill (1977) theory using Q 5 0.05 and q 5 1.78 are shown in (d) h 1 b and (e) C. (f ) Froude numbers:
theoretical Fd, model Fd, and model FS.

y5W /2 x52E1
q [ q dx dy.E E EWE y52W /2 x51E

Alternative possibilities, say averaging E over x 5 1–q
6 or using the transport-weighted mean potential vor-
ticity through a section in the strait entrance at x 5 1.5,

5 Q21 # quh dy, give values of potential vorticity thatq
differ from E by only a few percent. For the run inq
Fig. 4 E 5 1.78 (while E over x 5 1–6 is 1.89 andq q

5 1.79). The corresponding solution to the Gill (1977)q
model for h 1 b and C using q 5 1.78 and Q 5 0.05
(Figs. 4c and 4d) agrees quite well with the numerical
solution despite the nonuniform q in the numerical so-
lution. (Details of the Gill model as applied here are
given in appendix A.) There is also good agreement
between the semigeostrophic Froude number Fd (A6)
from the Gill solution and that computed from the nu-
merical solution h field and E 5 1.78 (Fig. 4f). Theq
actual critical section was determined to lie at x ø 6.4
6 0.1, just slightly downstream of the critical section
x ø 6.1 indicated by Fd calculated using the numerically
determined h field. This was done by introducing a small
perturbation (uniform in y) into the numerically cal-
culated steady flow at an x location in the neighborhood

of the sill crest and integrating the model forward in
time. Subsequent propagation of the signal upstream
indicated subcritical flow at x, whereas perturbations
swept entirely downstream indicated supercritical flow.
Differences that do exist, for example, the separation
points and the Froude number downstream of the crest,
are probably due to the friction, departures from se-
migeostrophy, and nonuniform potential vorticity in the
numerical solutions. For these conditions the Gill model
predicts that the upstream state has a transport of 0.422
toward the sill on the right-hand wall and a transport
of 20.372 away from the strait on the left-hand wall.
This upstream boundary layer flux partitioning is vastly
different than the numerical solution in Fig. 3.

Also shown in Fig. 4f is Stern’s (1974) generalized
Froude number for flows with nonuniform potential vor-
ticity

W /2

22h dyE
2W /2

2F 5 .S W /2

2 21(u h) dyE
2W /2
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FIG. 5. Contours of the free surface height h 1 b for (a) uniform
downwelling and (b) localized downwelling into a bowl-shaped basin
with WE 5 WS 5 1, bE 5 0.8, Q 5 0.05, and r 5 0.01. The dotted
lines in (a) and (b) are contours of the basin topography b.

FIG. 6. Interface depth (a) on the left wall, (b) along the centerline
y 5 0, and (c) on the right wall of the domain for the runs in Figs.
3 and 5. The thick line in each panel is the bottom elevation and the
thin lines are the interface locations.

The derivation of FS is valid for semigeostrophic flow
in a rectangular channel with no flow reversals and finite
h: FS is undefined where the flow is separated from a
channel wall, FS 5 1 where the flow is critical, and FS

, 1 (.1) for subcritical (supercritical) flow. In Fig. 4f,
FS is less than 1 near the sill crest where both estimates
of Fd show the flow to be critical. The breakdown in
the measure of the flow criticality from FS is due to the
sensitivity of FS to departures from semigeostrophic
flow. Near the sill crest the magnitude of the ageos-
trophic convective acceleration terms in the cross-chan-
nel momentum budget are only about 10% of the size
of the cross-channel pressure gradient. This slight de-
parture from semigeostrophy is sufficient to render FS

significantly less than 1, where we expect it to equal
and exceed 1. Interestingly, Fd, which is also derived
assuming semigeostrophy, is apparently less sensitive
than FS to ageostrophic effects in the cross-channel mo-
mentum budget. Sensitivity of FS to departures from
semigeostrophy was also found in Pratt et al. (2000).

The steady solution for the same conditions as Fig.
3, but with the uniform downwelling source, consists
of a domed interface and an anticyclonic circulation
within the basin (Fig. 5a). Fluid approaches the strait
along the left-hand wall where some enters the strait,
while most continues back into the basin along the right-
hand wall. With the localized downwelling source fluid
approaches the strait along the left-hand wall (Fig. 5b)
with a transport equal to the overflow transport. Fluid
on the right-hand wall is nearly stagnant. Since the flow
within the basin is essentially geostrophic, the interface
contours give a reasonable indication of the streamlines,
even though C cannot be defined for these cases with
w ± 0. Both of these circulations are consistent with
expectations from the potential vorticity budget (3) in
Fig. 2a. However, for localized downwelling, the down-
welled momentum M contributes nontrivially to the

budget along the upstream wall (x 5 215) of the basin,
compensating for the lack of contribution to the D in-
tegral along the right-hand wall near the strait entrance.

Perhaps the most interesting aspect of these two so-
lutions is within the strait. The strait flows are almost
indistinguishable from the boundary inflow solution in
Fig. 3. This is illustrated in Fig. 6 where the interface
levels in the strait along the left-hand and right-hand
walls, and along the center of the strait (y 5 0) are
shown for all three sources. The only significant dif-
ferences occur in the basin and just at the strait entrance
x # 0.5. The agreement within the strait extends to the
potential vorticity, with E 5 1.78, 1.79, and 1.69 forq
boundary inflow, uniform and localized downwelling,
respectively. Despite the fact that the strait flows are
nearly identical, none of the three circulations shown
in Figs. 3 and 5 have upstream basin boundary layer
transport partitioning that agrees with the Gill predic-
tion. Perhaps this is not too surprising given the different
dynamical regime in the basin (geostrophic and dissi-
pative) and strait (inertial and essentially inviscid).
However, it does point to a nonunique relation between
upstream basin conditions and overflow transport that,
as discussed in section 5, is very important for deep
overflow transport monitoring.

Steady numerical solutions for WE 5 WS 5 1, Q 5
0.05, and r 5 0.01 and all three mass source types for
a bowl basin with a uniform slope prior to the strait
entrance (bB 5 0.7 and bE 5 0.8) (Fig. 7) give flows
that are similar to the pure bowl basin solutions except
for the boundary inflow case (Fig. 7a). There the right-
wall boundary current crosses the basin along topo-
graphic contours at the beginning of the slope to join
with the left-wall current and form a ‘‘western’’ bound-
ary layer current that enters the strait, similar to the
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FIG. 7. Contours of the free surface height h 1 b for (a) boundary
inflow, (b) uniform downwelling, and (c) localized downwelling into
a bowl-slope basin with a slope prior to the strait entrance and with
WE 5 WS 5 1, bE 5 0.8, Q 5 0.05, and r 5 0.01. The bottom
elevation along the rim of the basin and at the beginning of the slope
bB 5 0.7. The dotted lines are contours of the basin topography b.

FIG. 8. Contours of the free surface height h 1 b for (a) boundary
inflow, (b) uniform downwelling, and (c) localized downwelling into
a flat basin with WE 5 WS 5 1, bE 5 0, Q 5 0.05, and r 5 0.01.
The dotted lines are contours of the basin topography b.

FIG. 9. Plot of E vs r for a bowl-shaped basin with WE 5 WS 5q
1, bE 5 0.8 (open symbols), and a flat basin with WE 5 WS 5 1, bE

5 0 (solid symbols). The different symbols indicate mass source type
(see inset). In all cases Q 5 0.05.

Whitehead and Salzig (2001) experimental result. The
strait geometry is the same as the three previous bowl
basin solutions and again the strait flows in Fig. 7 are
all nearly identical to the solution for a bowl basin with
boundary inflow in Fig. 3. The average potential vor-
ticities are E 5 1.76, 1.75, and 1.67 in Fig. 7a–c, re-q
spectively.

Solutions for each mass source in a flat basin with
WE 5 WS 5 1, bE 5 0, Q 5 0.05, and r 5 0.01 are
shown in Fig. 8. The structure of the flows are quali-
tatively similar to the respective bowl-shaped basin cas-
es. However, with boundary inflow (Fig. 8a) the flow
splitting is symmetrical and broader than the bowl basin.
For localized downwelling the flow still approaches the
strait principally along the left wall, but the flow in the
basin interior recirculation is broader than the bowl case.
The flows within the strait in Fig. 8 are again nearly
identical with E 5 0.79, 0.77, and 0.78 in Figs. 8a–c,q
respectively.

The flow within a strait of a given geometry is re-
markably insensitive to the basin geometry and mass
source type. It depends only on the strait geometry and
Q, and it is only weakly dependent on the friction co-
efficient r. Figure 9 shows E as a function of r for runsq
with Q 5 0.5 and WE 5 WS 5 1 for both a bowl (bE

5 0.8) and a flat (bE 5 0) basin. The largest variations

occur at small r for the uniform downwelling source
and are due to the emergence of time-dependent solu-
tions. The bifurcation point rc to unsteady flows depends
on the mass source type, Q, and the basin and strait
geometries. Unsteadiness first appears as a periodic os-
cillation of sill transport and other quantities, then the
flow undergoes a period doubling transition to a high-
dimensional chaotic state. This interesting aspect of the
problem will be explored in a subsequent paper (Yuan
et al. 2002, manuscript submitted to J. Phys. Oceanogr.).
For now we focus on the steady solutions. Changing r



AUGUST 2003 1659H E L F R I C H A N D P R A T T

FIG. 10. Gill model solutions for hU in the strait entrance region
for WE 5 WS 5 1 and bE 5 0.8 contoured in the q–Q plane. The
thick solid line is the q with maximum hU for given Q, the qmax(Q)
solution. All solutions below the dashed line are separated at the sill.
Solutions below the dash–dot line (uR 5 0) have reversed flow, uR

, 0, in the strait entrance region. The circles (diamonds) are E fromq
the numerical runs with a bowl (bowl slope) basin and include all
three mass source types and various r.

FIG. 11. As in Fig. 10 except WE 5 WS 5 2. The uR 5 0 curve
(dash–dot line in Fig. 10) is coincident with the qmax(Q) curve and
is not visible. The vertical hU contours for small q indicate separated
flow in the entrance region of the strait.

does not change the qualitative structure of the steady
solutions shown in Figs. 3, 5, 7, and 8. However, a
consequence from (3) of the insensitivity of E to chang-q
es in r is that for a downwelling mass source the average
velocity tangent to the basin boundary ;r21 (when M
K D).

a. Overflow potential vorticity selection

The qualitative structure of the basin circulation as a
function of basin topography and mass source type does
not change for WE 5 0.5 or 2. The principal result that

E depends only on the strait geometry (WE, WS, andq
bE) and Q persists. It is surprising that quite different
basin flows deliver fluid of essentially the same potential
vorticity to the strait. This suggests that the strait ge-
ometry determines the overflow q, and the basin flow
adjusts to supply fluid with this value. In view of the
basin potential vorticity budget (3), this potential vor-
ticity selection can be viewed as another aspect of up-
stream influence exerted by the hydraulic control at the
sill. It remains, though, that the Gill model permits an
infinite choice of overflow q for a given Q and strait
geometry, so there is no a priori reason that the overflow
potential vorticity should be independent of the basin
circulation.

The selection of E is clarified somewhat by consid-q
ering the possible Gill solutions for a given strait ge-
ometry as functions of q and Q. The solutions can be
explored in a number of ways. In the present context it
is useful to determine, for a given strait geometry, q,
and Q, the level of the interface above the sill crest on
the right-hand wall in the strait entrance region (WE,
bE):

h 5 h 1 b 2 b .U R E S

Here hR is the layer depth on the right wall in the en-
trance region. [From geostrophy, the left-hand wall layer
depth hL 5 ( 2 2Q)1/2.] The solution procedure is2hR

outlined in appendix A. Contours of hU in the q–Q plane
for straits with bE 5 0.8 and WE 5 WS 5 1, and WE 5
WS 5 2, are plotted in Figs. 10 and 11, respectively.
For a fixed Q there is a q 5 qmax(Q) that maximizes
hU[5hUmax(Q)], indicated by the thick solid lines in these
two figures. The qmax(Q) is unique to each strait ge-
ometry. Note that these solutions do not always match
the solutions with the maximum wall interface levels at
the sill crest. Solutions below the dashed line are sep-
arated from the left-hand wall at the sill crest and those
below the dash–dot line have reversed flow on the right-
hand wall upstream of the sill crest (uR , 0, where uR

is the velocity on the right-hand wall). In Fig. 11 the
uR 5 0 curve is coincident with the q 5 qmax(Q) curve.

Also shown as the symbols in Figs. 10 and 11 are
the numerical model results for E for all runs with theseq
strait geometries. The runs encompass two basin ge-
ometries (bowl and bowl-slope), the three mass source
types, and various r. The model results all fall close to
the qmax(Q) curves. The spread in E at Q 5 0.05 inq
both figures is primarily due to variations in r. This
result was unexpected and motivated the numerous nu-
merical experiments with the wide range of basin to-
pographies and strait characteristics in the anticipation
that the criterion for E might fail under some condi-q
tions. However, the result E ø qmax(Q) is robust overq
all the parameters explored, as illustrated in Fig. 12. A
further test of this potential vorticity selection criterion
is shown in Fig. 13 where hU at x 5 1.5 from the nu-
merical runs is plotted against hUmax. The model hU tends
to be slightly less than hUmax, but overall, the agreement
between the numerical results and the predictions of



1660 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 12. The numerical model strait entrance region potential vor-
ticity E vs the potential vorticity from the selection principle qmax(Q)q
for all the numerical experiments. The strait width WS of each run is
indicated in the inset.

FIG. 13. The numerical model interface elevation above the sill
crest on the right-hand wall in the strait entrance region hU vs the
prediction from the potential vorticity selection criterion hUmax for all
the numerical experiments. The strait WS of each run is indicated in
the inset.

E and hU from qmax(Q) is quite good over the range ofq
parameters considered.

In Figs. 10 and 11 the qmax(Q) solutions lie along, or
very near, the dash–dot curves denoting zero velocity
at the right-hand wall in the strait entrance section. The
velocity gradients are also generally small near the right
wall, thus qmax(Q) ø , where hRmax 5 hUmax 1 bS

21hRmax

2 bE. However, for the narrow strait, WE 5 0.5, the
qmax(Q) curve lies above the uR 5 0 curve (as it does
for WE 5 1 and Q . 0.042) and qmax(Q) does not equal

, though the differences are only about 10%.21hRmax

In Pratt’s (1997) theory the mean basin interface level
is set by the prescribed value of hU at the entrance to
the strait. The same behavior is found in the numerical
model. Changing the sill level simply raises, or lowers,
the mean basin interface level by an amount equal to
the change in hUmax. The structure of the basin flow is
essentially unchanged. One consequence is that the
qmax(Q) Gill solution leads to the basin circulation, for
a given mass source type, with the maximum potential
energy (since all the other Gill solutions have smaller
hU). Since the kinetic energy of the geostrophic basin
circulation is negligible, the basin circulation total en-
ergy is also maximal.

b. Overflow transport and upstream conditions

Killworth and MacDonald (1993) derived an upper
bound on the semigeostrophic transport through a strait,

1
2Q # (B 2 b ) , (4)M min2

where BM is the maximum value of the energy, or Ber-
noulli function, in the upstream basin and bmin is the
minimum height of the sill topography at the critical
section. This bound is valid for nonuniform, but posi-
tive, potential vorticity and arbitrary topography at the
sill. Note that (4) is nondimensionalized in the same
manner as (1) and (2). For rectangular cross section (bmin

5 bS) and wide straits where the flow is separated from
the left wall of the channel at the sill crest it can be
shown that the bound in (4) should be replaced by an
equality. This follows from the fact that a separated
critical flow (Froude number equal to 1) has zero ve-
locity on the right-hand wall. The Bernoulli constant on
the right wall is then bS 1 hRS, where hRS is the layer
depth on the right wall at the sill. For an inviscid, un-
forced flow [B 5 B(c)] in which all basin streamlines
exit the strait, BM 5 bS 1 hRS and (4) becomes Q #
½ . Since the along-channel flow is geostrophic, the2hRS

flux at the sill Q 5 ½ , and the bound (4) is, in fact,2hRS

an equality. As Killworth and MacDonald (1993) point
out (4) agrees with the (nondimensional) Whitehead et
al. (1974) zero potential vorticity transport relation

1
2 2h , W . 2hu S u2

Q 5 (5) 3/2 3/222 W SW h 2 , otherwise S u1 2 1 23 8

for wide straits ( . 2hu), since the Bernoulli function2W S

in the stagnant upstream basin is hu 1 bS. Here hu is
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FIG. 14. The transport Q vs hU. The solid lines are from potential
selection criterion, Q 5 Qmax(hU; · · · ) using all the strait geometries
used in the numerical model runs. The dashed lines are from the
Whitehead et al. (1974) zero potential vorticity theory (5), which for
WS 5 1, 2 are hidden beneath the solid lines. The symbols are from
the numerical model runs.

the height of the interface in the upstream basin above
the sill crest.

As discussed above, the selected solutions with sep-
arated flow at the sill section have zero velocity along
the right wall in the entrance region. Since the Bernoulli
function along the right wall is constant, hUmax 5 hRS.
The uniformity of the interface elevation along the right
wall between the entrance region and the sill crest is
clearly illustrated in Fig. 6. Thus the transport for the
selected separated solutions is Q 5 ½ . This agrees2hUmax

with both (4) and (5) except that conditions within the
strait entrance region, rather than the upstream basin,
are used. Use of the upstream basin conditions will not
give an accurate estimate of the overflow transport be-
cause of the nonuniqueness between the upstream state
(i.e., maximum interface level) and the transport. The
Killworth and Macdonald bound (4) does still hold, but
the difference between actual and bounded transport can
be large.

This failure is due to the friction and forcing within
the basin that lead to variable Bernoulli function along
streamlines and points to the potential problems in using
upstream basin conditions to estimate transport. It is,
however, possible to use conditions within the strait
entrance, in particular the interface level on the right
wall, to uniquely predict overflow transport. For a spe-
cific strait geometry the selected Gill solution gives a
unique relation for the interface elevation hUmax(Q) that
can be inverted to give Q 5 Qmax(hU; bE, WE, WS). These
relations for all the strait geometries considered are plot-
ted in Fig. 14. Also shown are the numerical model
results and the zero potential vorticity transport relation
(5) using hU in the strait entrance. The numerical model
results agree quite well with the transport relation Q 5
Qmax(hU; bE, WE, WS) (as expected from Fig. 12 and
13). For the wide straits (WS 5 1, 2) the zero potential
vorticity formula is identical to the wide straits with
separated flow at the sill, and over the range of Q con-

sidered differs only slightly from the Qmax(hU) curves
when the flow is attached at the sill. For the narrow sill,
WS 5 0.5, the difference is less than 15%. The zero
potential vorticity formula (5) offers a reasonable pre-
diction of transport for flows with finite potential vor-
ticity provided the interface level on the right-hand wall
of the strait entrance region, and not the upstream basin
level, is used.

5. Discussion

The difficulty in extending the Gill (1977) model to
a finite upstream basin is not too surprising given the
different dynamical regimes in the basin (geostrophic
and dissipative) and in the strait (inertial and essentially
inviscid). The two regions are, however, coupled in a
subtle and interesting way. For a given flux Q, the av-
erage elevation of the interface in the basin is controlled
by the sill elevation. The potential vorticity of the fluid
entering the strait (and therefore the total potential vor-
ticity flux out through the strait) is also controlled by
the sill elevation. This potential vorticity is formed with-
in the dissipative boundary layers that channel fluid
from the basin into the strait. From these properties one
might guess that the horizontal circulation of the up-
stream basin is also controlled, but we know that this
is not the case. As the nature of the inflow source and
its potential vorticity flux are changed, so 6C u · t ds
must change. The fascinating aspect of these results is
that the various circulation patterns that exist for the
same Q and sill elevation, but different source types and
friction coefficients, conspire to produce the same strait
flow.

One of the long-standing complications of applying
the Gill model to actual flows is the need to specify
both the potential vorticity and upstream boundary layer
flux splitting in order to estimate overflow transport.
Here we have shown that a coupled system selects the
Gill solution [ E ø qmax(Q)] with maximum interfaceq
levels along the strait walls, and hence maximizes the
potential energy of the basin. Following directly from
this potential vorticity selection criterion is a specific
‘‘weir’’ formula Q 5 Qmax(hU; WE, WS, bE, bS) that can
be used to estimate overflow transport from observa-
tions of interface level in the strait entrance region and
passage geometry, without knowledge of the overflow
potential vorticity and the boundary layer flux splitting.

From a practical perspective, the zero potential vor-
ticity weir formula (5) was shown to give good estimates
of overflow transport provided conditions within the
strait entrance, and not the upstream basin, are used.
The nonunique relation between the strait and basin
flows may help to explain the roughly factor of 2 over-
estimate of overflow transport that Whitehead (1998)
found when applying the zero potential vorcity rotating
hydraulic theory (5) to eight deep overflows. To make
the estimates he used the upstream basin interface level
above the sill to estimate the transport, rather than con-
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ditions within the strait. To illustrate the possible errors
we take the results from all the numerical runs and
determine the transport from the zero potential vorticity
formula (5) using the interface level at the center of the
basin [(x, y) 5 (27.5, 0)]. This gives a transport pre-
diction that averages 1.76 times the actual transport. If
hU is used, then transport predicted from (5) averages
0.92 times the actual transport. One might presume that
this difference between strait and basin conditions can
be accommodated with a simple calibration. However,
use of the basin conditions will lead to greatly increased
uncertainty. For example, if just runs with WS 5 1, bE

5 0.8, and r 5 0.01 are considered, then upstream basin
conditions give transport predictions from (5) that are
1.72 6 0.69 (one standard deviation) times the actual
transport, while using hU gives 0.94 6 0.05. The dif-
ferent uncertainties are due almost entirely to the various
mass source conditions that produce large variations
within the basin, but not the strait.

Recently, Hansen et al. (2001) suggested a reduction
in the transport of deep overflow into the North Atlantic
through the Faroe Bank Channel of approximately 20%
since 1950. They take observations of the upstream ba-
sin height of the st 5 28 isopycnal above the sill level,
Dh, and use a formula for sill transport Q ; Dhn, where
n is a constant. Hansen et al. take n 5 1 or 3/2 and fit
the formula with about 5 years of acoustic Doppler cur-
rent profiler observations of transport. They then con-
struct a 50-yr time series from historic observations of
Dh. However, given the discussion above, it is clear that
the predicted transport may be very far from the actual
transport since the height difference is not necessarily
a unique or accurate indicator of transport. The upstream
height could change because of changing source con-
ditions (e.g., different contributions of interior deep con-
vection and boundary inflow through the Jan Mayen
Fracture Zone), and yet the net Faroe Bank Channel
overflow transport could remain constant.

Further complicating the picture, Mauritzen (1996)
has suggested a new schematic for the production of
Denmark Strait and Faroe Bank Channel dense overflow
waters wherein the cooling of Atlantic inflow water
along the Norwegian coast plays the primary role. The
cooling corresponds roughly to a downwelling along
the boundary, and, as seen above, the basin and near-
strait circulations depend critically on the mass source
type and location. The nature of how these deep over-
flows are fed is still not settled.

Any monitoring effort of this type will depend crit-
ically upon establishing the dynamical connections be-
tween upstream states and the overflow transport. Here
we have made some progress in establishing these links
between hydraulically controlled sill flow and circula-
tion in a finite upstream basin. However, we have fo-
cused on simplified basin and strait geometries and 1½-
layer flow with linear bottom drag, and many questions
remain.
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APPENDIX

The Gill Model

This appendix summarizes aspects of the Gill (1977)
hydraulic model employed in this paper. For complete
details readers should see Gill (1977) and Pratt (1983).
The theory assumes uniform potential vorticity and se-
migeostrophic flow in a rectangular cross-section channel
with variable width and with walls at y 5 6W(x)/2 and
bottom elevation b(x) in the along-channel direction, x.
For the moment the flow is taken to be attached to the
left wall. The along-channel velocity u is in geostrophic
balance, which combined with the uniform potential vor-
ticity gives

1/2cosh(q y)
1/2u(x, y) 5 q ĥ

1
1/2sinh q W1 22

1/2sinh(q y)
1/2 212 q (h 2 q ) (A1)

1
1/2cosh q W1 22

and the layer depth h
1/2sinh(q y)

21h(x, y) 5 q 2 ĥ
1

1/2sinh q W1 22
1/2cosh(q y)

211 (h 2 q ) . (A2)
1

1/2cosh q W1 22

Here

1
ĥ 5 (h 2 h ) (A3)R L2

1
h 5 (h 1 h ), (A4)R L2

where hR(x) and hL(x) are the layer depths on the right-
and left-hand walls of the channel, respectively. These
and subsequent equations are nondimensionalized with
the scaling introduced in section 2.

The transport

Q 5 2hĥ (A5)

and the semigeostrophic Froude number Fd is given by
2q(ĥ /T )

2F 5 , (A6)d 2h[1 2 T (1 2 qh)]

where T 5 tanh(q1/2W/2). The average of the Bernoulli
function on both walls of the channel
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21 ĥ
2 21 2B 5 q 1 T (h 2 q ) 1 h 1 b. (A7)1 2[ ]2 T

If the flow is separated from the left wall (hL 5 0)
and has width We (,W), then from (A3) and (A4), ĥ 5

. The equations for u and h in (A1) and (A2) are simplyh
modified by y → y 1 yc, where yc 5 (W 2 We)/2 is the
midpoint of the separated current. The Froude number
(A6) and the average Bernoulli function (A7) are mod-
ified by replacing T with Te 5 tanh(q1/2We/2) and using
ĥ 5 .h

Given q, Q, and the strait geometry W(x) and b(x),
hydraulically controlled solutions are found as fol-
lows. The flow at the sill crest [b 5 1 and T 5 Ts 5
tanh(q1/2 WS /2)] is critical; Fd 5 1. Equations (A5)
and (A6) are solved for ĥ c and c , the values at theh
critical section, assuming attached flow. If ĥ c . c ,h
the flow is separated at the sill and we then set ĥ c 5

c and find c 5 (Q/2)1/2 from (A5). The separatedh h
current width at the critical section Wec is obtained
by solving (A6) with Fd 5 1 for Tec 5 tanh(q1/2Wec/2).
Once the critical section solution ĥc, c and either TS orh
Tec have been obtained, the Bernoulli constant isB
found from (A7).

The solutions at any other location are then easily
determined. Since the constant has been determinedB
at the sill section, (A5) and (A7) can be solved for ĥ
and given the local values of b and W (e.g., bE andh
WE). Again if ĥ . , the flow is separated from the lefth
wall and the solution procedure is modified by setting
ĥ 5 5 (Q/2)1/2 and solving (A7) for Te. After deter-h
mining the local solution the Froude number is found
from (A6) and checked to be sure that the solution is
subcritical (supercritical) for locations upstream (down-
stream) of the sill. Values of hR and hL are then obtained
from (A3) and (A4) and cross-channel velocity and
depth structure from (A1) and (A2), respectively.
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