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ABSTRACT

The method of lobe analysis is used and extended to analyze a time-dependent, boundary-trapped recirculation.
The recirculation gyre occurs in a numerical model of wind-driven flow around an island, but the underlying
geometry of the gyre is similar to persistent eddies such as the Alboran Gyre and the Great Whirl. Even in the
steady (weak forcing) limit, the gyre leaks fluid due to the fact that the surface Ekman pumping above it is
directed downward. The authors show that this leakage is rapidly superseded by chaotic transport into and out
of the gyre when time dependence sets in. Variations of the traditional ‘‘turnstile’’ approach to transport are
used to study the dynamics of the gyre. A Lagrangian recirculation boundary, consisting of pieces of stable and
unstable manifolds joined by a gate, allows straightforward calculation and visualization of potential vorticity
flux.

1. Introduction

Many types of recirculations are imbedded in the gen-
eral circulation of the oceans and atmosphere. Some
familiar examples are the subtropical ocean gyres, the
stratospheric polar vortex, the inertial recirculations ad-
jacent to the Gulf Stream, and topographically or coas-
tally trapped eddies such as the ‘‘Great Whirl’’, the Tsu-
garu gyre, and the Alboran gyre (Beal et al. 2000; Vin-
dez et al. 1998; Nof and Pichevin 1999).

Attempts to understand recirculation cells often center
on formulation of budgets of mass, vorticity, and other
dynamical quantities for the cell as a whole. If the flow
is time dependent, a boundary is typically defined by a
closed streamline of a time-averaged flow and budgets
are expressed in terms of fluxes of quantities across this
fixed boundary. A well-known example is the Holland
and Rhines (1980) analysis of an inertial recirculation
imbedded in a two-layer, double-gyre ocean model. In
their example the circulation is shown to be driven by
eddy thickness and vorticity fluxes.

In some applications, it may be natural to define a
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recirculation using a time varying boundary. Such is the
case when the recirculation is not easily or helpfully
described as a departure from a time mean or when one
desires a budget that is continuous in time and follows
the recirculation. It is convenient to make use of material
(Lagrangian) contours (or surfaces), as this choice elim-
inates pseudofluxes created by movement of the recir-
culation as a whole past a fixed boundary. A choice
motivated by dynamical systems theory is to construct
a boundary by piecing together special material curves
(or surfaces) called invariant manifolds. Such curves
tend to distort and form filaments as time progresses,
and eventually the boundary ceases to define a mean-
ingful recirculation. This problem can be dealt with by
regularly recomposing the boundary and, in essence,
allowing material ‘‘lobes’’ to detach or be absorbed in
the recirculation. Fluid lost or gained at the moment
when the boundary is redefined is regarded as providing
volume fluxes into and out of the recirculation. When
the time dependence is periodic, the boundary so defined
is also time periodic. The boundary redefinition is nor-
mally timed so that each outgoing lobe is compensated
by an incoming lobe. The mass exchange thereby occurs
as part of a ‘‘turnstile’’ mechanism (MacKay et al. 1984;
Rom-Kedar and Wiggins 1990). ‘‘Lobe analysis’’ has
been used to calculate the associated volume flux. Ex-
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FIG. 1. Definition sketch (a) showing closed ocean basin containing
an island with a recirculation gyre to the east. (b) The cross hatching
shows the band in which the curl of the wind stress used in numerical
calculations is nonzero. (c) The streak line patterns of a steady flow
created when a small divergence of horizontal velocity is added due
to downward Ekman pumping from above.

amples of the use of this method include investigations
of the wake cavities in the lee of cylinders (Shariff et
al. 1992; Duan and Wiggins 1997), Hadley cells (Bow-
man and Cohen 1997), cat’s eye recirculations in me-
andering jets (Samelson 1992; Duan and Wiggins 1996;
Miller et al. 1996; Ngan and Shepherd 1997; Rogerson
et al. 1999; Yuan et al. 2000, manuscript submitted to
J. Phys. Oceanogr., cellular circulations in Rossby wave
fields (Malhotra and Wiggins 1998), and subtropical and
subpolar ocean gyres (Poje and Haller 1999; Haller and
Poje 1998; Coulliette and Wiggins 2000; Berloff et al.
2001, manuscript submitted to J. Phys. Oceanogr.). The
analysis centers around the calculation of stable and un-
stable manifolds of hyperbolic trajectories that naturally
arise in the Lagrangian description of many types of re-
circulations. The methods are described at various levels
of rigor in the references just cited and in Wiggins (1992).

In addition to information about the rate of fluid ex-
change, lobe analysis provides a great deal of insight
into stretching and folding processes that can cause stir-
ring of physical properties around and within the recir-
culations. The investigator thereby gains detailed
knowledge about eddy flux mechanisms that would be
difficult to visualize in an Eulerian view of the flow
field. However, only flow fields with relatively tame
time dependence have been treated to date, for instance,
periodic, quasiperiodic, or slowly varying. The work of
Miller et al. (1997) and Rogerson et al. (1999) as well
as the extension by Haller and Poje (1998) and Poje
and Haller (1999) provide techniques for implementa-
tion in more general settings. However, it remains open
as to how effectively the techniques can be implemented
in flows that are far from steady or periodic.

Our investigation is centered on an analysis of a wind-
forced recirculation trapped to the eastern boundary of
an island in a simple model of wind-driven ocean cir-
culation (Fig. 1a). One reason for choosing this partic-
ular example is that a steady, linear limit exists in which
the properties of the recirculation can be determined
analytically. By slowly increasing the forcing we can
gradually induce time dependence leading to lobe trans-
ports. [On the other hand, the inertial gyre analyzed by
Holland and Rhines (1980) is fundamentally nonlinear
and requires a complete numerical description.] Previ-
ous studies have dealt with systems that, partly because
of their divergence-free velocity fields, allow no sources
of fluid exchange other than that due to the lobe mech-
anism. In our model, as in many oceanographic ex-
amples of interest, Ekman pumping through the top or
bottom boundaries is present. Another reason for choos-
ing the island setting is that this has been the subject
of recent attention. Pedlosky et al. 1997, hereafter
PPSH) showed recirculations to be common features of
wind-driven, b-plane motion to the east of islands. In
an abyssal ocean setting the island would be equivalent
to a deep ridge segment and the wind stress curl would
be represented by an equivalent upwelling velocity. As
will be shown in the next section, the strength of the

wind forcing is measured by the ratio of an inertial
boundary layer thickness dI to a viscous boundary layer
thickness dM. For weak forcing dI/dM is small and the
circulation is steady and nearly closed. In this limit,
there is a small leakage of mass due to surface Ekman
pumping, leading to a weakly divergent flow as sug-
gested in Fig. 1c. When dI/dM exceeds a value approx-
imately equal to 1.8, an instability and ensuing unstead-
iness sets in providing for a second source of fluid ex-
change, namely the lobe mechanism. The island setting
is not at all a crucial element to our calculations: the
underlying heteroclinic geometry of recirculations (such
as the Alboran gyre or Great Whirl) trapped to conti-
nental boundaries is often the same.

The development of unsteadiness around the recir-
culation raises three questions that are relevant to the
general issues outlined above. First, how rapidly does
the volume exchange due to the time dependence (some-
times called the ‘‘lobe’’ or ‘‘chaotic’’ transport) increase
relative to the Ekman transport? This is likely to be an
issue for any type of recirculation that comes into con-
tact with an Ekman layer, either surface or bottom. For
a wind-driven, surface Ekman layer, we will show that
the pumping increases in proportion to (dI/dM)2. On the
other hand, the volume flux associated with lobe trans-
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port will be zero below the stability threshold dI/dM ø
1.8 but increases rapidly beyond that point. By per-
forming a series of experiments with fixed dM and in-
creasing dI, we will establish that above a value denoted
by (dI/dM)c the lobe transport clearly dominates the Ek-
man pumping (see Fig. 7 in section 3c, where the Ekman
transport is given by the solid curve and the lobe trans-
port by the dashed curve).

A second question can be raised concerning the flux-
es of dynamical quantities associated with the above
transports and their role in the maintenance of the re-
circulation. The most useful budget to consider in this
regard is a form of Kelvin’s circulation theorem1 in
which the recirculation is forced by the wind driving
(whose vorticity input is transmitted down into the in-
terior by Ekman pumping), retarded by viscous dis-
sipation, and either forced or retarded by potential vor-
ticity fluxes across the outer boundary due to waves
and eddies. One of our aims is to compute this flux;
another is to set up the calculation in a way that pro-
vides intuition through visualization of the flux. One
idealization of the flux is that it takes place in lobes
of fluid that enter and leave the recirculation while
conserving potential vorticity. In such a regime, the
net flux is due to a turnstile mechanism and can be
calculated by subtracting the potential vorticity of in-
coming lobes from that of outgoing lobes. Past studies
have not pursued this idealization, in part because the
potential vorticity of fluid around the boundary is typ-
ically homogenized by the intense stretching and fold-
ing that occurs there. The net flux is therefore close to
zero. Such models typically have weak forcing and
dissipation. In our case, the potential vorticity in a
given lobe constantly undergoes O(1) changes due to
direct forcing by the wind or by diffusion into the
island boundary. Different lobes have different poten-
tial vorticity. The presence of forcing and dissipative
boundaries thus form something of a double edged
sword for the potential vorticity flux calculation. On
the one hand, fluid entering the recirculation generally
has quite different potential vorticity than fluid leaving
the recirculation, rendering the net flux levels more
significant. On the other hand, the nonconservation of
potential vorticity means that the idealization men-
tioned above is not an accurate picture of how the flux
occurs. We attempt to deal with these issues by intro-
ducing an alternative Lagrangian boundary in which
all mass exchange occurs through a narrow gate, al-
lowing the flux to be measured and visualized. We will
compare this calculation with something like a more
traditional turnstile approach.

A final issue concerns the usefulness of the method of
lobe dynamics in the presence of very strong and erratic
time dependence, as occurs in the present model when

1 The term circulation when used in connection with the term ‘‘cir-
culation theorem’’ refers to the integral of the tangential velocity
about a closed contour.

(dI/dM)2 exceeds the stability threshold by a significant
amount. Although stable and unstable manifolds can still
be found and lobe transports formally calculated, it is
less certain what one learns from the exercise. The prob-
lem hinges largely on one’s ability to define a meaningful
boundary for the recirculation and to deal with the ex-
cessive bookkeeping involved in keeping track of highly
distorted lobes. Referring again to Fig. 7, we therefore
expect that lobe analysis will be useful only within a
window indicated by the shaded band. The object then
is to determine the outer limit of the window.

Some of the advances laid out in the following pages
involve methodology and will be of interest to dynam-
ical systems specialists or to investigators hoping to
apply the methods elsewhere. Others may be interested
primarily in the physics of the recirculation, or circu-
lation around islands, and may wish to avoid the con-
siderable technical aspects of the methodology. The fol-
lowing is a road map that should make it easier for either
to navigate the paper.

Section 2 reviews the linear theory for circulation
around an island on a barotropic b plane. The conditions
favorable for the formation of a recirculation are set
down and the gyre geometry, dimensions, stability, and
leakage are discussed. A numerical model is used to
simulate the recirculation in the nonlinear range. (All
readers will want to understand this material.)

Section 3 begins with a brief presentation of the meth-
ods used for computing stable and unstable manifolds
as they are applied to these aperiodic, finite-time flows.
The discussion covers the concepts of hyperbolic re-
gions and their effective invariant manifolds. For a more
complete development of these methods the reader is
referred to earlier publications (e.g., Miller et al. 1997;
Haller and Poje 1998; Rogerson et al. 1999; Poje and
Haller 1999). In section 3b we present a laboratory rep-
resentation of the unsteady circulation with an example
of an unstable manifold visualized using dye. Section
3c describes the results of the lobe analysis in terms of
volume flux into and out of the recirculation relative to
the leakage due to Ekman effects. It will be shown that
the Ekman transport increases in proportion to (dI/dM)2

whereas the lobe exchange increases roughly in pro-
portion to [(dI/dM)2 2 (1.8)2]3.2. Readers are encouraged
to peruse the color diagrams showing the evolution of
lobes in the strongly aperiodic flow field. The pictures
give an idea of how mass enters and leaves the recir-
culation and its western boundary layer.

Section 4 discusses three attempts to gain dynamical
information from the lobe analysis. Each involves the
formulation of a vorticity budget in which the gyre is
driven or damped by the wind stress curl and by the
advective and diffusive fluxes of vorticity across the
gyre boundary. The traditional approach, in which the
boundary is defined by a closed streamline of the time-
average flow, is compared with Lagrangian boundary
formulations, the first of which computes advective flux-
es as a lobe exchange mechanism and the second of
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which forces the advective flux to occur through a gate.
By their design, the Lagrangian formulations give the
investigator more detailed information about how and
where the fluxes occur. The ‘‘gate’’ approach turns out
to be the most satisfying, although both Lagrangian ap-
proaches generally agree in terms of the sign and mag-
nitude of the advective flux.

2. The linear recirculation

a. Barotropic model

The calculations presented herein will be made using
a model of depth-independent circulation driven by a
body-force representation of wind stress. Although this
model contains no explicit Ekman layers, the Ekman
pumping rates for a surface wind stress equivalent to
the prescribed body force can easily be calculated. Mo-
tion is governed by the shallow-water momentum equa-
tions for a homogeneous ocean:

]u
1 (z 1 f )k 3 u

]t

2p |u| t
25 2= 1 1 A ¹ u 1 , (1)H1 2r 2 rH

where u 5 (u, y) is the (depth independent) horizontal
velocity, z is the vertical component of vorticity (5]y/
]x 2 ]u/]y), f is the Coriolis parameter, p is the (hy-
drostatic pressure), r is the density, AH is the horizontal
eddy viscosity, and t/r represents the wind stress per
unit mass. The ocean is assumed to have a horizontal
lower boundary and an upper boundary that is free.
Variations in the elevation of the latter will be small
compared to the average total depth so that the actual
depth H may be considered uniform. Also, the Coriolis
parameter is assumed to vary linearly in the y direction:
f 5 f 0 1 by. As shown in Fig. 1a, the ocean lies in a
closed basin containing a rectangular island or ridge
spanning a latitude band yS , y , yN.

Since u is depth independent, a transport stream-
function c can be defined such that

]c ]c
uH 5 2 and yH 5 , (2)

]y ]x

where (u, y) are the eastward and westward (x and y)
velocity components. The vorticity equation for this sys-
tem, obtained by taking the curl of (1) and use of (2),
can be written as

d t AH 4(z 1 by) 5 curl 1 ¹ c. (3)1 2 1 2dt rH H

In the interior of the model ocean we anticipate a Sver-
drup regime, c 5 cS, in which (3) is approximated by

]c tSb 5 curl . (4)1 2]x rH

The Sverdrup balance (4) may fail near lateral bound-
aries where boundary layers of two main types come
into play. The first is the inertial layer of thickness dI

5 (U/b)1/2, where U is a velocity scale based on the
Sverdrup balance (4). The second is the Munk layer,
which occurs only on western (east facing) boundaries
and has the thickness dM 5 (AH/b)1/3. A boundary layer
Reynolds number

2Ud dM I5 (5)1 2A dH M

provides a measure of the importance of relative vor-
ticity advection in comparison with dissipation within
a western boundary layer. In the present study we shall
explore values of dI/dM ranging from K1 (for which the
boundary layer is linear and frictionally dominated) to
values just over 2. Instability and subsequent unstead-
iness [probably due to something like the Munk layer
instability discussed by Ierley and Young (1991)] is ob-
served beyond dI/dM ù 1.8.

Now suppose that an x-independent wind stress t 5
t (y) is imposed and dI/dM K 1 so that the circulation
is steady and linear in the ocean interior and in western
boundary layers. One can solve for the circulation in the
usual manner by first integrating the Sverdrup relation
from the eastern basin boundary (x 5 D) to a point x in
the interior. In doing so, the condition of no normal flow
through the eastern basin boundary is imposed by assum-
ing that cS 5 0 there. This procedure results in

21c (x, y) 5 (x 2 D)b curl(t (y)/r).S (6)

If y lies in the latitude range yS , y , yN of the island,
(6) is valid right up to the outer edge x 5 xE 1 O(dM)
of the Munk layer on the eastern side of the island.
Within the Munk layer 0 , x 2 xE , O(dM) the stream-
function c departs from cS as determined by bringing
the viscous terms back into play (e.g., Pedlosky 1996).
To construct a boundary layer solution for c that satisfies
the conditions of no normal flow and no slip at x 5 xE,
the value of the streamfunction cI on the island boundary
must be determined. Under linear conditions, this value is
provided by the Island Rule (Godfrey 1989):

2 (t /r) · t dsR
C

c 5 , (7)I b(y 2 y )N S

obtained by integrating the tangential component of
(1) about the contour C shown in Fig. 1a. Numerical
tests by PPSH have shown that (7) remains robust2

2 In a series of numerical simulations based on the Munk model,
and with various island shapes and forcing, the island rule is generally
found to overestimate the actual cI by a modest 0–25%. In addition,
it is found that the overestimate is primarily due to the presence of
friction acting along the north and south boundaries of the island
and, to a lesser extent, the west coast of the island and the east coast
of the basin. Other possible sources of error, such as net relative
vorticity fluxes due to eddy shedding, boundary layer separation, and
other nonlinear processes are found to be of secondary importance.
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even when the boundary layer dynamics becomes in-
ertial [d I /dM 5 O(1)].

b. The recirculation

We are now in a position to lay out the conditions
favorable to the formation of a recirculation on the east
coast of the island. As suggested in Fig. 1, this coast
will contain a ‘‘western’’ boundary layer. The northern
and southern extents of the recirculation along the coast
will correspond to separation points of the boundary
layer. Since the net meridional transport in the boundary
layer at a particular y is given by the difference between
the Sverdrup streamfunction at the outer edge of the
boundary layer cS(xE 1 dM, y) and cI and since cS(xE

1 dM, y) ù cS(xE, y), separation occurs at those y such
that cS(xE, y) 5 cI. A recirculation requires two such

points, and since cS(xE,y) 5 (xE 2 D)b21 curl [t (y)/
r], a necessary (though not sufficient) condition for the
recirculation to exist is that the curl of the wind stress
reaches an extreme value within yS , y , yN. Since the
boundary of the recirculation is defined by the stream-
line c 5 cI, the eastern boundary x 5 xc of the recir-
culation at any y can be calculated by setting cS[xc(y),
y] 5 cI, or

21b (x (y) 2 D) curl (t (y)/r) 5 cc I (8)

in view of (6). The latitudes y1 and y2 of the separation
(or stagnation) points are therefore given by (xE 2 D)b21

curl [t (y1,2)/r] 5 cI, while the maximum eastern extent
of the recirculation is given by the maximum value of
D 1 bcI/curl (t (y)/r) in yS # y # yN.

As an example, consider the zonal wind stress t 5
(tx, 0)

t , y # y, x $ x0 b t

t p (y 2 y)0 bx t 5 1 1 cos , y # y # y , x $ x (9)a b t1 2[ ]2 y 2 yb a
0, otherwise

over a basin 2000 km wide by 2000 km long by 1000
m deep containing a rectangular island extending from
yS 5 420 km to yN 5 1600 km. The wind stress curl is
nonzero only within the band ya 5 800 km to yb 5 1400
km, with x $ xt 5 1000 km as suggested in Fig. 1b.
We take t0 . 0 so that the wind stress curl is negative
over this band, reaching a minimum value at the central
latitude y 5 1000 km. The linearity of the corresponding
solution is measured by dI/dM in which the velocity scale
U in dI 5 (U/b)1/2 is calculated from the Sverdrup re-
lation (6) as applied to the wind stress (9). By this
measure

2
d tI 05 . (10)

4/3 2/31 2d rb H(y 2 y )AM 1 2 H

Figure 2 shows the steady circulation calculated nu-
merically using the full shallow-water equations with
the setting d I /dM 5 1.0 and the Munk layer thickness
fixed at 40 km. In the Sverdrup interior to the east of
the island the meridional velocity is southward. Most
of this interior fluid flows in a circuit that circum-
scribes the island and winds its way through a variety
of boundary layers. To the immediate east of the is-
land exists the expected recirculation. The stagnation
point (x 5 xE , y 2 5 1324 km) marking the north-
western corner of the recirculation is marked by the
convergence of two western boundary layers, one
from the north (carrying fluid that has circulated
around the island) and one from the south (carrying

fluid trapped within the recirculation). The southern
stagnation point (x 5 xE , y1 5 861 km) marks di-
verging western boundary layers. The eastern bound-
ary of the recirculation extends well into the Sverdrup
interior to the east of the island.

All numerical solutions presented herein have been
computed using the Miami Isopycnic Coordinate Ocean
Model (MICOM) documented by Bleck et al. (1992).
Flow fields are spun up from rest to a steady or statis-
tically steady state, a process taking 500–1000 days.
The barotropic version of the MICOM model solves for
the free surface height and there is no need to inde-
pendently specify the pressure on the island. Thus cI is
determined without direct reference to the island rule
or any related integral constraints. In addition the grid
spacing and Munk layer thickness are fixed at 20 km
and 40 km, respectively, so that the frictional boundary
layers are well resolved. Tests of numerical accuracy
against a linear, analytical solution were performed by
PPSH (see their section 5iii) and agreement with the
predicted cI within 1% was found for sufficiently small
dI/dM.

c. Mechanisms for leakage from the recirculation

By regarding t as a depth-independent body force in
(1) we have avoided a three-dimensional aspect of the
circulation that comes into play when t is imposed at
the upper surface. In the more realistic case an Ekman
layer of thickness dE 5 (2Av/ f 0)1/2, where Av is the
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FIG. 2. The steady circulation as calculated numerically using the
full shallow-water equations with the strongly linear setting dI/dM 5
1.0 and the Munk layer thickness fixed at 40 km.

vertical eddy viscosity, forms at the surface. Motion in
the inviscid interior region below the Ekman layer is
forced by a vertical ‘‘pumping velocity’’ wE 5 curl (t/
r f 0) through the base of the Ekman layer. If Lc denotes
the characteristic horizontal length scale of the recir-
culation gyre, then the total volume flux pumped down
into the gyre is times the average wE over the recir-2Lc

culation. According to the Sverdrup balance, the total
recirculating volume transport in the gyre is approxi-
mately the Sverdrup velocity (bH)21 curl (t/r) multi-
plied by HLc. The ratio of the Ekman transport to the
Sverdrup transport is therefore O(bLc/ f 0), which is K1
in the standard b-plane approximation. The horizontal
circulations produced by the two models are nondiv-
ergent and identical to this order of approximation.
Nonetheless, it is interesting to ask what happens to the
extra mass flux pumped downward into the gyre when
a surface Ekman layer is present. Although the potential
leakage from the recirculation is small, it represents the
only mechanism for material transport between the gyre
and its surroundings when the flow is steady.

There are several possible answers to the above ques-
tion. First, the extra mass may be accepted into a bottom
Ekman layer and, from there, removed from the recir-
culation laterally. However, for realistic wind stresses
the surface Ekman pumping far exceeds the volume flux
that can be accepted into the bottom Ekman layer. The
inviscid interior region must therefore assimilate most
of the downwelled fluid. The second possibility is that
the extra mass is upwelled along the island boundary
[as described by Pedlosky (1987, sec. 4.13)] and re-
turned to the surface Ekman layer. However this situ-
ation would require a wind stress component parallel to
the island boundary, a feature absent in the present sit-

uation. The remaining possibility is that the fluid is car-
ried out of the recirculation in the inviscid interior; that
is, the recirculation is not closed. If the horizontal
streamline pattern from Figs. 1a or 2 is corrected to
account for the secondary flow, the streakline pattern
that emerges looks something like that drawn in Fig.
1c. PPSH present an example showing how this cor-
rection is calculated. For our purposes, it is only nec-
essary to observe that the ‘‘leakage’’ out of the original
recirculation is proportional to t0 and therefore to 2dI

[see Eq. (10)]. We will perform a series of calculations
in which dM remains fixed at 40 km and for which we
may therefore regard the Ekman leakage being propor-
tional to (dI/dM)2. By direct calculation using the linear
solution for the wind stress distribution (9), the volume
leakage rate (also the volume Ekman pumping transport
over the gyre) is given by TE ù 0.1 (dI/dM)2 Sv (Sv [
106 m3 s21).

If the wind stress, and therefore the value of dI, is
increased, the western boundary layer on the island will
become unstable and leakage into and out of the recir-
culation can occur as a result of the time-dependent
effects alluded to in the introduction. This process is
discussed next.

3. Mass transport across the recirculation
boundary

The theory of chaotic advection offers an effective
method for assessing transport across active flow re-
gions. In time-dependent horizontal flow fields the tan-
gling of stable and unstable manifolds of certain distin-
guished stagnation, or periodic, points in the field cre-
ates a zone in which parcel motion is chaotic. Another
view of this same scenario is that the stable and unstable
manifolds delineate regions of distinguished dynamic
fate and their tangling marks off regions of fluid that
switch from one flow regime to another, so-called fluid
exchange. This technique has led to the theory of lobe
dynamics and chaotic transport (MacKay et al. 1984;
Rom-Kedar and Wiggins; Wiggins 1992).

The use of stable and unstable manifolds as orches-
trating fluid exchange, in this way, requires the presence
of a saddle-type stagnation or fixed point in the flow
field. In this recirculation problem, as dI/dM is increased
and the time dependence of the flow becomes stronger,
such fixed points cannot be expected to occur. However,
the key local properties of stretching and compressing
in complementary directions, called hyperbolicity, can
still be present to an extent that affords an analogous
theory. While lobe dynamics has been extended to the
aperiodic case (Malhotra and Wiggins 1998), the flow
fields under consideration here persist over only finite
spans of time and theories based on the usual asymptotic
conditions are not directly applicable.

The key observation is that, although no distinguished
hyperbolic stagnation points will be present, distin-
guished invariant manifolds akin to the stable and un-
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stable manifolds of fixed points are present in even quite
complicated flow fields. This theory was first developed
in Miller et al. (1997) and Rogerson et al. (1999) and
depends on isolating localized regions, rather than
points, where there is strong hyperbolicity over the time
interval of interest. Based on the dynamics in such a
region, effective invariant manifolds can be generated
in a fashion entirely analogous to the case where hy-
perbolic fixed points, or trajectories, are present. As
viewed in the x–y plane, these manifolds are just time
slices of distinguished material surfaces in x–y–t space.
They are pinned by the hyperbolic regions and supply
transport templates as in the periodic case. The hyper-
bolic regions are found near critical points of the frozen-
time Eulerian field (see Haller and Poje 1998). In the
simulations presented here, such hyperbolic regions can
be found near where the boundary of the gyre meets
the island. Under appropriate conditions, the manifolds
are then defined to within a certain measurable uncer-
tainty (Haller and Poje 1998).

The numerical computation of the manifolds then pro-
ceeds as follows. An initial line segment is placed in
the identified hyperbolic region (for now, we denote this
region by g). The initial segment should straddle the
hyperbolic region at t 5 t0 so that the endpoints move
apart under the evolution of the flow field (this requires
aligning the segment with the ‘‘unstable’’ directions).
Iterating the line segment forward in time determines
an approximate finite-time unstable manifold for this
hyperbolic region, denoted Wu(g). Because the mani-
fold stretches rapidly it is necessary to insert additional
trajectories at intermediate times to keep the curve suf-
ficiently resolved. By construction, all the points on this
manifold return to the hyperbolic region as t decreases
to t0. Computing the stable manifold Ws associated with
a hyperbolic region g requires running the flow back-
ward in time starting from some later time t1 . t0. This
manifold will be created by propagating an initial line
segment that straddles the hyperbolic region along the
‘‘stable’’ direction at t 5 t1.

a. Stable and unstable manifolds for the recirculation

In the flows being investigated here, the boundary
used to characterize Lagrangian transport into and out
of the recirculation gyre is associated with a heteroclinic
structure connecting two hyperbolic regions of the flow
along the eastern boundary of the island. When the flow
is steady (see Fig. 2 for dI/dM 5 1.0) the recirculation
boundary is just the contour of the transport stream-
function at c 5 cI, the value of c at the island boundary.
All points on the island boundary are necessarily fixed
points because of the no-slip boundary conditions. The
distinguished points where the recirculation boundary
meets the island satisfy y x 5 0, with y xy . 0 at the
southern attachment point (p1) and y xy , 0 at the north-
ern point (p2). The linearization at p1 (respectively p2)
has a zero eigenvalue in the direction tangent to the

island boundary and one stable (respectively unstable)
eigenvalue.

For larger values of dI/dM, where the velocity field
is time dependent, the transport will be characterized
by the transverse intersections of finite-time stable and
unstable manifolds, denoted 5 Ws(g1) and 5s uW W1 2

Wu(g 2). The hyperbolic trajectory near the southern end
of the island boundary g1 is still defined on the boundary
of the island in the region where the flow separates into
fluid flowing to the north and fluid flowing to the south.
The manifold is computed numerically by initial-sW1

izing a segment of initial points at time t 5 100 days
and evolving this curve backward in time to t 5 0. The
initial line segment has one end connected to the island
boundary and is directed orthogonally to the boundary.
The Lagrangian trajectories are computed using a
fourth-order Runge–Kutta solver to integrate the nu-
merical velocity field output from the MICOM package.
The initial time t 5 0 used in the dynamical systems
analysis corresponds to 1500 days in the numerical so-
lution of the shallow-water equations. The calculation
of for the case dI/dM 5 2.25 is shown in Fig. 3a.3sW1

Here the stable manifold is shown at t 5 30 days, after
integrating the velocity for 70 days. Numerical exper-
iments using different locations and different orienta-
tions for the initial data showed negligible differences
in the global manifold, consistent with the estimates in
Haller and Poje (1998).

When the velocity field is time dependent, there ap-
pears a small eddylike structure along the boundary of
the island just to the north of the main recirculation
(labeled S in Fig. 3a). While the flow in this region is
quite slow and does not exchange much fluid with the
surrounding flow, it does have the effect that the second
hyperbolic trajectory g 2 is no longer on the boundary
of the island. Numerical experiments show that the re-
circulation boundary emanates from a region approxi-
mately 2–4 grid points (40–80 km) off the island bound-
ary where the flow coming from the north (passing
around the corner of the island) separates from the
boundary layer. It is important to note that the location
of this second hyperbolic region is really borne out by
the pattern of the tangle formed by after long in-sW1

tegration times (see Fig. 3a). The tangles are clearly
accumulating some distance from the island boundary
implying that the crucial hyperbolic trajectory must also
be in this region, modulo some uncertainty in the ini-
tialization of . The initialization for is a lineu uW W2 2

segment aligned orthogonal to the island boundary and
chosen to straddle the heteroclinic tangle formed by the
stable manifold . The calculation of for dI/dM 5u uW W1 2

2.25 is shown in Fig. 3b at t 5 70 days. Again, com-
parisons from a number of different initializations shows
insignificant differences in the eventual transport cal-
culations. Of interest in section 3c will be the principal

3 Note that in the figures the distinguished hyperbolic trajectories
are labeled as pi rather than g i(t).
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FIG. 3. For dI 5 90 km (dI/dM 5 2.25), the (a) stable manifold at t 5 30 days and (b) the unstable manifold at t 5 70 days. Thes uW W1 2

distinguished hyperbolic trajectories are denoted p1 and p2. In (a) note how the heteroclinic tangle that forms in the vicinity of p2 is accumulating
some distance from the island boundary. Here the heavy dashed line is a short segment of . In (b) the dashed lines are segments of theuW 2

stable manifolds and . The dotted lines are level contours of the transport streamfunction.s sW W1 2

intersections4 between and and the resultings uW W1 2

lobes that form as the regions bounded by the segments
of stable and unstable manifolds connecting adjacent
intersection points.

b. A laboratory example

Before discussing the results from the numerical mod-
el it is useful to see a laboratory demonstration of the
unstable manifold and associated transport across the
mean island recirculation cell boundary (Fig. 4). The
laboratory apparatus is the lid-driven sliced cylinder an-
alogue of wind-driven circulation in a b-plane basin
described in detail in PPSH. The laboratory tank con-
tains a thin north–south oriented island that spans 0.85
times the tank diameter (41.5 cm). The flow is driven
by a spatially uniform downward Ekman pumping with
dI/dM ø 2.3. Figure 4 shows a sequence of closeup video
images from a camera looking down onto the experi-
ment, with north to the top of the image. In the images
the horizontal stripe near the top of each frame is a thin
needle used to deliver neutrally buoyant dye to visualize
the flow. The dye is injected just north of the recircu-
lation zone on the eastern boundary of the island (the

4 For an intersection q, let W u[p1, q] denoted the segment of uW1

extending from p1 to q and Ws[q, p2] the segment of extendingsW 2

from q to p2. If Wu[p1, q] and W s[q, p2] intersect only at q we say
that q is a principal intersection point or pip (see Wiggins 1992).

wide vertical stripe). It then flows southward to the
northern intersection point p2 from where it moves into
the interior to define the unstable manifold. The se-
quence shows clearly the growing meanders character-
istic of the unstable manifold and the subsequent folding
of the meanders as the southern intersection point is
approached. The exchange of fluid across the mean re-
circulation zone boundary is illustrated by the filaments
that are brought into the recirculation cell [frames (c)–
(d)] and subsequently stirred within the recirculation
zone [frames (e)–(f )]. Fluid initially inside the cell is
squeezed out in the lower lobe in frames (c)–(f ).

c. Mass transport via lobe analysis

In this section we summarize the mass transport cal-
culations for the four parameter cases, dI 5 85, 90, 95,
and 100 km. In all cases the Munk layer thickness is
fixed at dM 5 40 km so that 2.125 # dI/dM # 2.50. The
mass transport will be relative to a dynamic, Lagrangian
recirculation boundary consisting of segments of stable
and unstable manifolds, as described previously.

In the following description of the mass transport
calculations, we refer the reader to Fig. 5 showing snap-
shots of the manifolds and lobes for dI/dM 5 2.375, at
times t 5 25, 35, 67, 68 days. To define a Lagrangian
boundary for the recirculation gyre, it is helpful to first
label the principal intersection points q0, q1, . . . , where
the ordering is chosen such that q0 is the pip nearest
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FIG. 4. A sequence of video images showing the unstable manifold from a laboratory experiment with
dI/dM ø 2.3. Time increases from (a) to (f ). The island width is 1.2 cm.

the hyperbolic point p1 as measured along its stable
manifold . As a means of marking events the hori-sW1

zontal line y 5 1050 km is chosen as a fixed reference
point since this section divides the gyre in more or less
equal north and south parts. All of the pips must cross
this reference line as they move clockwise around the
gyre so let ti denote the first time the intersection point
qi lies below this reference line. The first turnstile event
begins at t 5 t0, the time at which the first pip q0 crosses
the reference line, and extends to t 5 t2, the point at
which the first two lobes have crossed the reference line.
More generally, the kth turnstile event covers the time
interval [t2k22, t2k]. For the time interval t2k22 # t , t2k,
the boundary is defined as [p1, q2k22] < [q2k22,s uW W1 2

p2]. At time t2k the boundary is redefined as [p1, q2k]sW1

< [q2k, p2] and the next pair of lobes enter the turn-uW 2

stile, beginning a new turnstile event. The times t0, t2,
. . . will be referred to as the turnstile times. In Fig. 5
the first two frames show the manifolds at the start of
the first and second turnstile events, respectively. The
last two frames show the contorted shape of the recir-
culation boundary near the end of the second turnstile
interval (t 5 67) and its more symmetric shape just after
starting the third turnstile interval (t 5 68).

Let Ak denote the lobes transporting mass from out-
side to inside the gyre and Bk the lobes carrying fluid
from inside to outside. Then the kth turnstile event con-
sists of the two lobes Ak and Bk with Ak outside the
recirculation and Bk inside the recirculation for t2k22 #
t , t2k. At time t2k when the boundaries are redefined
the lobes cross into the opposite regions and there has
been an exchange of mass between the two regions.
Figure 6 compares the shape and size of the lobes at t
5 50 days for all four parameter cases. In Fig. 6 the
chaotic transport TC is computed by summing the area
from each of the Bk, multiplying by a depth of 1000 m,
and dividing by the total time covered by the sequence
of turnstile events. The results are expressed in Sver-
drups and also presented as a graph in Fig. 7. The solid
curve represents the Ekman transport estimated by in-
tegrating curl (t/r f 0) over the area of the recirculation
as defined by the linear theory. The ovals are the chaotic
transport calculations just described. The dashed curve
is the result of a least squares fit to TC 5 c1[(dI/dM)2 2
(1.8)2 , yielding c1 5 0.54 and n1 5 3.2. The criticaln1]
value at which chaotic transport overtakes the Ekman
pumping is then estimated as (dI/dM)c ø 1.96.

Table 1 lists the transport for all four parameter cases
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FIG. 5. Boundary and turnstile dynamics for dI 5 95km (dI/dM 5 2.375). At t 5 25 days, the start of the
first turnstile period, lobe A1 is outside the gyre and B1 is inside. At t 5 35, the boundary has been redefined
by switching from pip q0 to pip q2. Now lobe A1 is inside the gyre and B1 is outside and the new turnstile
is made up of lobes A2 and B2. Because of the larger turnstile lobes and longer time interval, the gyre
boundary is greatly distorted near the end of the second turnstile period. The gyre returns to a more symmetric
shape at t 5 68 when the boundary is redefined using pip q4. Note that A2 is now inside and B2 outside the
gyre.

broken down by each turnstile event identified in the
dynamical systems analysis. Here the transports are cal-
culated for each turnstile period by taking the volume
of fluid in the lobe and dividing by the length of the

time interval for the appropriate turnstile event. Note
the irregular pattern in the lobe areas and transport cal-
culations from one period to the next.

Figure 8 shows the lobe evolution for the parameter
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FIG. 6. Summary of the chaotic transport calculations at four values of dI/dM: TE denotes the leakage due
to Ekman pumping and TC quantifies the fluid exchange associated with lobe dynamics. TC is calculated as
the total volume of fluid entering the gyre (sum of the positive values in Table 1) divided by the total interval
of time covered by the turnstile events. These results are also plotted in Fig. 7.

value dI 5 100 km. This analysis captures three com-
plete turnstile events covering t 5 13 through t 5 81
days. Inspection of Figs. 5, 6, and 8 shows that fluid
entering the gyre originates from two regions: the west-
ern boundary layer approaching from the north and the
Sverdrup interior to the east. These sources are clearly
illustrated by the evolution of lobe A2 of Fig. 5 between

t 5 35 and t 5 68. At t 5 35 the (magenta) lobe has
extensions into the western boundary layer to the north
of the gyre and into the Sverdrup interior to the east.
At t 5 68 the lobe has coalesced into a less contorted
blob lying inside the gyre. Similar behavior is dem-
onstrated by lobes A1 and A3 of Fig. 8. A second feature
worth noting is that fluid drawn into the gyre flows into
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FIG. 7. Ekman transport (solid line) vs transport due to chaotic
advection (dashed line). The dashed curve corresponds to (25), which
is an approximate fit to the numerically determined transports indi-
cated by the ovals and listed in Fig. 6 (also see Table 1). The Ekman
transport TE is equal to the downward Ekman pumping velocity in-
tegrated over the fixed area of the recirculation as determined by
linear theory. Note that TE is independent of dM and is regarded here
as a function of dI/dM only insofar as dM is fixed in the numerical
experiments. The shaded area indicates the range in dI/dM over which
the method of lobe dynamics and the Lagrangian definition of the
recirculation boundary is applicable and helpful.

TABLE 1. Summary of the mass transport for each of the four
parameter cases. Lobes labeled Ai transport fluid into the Lagrangian
recirculation at the end of the turnstile interval, the Bi’s carry fluid
out of the recirculation. In comparing these to the color figures in
this section, the lobes are colored as follows: A1 red, B1 blue, A2

magenta, B2 cyan, A3 yellow, B3 green. The mass transport is cal-
culated by multiplying the lobe area by a depth of 1000 m and dividing
by the length of the turnstile interval. The transport is recorded in
Sverdrups and time in days.

Time interval Lobe Transport dI/dM

[21, 43]

[43, 66]

A1

B1

A2

B2

0.667
21.209

0.756
21.095

2.125

[18, 35] A1

B1

3.658
22.992

2.250

[35, 58] A2

B2

6.714
21.905

[25, 35]

[35, 68]

A1

B1

A2

B2

8.408
23.161

5.990
214.912

2.375

[13, 36] A1

B1

33.556
218.806

2.500

[36, 59] A2

B2

4.914
219.346

[59, 81] A3

B3

19.812
219.724

the (northward) western boundary current in the gyre
interior and is eventually wrapped around the periphery
(see the red lobes labeled A1 in each of these figures).
In no case does the chaotic transport penetrate into the
very center of the gyre.

4. Potential vorticity budget for the recirculation

The dynamics of the gyre can be characterized using
a vorticity budget in which circulation is forced by the
wind stress curl, damped by viscous diffusion of po-
tential vorticity (q 5 z 1 by) into the island and either
damped or driven by diffusive and advective potential
vorticity fluxes across the free boundary. The gyre can
be described as having an inertial character when the
advective potential vorticity flux Fq is as large as the
wind forcing, otherwise the gyre is dominated by the
same linear dynamics as described in section 2. It is
natural to think of Fq as being due to the turnstile mech-
anism since this accounts for nearly all of the material
exchange between the gyre and its surroundings. If lobe
fluid conserved q while entering and leaving the gyre,
Fq would equal the difference in area-integrated q be-

tween incoming and outgoing lobes divided by the turn-
stile time interval. In fact, q is altered by the wind
forcing and by diffusion, the latter being particularly
strong near the island boundary. Despite the presence
of strong wind forcing in these simulations, there is still
a remarkable correlation between the lobes and the
strongest changes in potential vorticity as measured
along Lagrangian trajectories. As we show next, the
fluid contained in lobes experiences some of the swiftest
q changes of all the fluid in the basin. Another way to
express this is to say that curves associated with the
strongest gradients of the field that measures the change
in q are in close correspondence with the effective in-
variant manifolds.

Let x(t; t0, x0) denote the trajectory at time t with
initial condition x(t0) 5 x0, and q(t, x) the potential
vorticity, q 5 z 1 by. For a fixed initial time t0 and
final time tf , define a scalar field, the Lagrangian po-
tential vorticity change, dq(x0; t0, tf ), which gives the
increase in potential vorticity along a trajectory ema-
nating from the initial point x0 at time t0, up to a fixed
time tf :

d (x ; t , t ) 5 q[t , x(t ; t , x )] 2 q(t , x ). (11)q 0 0 f f f 0 0 0 0

Figure 9 shows dq for dI 5 95 km and initial times t0

5 50 and t0 5 70. In both cases a grid of initial con-
ditions covering the region of the recirculation is run
forward and backward for 30 days. The function dq(x0;
t0, tf ) is plotted against (t0) when tf . t0 and againstsW1

(t0) when tf , t0. Note that some of the strongestuW 2

changes in q, as indicated by deep reds and blues, occur
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FIG. 8. Lobe dynamics for dI 5 100km (dI/dM 5 2.50). The lobes are shown at the start of each new
turnstile event. Lobes A1, A2, and A3 bring fluid into the recirculation, B1, B2, and B3 carry fluid out of the
gyre. At t 5 36 most of lobe A2 is still out of view above the northern boundary of the island.

in fluid contained in lobes. Two examples, both in the
first frame, are the thin red lobe located in the Sverdrup
interior just to the east of the circulation and the larger,
dark blue lobe extending around the northern edge of
the recirculation in the same frame. Not all lobes ex-
perience strong changes, but the strongest changes are
often associated with lobes.

It is not surprising that lobes experience preferentially
large changes in q. As Figs. 5, 6, and 8 suggest, lobes
entering the recirculation are rapidly stretched into fil-
aments that extend through the western boundary cur-
rent. Much of the material contained in lobes leaving
the recirculation also begins in the western boundary
current. Even without the aid of the dissipative island
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FIG. 9. Plots of the scalar field dq(x0; t0, tf ) as defined in (11), for the case dI 5 95 km (dI/dM 5 2.375). The initial
and final times, t0 and tf , are indicated in each figure. For tf . t0 the stable manifold (t0) is overlayed on the 2DsW1

plot. For tf , t0 the unstable manifold (t0) is overlayed.uW 2

boundary, the stretching and folding of material con-
tours associated with hyperbolic regions will tend to
enhance potential vorticity diffusion, an effect demon-
strated by Rogerson et al. (1999). Clearly, advective
potential vorticity flux is not simply a matter of blobs
of different potential vorticity passing through a turn-

stile. However, it is possible to formulate the vorticity
budget in which the advective flux occurs entirely
through a gate between and , allowing unambig-s uW W1 2

uous interpretation and visualization. We will describe
this approach and compare it to the traditional method
of using a fixed boundary and to a modified version of
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the turnstile. Each approach is based on an integrated
form of (3), restated here in terms of the velocity field
u rather than the transport streamfunction c:

d t
2(z 1 by) 5 curl 1 A curl(¹ u). (12)H1 2dt rH

We approximate the depth H as uniform and therefore,
= ·u 5 0. Let Q(R, t) denote the total potential vorticity
integrated over a region R(t) with boundary ]R. Thus,

Q(R, t) 5 q(x, y, t) dx dy 5 (z 1 by) dx dyEE EE
R(t) R(t)

b
25 G 2 y i · t ds,R2 ]R

(13)

where G 5 6]R u · t ds is the circulation about the closed
contour ]R and t is the unit tangent vector in the coun-
terclockwise direction.

a. Time-averaged recirculation

The traditional characterization of the potential vor-
ticity fluxes for the recirculation region involves defin-
ing an appropriate time-averaged recirculation region
and calculating the contributions to dQ/dt due to wind
forcing, advective fluxes across the boundary, and dis-
sipation. To identify an average recirculation region, the
velocity field is time averaged over the interval of 100
days and the closed streamline c 5 cI of the time-
average flow is used to define the boundary of the re-
circulation zone denoted R0. Integration of (12) over
the region enclosed by this boundary yields the follow-
ing expression for dQ/dt,

dQ ]q
5 dx dyEEdt ]t

R0

= 3 t
25 2u · =q 1 1 A = 3 ¹ u dx dy.EE H1 2rH

R0

(14)

Converting the right-hand side to appropriate contour
integrals yields

dQ t · t ds
5 2qu · n ds 1R Rdt rH]R ]R0 0

21 A ¹ u · t ds, (15)H R
]R0

where again the direction of integration is assumed to
be counterclockwise. The right-hand side terms in (15)
can be interpreted as sources and sinks of potential vor-
ticity for the gyre. Since the gyre boundary is fixed,

(13) implies that dQ/dt 5 dG/dt, and thus the sources
or sinks of potential vorticity act to strengthen or weaken
the circulation G of the gyre.

In the following discussion it will be helpful to use
a simpler notation for each of the terms appearing in
(14) and (15), namely,

Q9(R , t) 5 Q9 (R , t) 1 Q9(R , t) 1 Q9 (R , t). (16)0 A 0 S 0 D 0

The objective is to compare the relative sizes of each
of the three terms on the right-hand side. The quantity
Q9(R0, t) is determined by first calculating Q(R0, t) from
(13) and then numerically differentiating the time series.
The advective flux (R0, t) and the contribution fromQ9A
the wind stress (R0, t) are computed directly from theQ9S
velocity, potential vorticity, and wind fields. The value
of the dissipative term (R0, t) is implied by requiringQ9D
Eq. (15) to balance.

Results for all four parameter cases are presented in
Fig. 10, including plots for each of the four terms in
Eq. (16). The timescales are chosen to match the time
intervals used in section 4c. For dI 5 85 km the budget
is dominated by (R0) and (R0, t), implying that theQ9 Q9S D

gyre is driven by the wind and damped by diffusion of
vorticity across its boundary (primarily across the island
boundary). As dI increases, the advection of potential
vorticity (R0, t) becomes more significant, even ex-Q9A
ceeding for a time interval in the dI 5 100 case. WeQ9S
will later show that this apparently inertial character of
the gyre is simply due to the motion of the gyre vortex
as a whole back and forth across the time-average
boundary.

b. Potential vorticity advection using lobes

Now consider characterizing the potential vorticity
budget for the recirculation using the Lagrangian bound-
ary as defined in section 3c. Except for the discrete set
of times when the recirculation boundary is redefined,
this boundary is material and therefore permits no ad-
vective transport into the recirculation. For almost all
t, Eq. (15) is replaced by

dQ d
5 (z 1 by) dx dyEEdt dt

R(t)

t · t ds
25 1 A ¹ u · t ds. (17)R H RrH]R(t) ]R(t)

Using this description of the recirculation region,
transport can only take place at the discrete times chosen
to redefine the Lagrangian boundary. For potential vor-
ticity transport we choose to characterize the change in
Q(R, t) at each of the pip times, t0, t1, . . ., denoting the
times that the principal intersection points q0, q1, . . .
cross the reference line y 5 1050 km. The kth lobe
crosses the reference line during the time interval, tk21

# t , tk. The increase in potential vorticity Q(R, t) over
this time interval is the quantity,
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FIG. 10. Potential vorticity budget using a fixed boundary ]R0 based on the time-averaged flow. The vertical scale for
Q9 is in units of cm2 sec22. The four curves in each plot satisfy the equation Q9 5 1 1 .9 9 9Q Q QA S D

1 1D Q(R) 5 Q(R, t ) 2 Q(R, t ).k k k21 (18)

This change in potential vorticity can be expressed as
the sum of two terms,

1 2D Q(R) 5 [Q(R, t ) 2 Q(R, t )]k k k

2 11 [Q(R, t ) 2 Q(R, t )]. (19)k k21

The second pair of terms on the right-hand side contain
all nonadvective changes in Q(R, t) that take place over
the time interval tk21 # t , tk. The first pair of terms,
which we shall denote DkQ(L), measures the increase
in Q(R, t) due to the redefinition of the boundary at
time tk:

2 1D Q(R) 5 D Q(L) 1 [Q(R, t ) 2 Q(R, t )]. (20)k k k k21

If the boundary redefinition is thought of as a rapid but
continuous movement of ]R from one position to an-
other, then DkQ(L) results from apparent advection due
to a moving boundary passing through essentially sta-
tionary potential vorticity. The same interpretation ap-
plies to mass flux calculations involving the turnstile
mechanism. In practice, DkQ(L) is simply computed as
the potential vorticity in lobe Lk that finishes crossing
the reference line at time tk. If this lobe is carrying fluid
from outside to inside the gyre, the contribution from
advection is DkQ(L) 5 Q(Lk, tk). If the lobe is carrying
fluid from inside to outside, the change in Q(R) due to
advection is DkQ(L) 5 2Q(Lk, tk). These calculations

are summarized in Table 2 for each of the four parameter
cases. In section 4d, the results tabulated here will be
compared with the integral of as computed in sec-Q9A
tions 4a and 4c.

Note that if the turnstile times t0, t2, . . . are used to
characterize potential vorticity transport, as was done
for mass transport, the results vary considerably due to
the long turnstile intervals and the irregular pattern of
the turnstile times. The quantity Q(L) can vary consid-
erably over the period of a turnstile interval and the
transport calculations are very sensitive to how the turn-
stile lobes are defined. Calculating the change in po-
tential vorticity after each lobe crossing (i.e., one lobe
at a time) shortens the time intervals and the results are
found to be in much better agreement with the calcu-
lations using a gate in section 4c.

c. Potential vorticity advection using a gate

The third approach combines a Lagrangian descrip-
tion of the recirculation gyre with a mechanism for de-
scribing the advective fluxes continuously in time. The
boundary of the gyre will be defined using segments of
stable and unstable manifolds joined by a nonmaterial
surface, referred to as the gate. This is based on the
methods used in Poje and Haller (1999) to describe
transport and mixing in eddies where the finite-time
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TABLE 2. Summary of the potential vorticity transport as calculated
at each of the pip times: DkQ(L) is expressed in units of 109 cm2 s21,
time is in units of days.

k Time DkQ(L) dI/dM

0
1
2
3
4
5

t0 5 21
t1 5 32
t2 5 43
t3 5 56
t4 5 66
t5 5 79

0.023
20.033

0.019
20.035

0.022

2.125

0
1
2
3
4
5

t0 5 18
t1 5 29
t2 5 35
t3 5 52
t4 5 58
t5 5 71

0.054
20.172
20.097
20.144
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FIG. 11. Illustration of the recirculation boundary as defined using
the gate G[s1, u1]. This figure shows the recirculation for the case dI

5 95 km (dI/dM 5 2.375) at time t 5 50 days.

stable and unstable manifolds did not intersect trans-
versely.

Referring the reader to Fig. 11, a reference line G is
chosen at y 5 1050 km (to coincide with the reference
line used in identifying the turnstile events). Moving
along the stable manifold from where it begins atsW1

p1, the first intersection with G is identified as s1. Sim-
ilarly, moving along starting at p2, the first inter-uW 2

section with G is labeled u1. Then the gate is just the
segment of G joining these two points, G[s1, u1], and
the boundary of the recirculation Rg(t) is defined as the
union of five curves,

s u]R 5 W [p , s ] < G [s , u ] < W [u , p ] < B < B .g 1 1 1 1 1 2 1 2 2 I

(21)

The first term on the right-hand side of (21) is the seg-
ment of stable manifold connecting p1 with s1, the sec-
ond term is the gate, and the third term is the segment
of unstable manifold joining u2 to the distinguished tra-
jectory p2. The last two pieces are necessary to close
the boundary: B2 is the horizontal line segment con-
necting p2 with the island boundary, and BI is the section
of the island boundary returning back to the point p1.

For this definition of the recirculation Rg(t), the equa-
tion for dQ/dt becomes

u1dQ t · t ds
5 Q9(R , t) 5 2 qu · n ds 1g E Rdt rH]R (t)s g1

21 A ¹ u · t ds. (22)H R
]R (t)g

The first term on the right-hand side is the advective
flux5 , the second term is , and the third term ,Q9 Q9 Q9A S D

just as in (16).
While this gate technique can still produce discon-

tinuities in the definition of the boundary (see the ap-
pendix), the method does yield a nearly continuous La-
grangian description of the recirculation gyre and a
straightforward characterization of fluxes. The potential
vorticity budget described in (22) is plotted in Fig. 12
for each of the four parameter cases. Each plot includes
the four terms, Q9, , , and 5 2 qu · n ds.u1Q9 Q9 Q9 #S D A s1

Comparing these plots with the results for the static
boundary in Fig. 10, it is clear that the range of values
for the advective term is considerably smaller forQ9A
the Lagrangian recirculation.

d. Comparisons

As a means of comparing the continuous descriptions
of potential vorticity advection with the turnstile de-
scription of advection in section 4b, it is useful to con-
sider the cumulative change in Q(R, t) attributable to
advection. The continuous advective terms, (R0, t)Q9A
and (Rg, t), are integrated over t, starting at the initialQ9A
turnstile time t0:

5 Since the velocities are quite small in the vicinity of the boundary
B2, any advective fluxes across B2 are negligible compared with the
fluxes across the gate.
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FIG. 12. Potential vorticity budget for the recirculation Rg defined using the gate G. The vertical scale for Q9 is in
units of cm2 sec22. The three terms Q9, , and are calculated using the boundary defined with G[s1, u1]. The advective9 9Q QS D

flux is calculated by the methods described in section 4c.9QA

t

DQ(t; t ) 5 Q9 (j) dj. (23)0 E A

t0

The discrete transport calculations described in section
4b are summed up over the turnstile times,

N

DQ(t ; t ) 5 D Q(L),ON 0 k
k51

for N 5 1, 2, · · · and DQ(t ; t ) 5 0,0 0

(24)

where the values for DkQ(L) are taken from Table 2.
The time t0, the point at which the principal intersection
point q0 crosses the reference line G, is also the first
time for which the gate flux (Rg, t) is defined. TheQ9A
results of these calculations are plotted in Fig. 13. The
dotted line in each of the four plots is the linear inter-
polation of the discrete transport numbers defined in
(24).

The potential vorticity budgets plotted in Figs. 10 and
12 confirm that defining the recirculation from a time-
averaged velocity field consistently yields artificially
large values for the advective flux , as compared withQ9A

for the Lagrangian description of the recirculation.Q9A
Much of this large variation in (R0, t) can be attri-Q9A
buted to the large-scale motion of the Lagrangian

boundary. The most significant effect is likely due to
the fluctuations in the location of near the north-uW 2

ernmost boundary of the recirculation. Figure 14 shows
two snapshots of the Lagrangian boundary ]Rg overlaid
on the fixed boundary ]R0 illustrating the variability in
the location of the Lagrangian boundary. In particular,
note the motion of the northern boundary defined by

, which results in a significant mass transport acrossuW 2

]R0 though these fluid particles are neither entering nor
leaving the Lagrangian recirculation.

The two Lagrangian methods show similar trends6

though the gate method shows a greater variability as
the lobes alternate between incoming and outgoing flux-
es. This can be explained by the fact that as lobe Lk is
crossing the gate, the quantity Q(Lk, t) is usually de-
creasing with t. At time tk where Q(Lk, tk) is used to
estimate the advective increase in Q(R), most of the fluid
particles are at a lower potential vorticity than at the
time where they crossed the gate, resulting in smaller
fluctuations in Q(R) than that determined from the gate.
The biggest discrepancy between the two Lagrangian
methods appears in the case dI 5 90, but even this
difference is due largely to just one lobe event. The

6 Least squares fits show that the potential vorticity flux for the
gate increases in proportion to [(dI/dM)2 2 (1.8)2]2.6, whereas the lobe
flux increases like [(dI/dM)2 2 (1.8)2]3.2.
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FIG. 13. The cumulative change in potential vorticity associated with advective fluxes at the boundary of the
recirculation. The continuous cases, DQ 5 (R, j) dj, are denoted by R0 and Rg. The dotted line is an interpolationt 9# Qt A0

of the discrete case from section 4b and Table 2, DQ 5 Sk DkQ(L). The initial time t0 used in the integration coincides
with the start of the first turnstile event. All curves are plotted in units of 109 cm2 s21.

third lobe, a lobe carrying fluid into the recirculation
Rg, takes a much longer time to cross the gate (35 # t
# 52) and Q(L3) has decreased considerably by the time
the change in potential vorticity is recorded at t 5 52.
In addition to being easier to calculate, the gate method
appears to provide the least ambiguous estimates for
advective fluxes relative to a Lagrangian description of
the recirculation, particularly when quantifying fluxes
over short time intervals.

5. Discussion and summary

We now return to the three fundamental issues raised
at the beginning of this work. First, how rapidly does
the lobe (or chaotic) volume transport TC compare to
the Ekman transport TE out of the recirculation? The
dashed curve in Fig. 7, which corresponds to

2 2 3.2T 5 0.54[d /d ) 2 (1.8) ] ,C I M (25)

gives a least squares fit to the computed values indicated
by ovals. The lobe transport thus grows much more
rapidly than the Ekman transport beyond the instability
threshold value dI/dM ø 1.8. The two transports are
roughly equal at dI/dM ø 1.96, but chaotic advection
dominates for larger values. The lobe diagrams (Figs.
5, 6, and 8) show that the chaotic transport process

draws fluid into the gyre from the western boundary
layer to the north and from a particular region of the
Sverdrup interior to the east. Fluid is ejected into the
western boundary layer to the south of the recirculation.
The chaotic transport fills the edges of the recirculation
but does not penetrate to the middle. Two cautionary
remarks should be made. First, TE represents a net flux
out of the recirculation whereas TC represents an ex-
change rate. Second, TE is independent of dM and is only
regarded here as a function of dI/dM for the purposes of
comparison in a series of experiments for which dM is
fixed. Changing the value of dM could therefore shift
the value of (dI/dM)c given above, but the property of
rapid growth and dominance of the chaotic advection
process is likely generic.

The second issue was whether lobe analysis can pro-
vide insight into the dynamics of the recirculation. Our
analysis has focused on differences in the potential vor-
ticity budget that arise from Eulerian and Lagrangian
definitions of the recirculation boundary. The (traditional)
Eulerian approach uses a closed streamline of the time-
averaged flow to define the boundary, and we have tested
several Lagrangian definitions in which the boundary is
composed largely or entirely of invariant manifolds.
These choices are influenced by the fact that potential
vorticity can change considerably within a given lobe,
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FIG. 14. Snapshots of the Lagrangian recirculation Rg(t) overlayed on the time-averaged recirculation R0, for
dI 5 95 km. Note especially the variability in the location of the upper portion of the Lagrangian boundary, which
results in significant mass transport across the fixed boundary ]R0.

making it difficult to explain the potential vorticity flux
in terms of a simple turnstile mechanism. Of the two
Lagrangian schemes tried, the one that uses sections of
stable and unstable manifolds joined by a gate is the most
straightforward. Since advection can occur only as a re-
sult of flow through the gate, the advective potential vor-
ticity flux is easily calculated and visualized. A second
approach is based on redefining the boundary in such a
way that one lobe at a time is expelled or absorbed into
the recirculation. The apparent potential vorticity flux
calculated thereby agrees qualitatively with the result of
the gate method. When the boundary is redefined to ac-
commodate compensating pairs of lobes (the turnstile
approach), the apparent potential vorticity flux differs
substantially from the first two approaches due to the
significant changes in potential vorticity over the longer
redefinition time interval.

Regardless of the formulation, the wind stress curl
(measured by the contour integral of the tangential wind
stress around the boundary) is the main generating
mechanism for (anticyclonic) vorticity in the gyre. Ac-
cording to the Eulerian budget, advection of anticy-
clonic vorticity into the gyre can also be a significant
source at certain times, as evidenced by the strong peaks
in the ‘‘advection’’ curves labeled in Fig. 10. How-Q9A
ever, when a Lagrangian definition is used (Fig. 12)
these peaks in are much less pronounced and theQ9A
overall contribution of advection is diminished. This
discrepancy suggests that the peaks and troughs of Q9A
in Fig. 10 are due in part to the recirculation passing
as a whole back and forth across a fixed boundary, an
effect that one might wish to filter out.

This is not to say that Lagrangian definitions of the
recirculation boundary are always preferable. As dI/dM

increases and the eddying motions around the circula-
tion become more complex, the lobes become more dis-

torted and the bookkeeping required to perform the flux
calculations becomes cumbersome, as illustrated in Fig.
15. One may question the practical or intuitive value of
calculating dynamical fluxes across a boundary, which
might be extremely convoluted and variable in time.
These difficulties motivate the third question raised,
namely: how far can and should the method be pushed?
Our subjective answer based on the experience of gen-
erating the invariant manifolds and doing the book-
keeping is that little will be gained in the present prob-
lem beyond the value dI/dM ø 2.75. This upper limit is
based on our experience in quantifying the lobe trans-
port at dI/dM 5 2.50 as presented in this paper and
preliminary results from an additional simulation at
dI/dM 5 2.75. The calculations to extract the lobe dy-
namics become considerably more difficult as dI/dM in-
creases and the identification of a Lagrangian circulation
becomes even more ambiguous.

The range of dI/dM values over which the method of
lobe dynamics can be considered useful is indicated by
the shaded window in Fig. 7 spanning the instability
threshold dI/dM ø 1.8 and the above outer limit dI/dM

ø 2.75. The extent to which any part of the real ocean
lies within this window is unknown. For one thing, sub-
grid-scale eddies parameterized in our numerical model
may intervene in the turnstile process in unknown ways.
Or, perhaps the time dependence of persistent features
such as the Alboran and Tsugaru gyres and the Great
Whirl may simply be too complicated for lobe dynamics
to be helpful.
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FIG. 15. Illustration of how transport across the gate G[s1, u1] can differ from the description of transport via lobes.
Frames (a)–(d) depict a situation where two lobes are crossing G simultaneously. In (b) the segment G[s1, u1] fails
to capture the mass transport into the recirculation Rg associated with the second lobe A1. In (c) transport across the
gate segment G[s1, u1] includes some transport that is not associated with lobe transport (the mass flux along the
segment G[s2, u1] is not associated with either of the lobes). At the same time there is still transport across G[s3, u1],
which is not being accounted for. Frame (d) the manifolds shortly after the two intersections s1 and s2 have coalesced
and disappeared, with s3 becoming the new s1. At the point where s1 and s2 have coalesced and disappeared, with s3

becoming the new s1. At the point where s1 and s2 coalesce, the definition of the gate segment G[s1, u1] is discontinuous
as is the definition of the recirculation boundary. The integrals for F̃ in the upper right corner of each plot express
the mass flux consistent with transport via lobes.
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APPENDIX

Mass Fluxes Using a Gate

As described in section 4c, there are advantages to
defining the boundary of the gyre as segments of stable
and unstable manifolds joined by a nonmaterial surface,
referred to as the gate. Referring to Fig. 15, the inter-
sections of with the reference line G are labeled {s1,sW1

s2, . . .} where the ordering is with respect to increasing
distance from the hyperbolic point p1 as measured along
the curve (see Fig. 15). Similarly, the intersectionssW1

of and G are labeled {u1, u2, . . .} in terms of theiruW 2

distance from p2 along the curve .uW 2

There are three main pieces making up the boundary
of the recirculation Rg(t): the first is the segment of

connecting p1 to s1, the second is the gate G[s1, u1],sW1

and the third is the segment of connecting u2 to theuW 2

trajectory p2. The island’s boundary is used to close off
the recirculation. For this definition of the recirculation
Rg(t), the (two-dimensional) mass flux at any time t is
given by the integral F(t) 5 2 u · n ds. If the turnstileu1#s1

lobes are crossing the gate sequentially so that at any
given time exactly one turnstile lobe intersects the gate,
then there will be an exact correspondence between
mass crossing the gate G[s1, u1] and mass in the turnstile
lobes. In this case the boundary of the gyre and the mass
flux across G[s1, u1] will vary continuously in time with
the mass flux changing sign at t 5 t0, t1, . . . , and the
mass in lobe k can be recovered exactly by integrating
the expression for F(t) from t 5 tk21 to t 5 tk.

However, in the simulations presented here, it is pos-
sible for two turnstile lobes to intersect the gate at the
same time, and the mass flux across G[s1, u1] is not
entirely consistent with the mass flux associated with the
lobes. The way in which this usually occurs is illustrated
in Fig. 15 where the meandering shape of the stable
manifold results in part of the incoming lobe A1 beingsW1

ahead of a portion of the outgoing lobe B1 as they cross
G. Figure 15b shows the recirculation shortly after A1 has
started to cross G. In this case, accounting for all of the
mass flux in the lobes requires a second line integral for
the fluid transport in the trailing lobe A1,

u s1 2

F̃ 5 2 u · n ds 2 u · n ds.E E
s s1 3

Note that the second term in the flux calculation is in-
tegrated from s3 to s2 since this represents transport of
fluid into the recirculation. In Fig. 15c the principal
intersection q1 has crossed the gate G and along with
that, the intersection point s2 crosses over to the inside
of the manifolds. Now the flux associated with the lead-
ing lobe B1 is just the integration from s1 to s2, since
fluid particles crossing G[s2, u1] do not actually leave
the recirculation as defined using turnstile lobes in sec-
tion 3c. As in Fig. 15b, there is an additional flux term
associated with lobe A1,

s u2 1

F̃ 5 2 u · n ds 2 u · n ds.E E
s s1 3

In passing from (c) to (d) in Fig. 15, the two intersection
points s1 and s2 coalesce and disappear. At this point
the location of s1 must jump to the intersection previ-
ously labeled s3, resulting in a discontinuity in the
boundary of the recirculation and initially some loss of
symmetry as seen in part (d).

The situation illustrated in Fig. 15 can be partially
eliminated by moving the gate G farther around to the
southern boundary of the recirculation. In this region
the stable manifold is usually straight enough that the
lobes are likely to be arranged with exactly one lobe
crossing G at any given time. However, the contribution
to potential vorticity (pv) fluxes from the planetary vor-
ticity is affected by the position of G and, since one
objective is to compare this analysis with the earlier
results using the lobes, the flux calculations in section
4c are presented with G placed at the midlatitude of the
recirculation (y 5 1050 km). Moreover, computations
show that there are not significant differences between
the pv flux across G[s1, u1] as characterized using (22)
and the pv flux computed in the manner of F̃ described
in Fig. 15.
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