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ABSTRACT

The kinematics and dynamics of linear neutral modes propagating in a mean zonal jet are studied in an effort
to understand how particle pathways within and across oceanic jets, such as the Gulf Stream, are determined.
Sinuous-, varicose-, and mixed-mode waves are superposed on cusped jets that are governed by quasigeostrophic
dynamics and characterized by piecewise uniform potential vorticity. Significant excursions (greater than the
wave amplitude) of particle trajectories are found in the vicinity of steering lines that lie in the horizontal plane
of motion, particularly when the background shear vanishes locally. Monochromatic waves produce pathways
with simple periodic meandering, whereas a superposition of two waves results in chaotic parcel behavior,
consistent with a number of earlier studies based on kinematic models. By identifying the steering surface, the
surface on which the particle speed matches the speed of a propagating meander, as the site for preferential
exchange, a mixing geometry associated with baroclinic oceanic fronts is suggested.

Flows containing a continuous distribution of normal modes (a wave packet) or of nonmodal disturbances
are also studied. In the former case, chaos appears to be suppressed, and in the latter case, temporary disturbance
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amplification can lead to meridional exchange of fluid parcels.

1. Introduction

Over the past two decades, fluid pathways in the
Gulf Stream have been traced by neutrally buoyant
floats. The Lagrangian picture of the Gulf Stream that
has emerged is markedly different from the familiar
mean Eulerian description of a strong zonal jet ex-
tending essentially eastward. As seen in Fig. 1, the float
pathways are marked by large-scale meandering with
strong north-south excursions. Adding to the com-
plexity of the trajectories are the smaller scales of mo-
tion that are superposed on the meandering. Addition-
ally, trajectories are seen to track the warm and cold
core rings spawned by the stream. Testimony to the
strong temporal variability of the Gulf Stream, all of
these motions so dominate the trajectories that the
mean path of the stream is barely discernible.
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The irregularity of these trajectories has raised the
question as to what determines the pathway of water
parcels within the Gulf Stream. Because these pathways
are avenues of exchange for a suite of physical, chem-
ical, and biological properties, an understanding of the
mechanisms controlling them is essential to an under-
standing of property exchange across the Gulf Stream
and other similar oceanic fronts. Because of their com-
pelling size, it has commonly been thought that rings
were the major contributor to the exchange of prop-
erties across the Gulf Stream. However, from an anal-
ysis of Gulf Stream ’60 data, Bower et al. (1985) found
that the contribution by rings to the total exchange of
oxygen across the Gulf Stream was only 5%. This result
shifted the focus of property exchange mechanisms
away from rings to noncatastrophic events. Along this
vein, Lozier and Riser (1990) demonstrated that ex-
change of potential vorticity across a midlatitude jet
in a quasigeostrophic eddy-resolving general circulation
model was accomplished via mixing mechanisms along
simple meandering paths. Thus, the composite of tra-
jectories shown in Fig. 1, and not just those exclusively
linked to rings, are of interest for studies of property
exchange.
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FIG. 1. Composite of Gulf Stream float trajectories (from Bower and Rossby 1989).

A number of recent calculations based on kinematic
models of meandering jets have revealed striking La-
grangian properties. Bower (1991) has shown that the
geometry of parcel motion in the crests and troughs of
a steadily propagating meander depends crucially on
whether the propagation is retrograde or prograde.
Studies with two meanders of different frequency (e.g.,
Yang 1991; Dutkiewicz et al. 1993) or with a single
meander of time-varying amplitude (Samelson 1992)
suggest that parcel exchange between the core of the
jet and eddies or trapped fluid in the flanges can occur.
It is important to note that each of these studies relies
on velocity fields that are kinematically plausible but
not dynamically consistent. The fields are not solutions
to the equations of motion and do not conserve po-
tential vorticity; fluid parcels can move in chaotic ways
without having to satisfy dynamical constraints. The
constraint imposed by potential vorticity is seemingly
fundamental to the understanding of fluid pathways
in the Gulf Stream. A strong potential vorticity gradient
separates the low potential vorticity waters of the Sar-
gasso Sea from the high potential vorticity Slope waters.
In a recent analysis of RAFOS float trajectories, Bower
and Lozier (1994) conclude that the degree of float
exchange across the Gulf Stream is highly dependent
upon the existence and strength of the synoptic poten-
tial vorticity gradient. An interpretation of the float
paths based on their kinematic characteristics alone
was insufficient to predict the observed pathways. Based
on these results, the need for dynamic constraints is
clear.

Laboratory experiments with jets in annular ge-
ometries (Sommeria et al. 1989; Behringer et al. 1991)
have focused on the potential vorticity gradient and its

role as an inhibitor of mixing. Meandering jets pro-
duced by sources and sinks of fluid distributed around
the annulus are characterized by a strong potential
vorticity front situated at the jet axis. Experiments with
dye injections revealed that this front is a barrier to
mixing. These general features are verified by Behringer
etal. (1991), who attempted to reconstruct the exper-
imental trajectories by fitting an analytical form to the
measured velocity field. Their calculated trajectories
show limited regions of chaotic transport on the jet
flanges, with the jet axis acting as a barrier.

To date only a few studies of parcel pathways in a
jet have attempted to use dynamically consistent ve-
locity fields; that is, fields that obey the potential vor-
ticity equation to within some controllable approxi-
mation. Lozier and Bercovici (1992, hereafter abbre-
viated as LB) studied parcel exchange in the context
of a baroclinically unstable, y-independent basic flow,
u(z). This study demonstrated the distinction between
pathways at a steering level [ where u(z) = ¢,, the phase
speed of the dominant wave] and those away from the
steering level. It was shown that at a steering level par-
cels move unidirectionally northward or southward
away from their initial position in an eastward-flowing
jet. Away from the steering level the parcels oscillate
in the ambient potential vorticity gradient. Lozier and
Bercovici argued that although parcel behavior was ex-
plained with the kinematic properties u and ¢,, it was
the background potential vorticity gradient that con-
trolled the location of the steering level.

Because of the lack of meridional structure in the
model of LB, the steering level occurs at a constant
elevation. However, in a jet with vertical and meridi-
onal variation a steering surface will result. The steering
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surface, in general, will not coincide with a constant
level of depth but rather will coincide with a selected
isotach. Thus, in quasigeostrophic flow where the parcel
motion is primarily horizontal, parcels will encounter
steering lines and the steering effect will occur only at
discrete values of y.

The role of meridional structure has been addressed
by del-Castillo-Negrete and Morrison (1993) using
wave fields that are dynamically consistent to within
a linear approximation. Using a barotropic Bickley jet,
trajectories are calculated using a velocity field con-
sisting of the basic flow plus two linear neutral modes.
With this system, del-Castillo-Negrete and Morrison
investigate the conditions under which chaotic trajec-
tories appear and make inferences about mixing based
on these results. Also of relevance to our study are the
dynamically consistent models of meandering jets ex-
plored by Garvine (1988) and Cushman-Roisin (1993;
also see references contained therein). These studies
concentrate on the sinuous-(meandering) mode parcel
trajectories and the vertical motion produced as parcels
move through crests and troughs of the meanders. Fur-
ther remarks on these three references and their rele-
vance to the present investigation follow in section 3.

The work we present generalizes the work of del-
Castillo-Negrete and Morrison (1993) to include a
simple form of baroclinicity and more general wave
forms. The primary objective of our work is to deter-
mine the general characteristics of parcel trajectories
throughout the jet and to understand how the ideas of
parcel exchange developed by Lozier and Bercovici
(1992) apply to a system with lateral shear. We expect
fundamental differences when the plane of parcel mo-
tion no longer coincides with a steering surface. We
explore these differences over a range of conditions.
Specifically, we determine particle behavior in sinuous-,
varicose-, and mixed-wave modes, distinguish between
monochromatic waves and wave packets, address both
modal and nonmodal disturbances, and examine parcel
behavior in shear and local no-shear fields. Although
the complexity of the Gulf Stream front warrants an
investigation of pathways based on fully nonlinear and
unstable wave dynamics, we cautiously approach this
intractable limit by first investigating the pathways in
linear, neutral wave fields superposed on a quasigeo-
strophic jet. The reasons for this simplification are
twofold: First, we are able to find analytic solutions
with these idealizations, and second, we believe that
unscrambling the complexity of the fully nonlinear and
unstable wave field will be aided by an understanding
of a simpler system.

Additionally, we acknowledge that within linear
wave fields potential vorticity is not exactly conserved.
However, as with del-Castillo-Negrete and Morrison
(1993), potential vorticity is conserved to within an
approximation that depends on the ratio of wave am-
plitude to wavelength, a ratio that can be controlled.
In contrast, potential vorticity is generally not con-
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served to any approximation in kinematic models. Our
choice of quasigeostrophic dynamics for modeling
strongly inertial jets is justified by numerous previous
works that have demonstrated its ability to capture the
essential features of observed jets, such as the Gulf
Stream.

In section 2 the kinematic considerations of flow in
the vicinity of steering lines is developed. Section 3
details studies of monochromatic waves superposed on
a piecewise-uniform potential vorticity jet, with the ex-
tension to wave packets covered in section 4. For com-
pletion, the behavior of pathways due to nonmodal
disturbances (the continuous spectrum) is explored in
section 5. A summary is given in section 6.

2. General considerations

a. Trajectory equations, steering surfaces, and
steering lines

Consider a zonal, quasigeostrophic jet with dimen-
sionless eastward velocity U(y, z). Small disturbances
to the basic streamfunction of the form Re[®(y,
z)eik(x—ct)] obey

a[1od
(U - C)[g; (E:";) +
U 9 (19U _
+[6—6—J}2—5E(§E)]‘1’—0 (2.1)

(Pedlosky 1979), where S = (N*D?)/(f3L?) and 8
= B¢L?/U and the remaining notation and nondi-
mensionalization are standard. The flow is confined
between the upper surface z = zr-and bottom z = nz(y),
and the corresponding linearized boundary conditions
are

N

%P
?

0P dng AU
—c)— — ——|® = = 2
(U c)az+[Say az]<1> 0 (z=0) (2.2)
and
a®d 99U
(U_C)E_Eg(b_o (z=2z7). (2.3)

In addition, the jet lies within a channel having vertical
walls at y = +w, where w may be infinite. The corre-
sponding boundary conditions are

B(+w, z) = 0. (2.4)

Quasigeostrophic theory assumes that the slopes of
isopycnal surfaces and of top- and bottom-boundary
surfaces are vanishing small. As a consequence, the
motion of fluid parcels is approximately horizontal and
quasigeostrophic potential vorticity is conserved fol-
lowing the horizontal geostrophic velocity. To remain
consistent, fluid trajectories must be calculated on the
basis of the horizontal velocity; accounting for the small
vertical velocity would result in departures of negligible
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importance. For a fluid parcel with Lagrangian coor-
dinates (X, Y') moving on a plane, z = const, the tra-
jectory is determined by

ax _ 89
- Uy, z) 3y (X,Y,z,1) (2.52)
and
dy _ o
dt - 3X (X7 Y; z, l): (25b)

where ¢ is the perturbation streamfunction for the full
(nonlinear) disturbance field. For small-amplitude
wave motion, ¢ is expanded in integer powers of a (a
is a measure of the wave amplitude), the leading order
contribution of which is a Re[®e**~)]. The temp-
tation to expand Y similarly should be resisted as
northward parcel excursions much larger than the wave
amplitude are possible, as will be shown later.

Although the wave phase speed ¢ may be complex,
the goal of the present discussion is to analyze the case
of neutral waves (real c). We will begin by analyzing
the case of a monochromatic neutral wave with the
form ¢ = a®(y, z) cosk(x — ct) and later consider
sums of such waves (or corresponding Fourier inte-
grals). For a single wave, it is convenient to view the
motion in a frame of reference moving with speed c,
so that the flow appears steady. Defining X,, = X — ¢
and substituting the expansion for ¢ into (2.5a,b) leads
to

dX__,,, =U(Y,z)—c+0(a)

7 (2.6a)

and

% = —ka®(Y, z) sinkX,, + 0(a?).

In the model of LB, where U is y independent, the

wave modes are not constrained to-satisfy any lateral
boundary condition and therefore ¢ is y independent.
Therefore, at the steering level [the depth, z, where
U(z) = c], X,, remains fixed, and according to (2.6b),
| Y| grows linearly with time. The parcels therefore
execute straight trajectories and move off to y = oo
(according to the sign of sinkX,,). Although there is
no meridional structure to define a jet, the cross-stream
motion implies the potential for parcel exchange. Thus,
parcel exchange is confined to the steering level because
at all other levels X, varies linearly with time such that
Y is periodic.

To what extent do the results of LB apply when U/
dy # 07 Although determination of ® in such cases is
nontrivial, we may learn a great deal about the resulting
trajectories from (2.6a,b) for rather general ®. To begin
with, we observe that the fixed points (zeros of the
right hand sides) occur where

Uy, z)=c

(2.6b)

(2.7)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25

and
kX, =nr (n=0,=%1,%2, «:). (2.8)

According to (2.7), the fixed points occur on a steering
surface z = z,(y). As shown in Fig. 2, intersections
between the steering surface and horizontal planes z
= z, occur along one or more steering lines y = y,. For
example, the basic velocity Uy = e™ ~z* has steering
surfaces consisting of circular cylinders, y? + z2 = con-
stant. For a wave having2 c> 0, the steering lines at
level z, are given by e Vs7?¢ = ¢, Fixed points occur
along the steering lines at the spacing = /k, corre-
sponding to the locations of crests and troughs of the
wave.

Since the parcel motion is horizontal to lowest order,
determination of the trajectories is similar to that for
a z-independent flow. We simply treat z as a parameter
in (2.6) and analyze the solutions near the fixed points.
The structure of the trajectories near such points has
previously been discussed in barotropic models (e.g.,
del-Castillo-Negrete et al. 1993). In the next section
we review and augment that discussion and explore an
exceptional case that arises when a steering line occurs
at a point of grazing contact between the steering sur-
face and the horizontal plane in question (at zy, y
= 0 in Fig. 2).

b. Trajectories for the case dU /Ay + O at 'y = y;

To determine the qualitative behavior of a parcel in
the vicinity of a fixed point (X,,, = nw/k, Y = y,), let
£¢= (X, — nn/k),n = (Y — y,), and assume that |£|
< 1 and || < 1. Substitution into (2.6a,b) leads to

v A
y= in‘A“’/’ \ /

U (

Zz

y
X

F1G. 2. Definition sketch showing a steering surface and steering
lines in a jet with horizontally and vertically decaying velocity. A
vertical section of the velocity profile U(y, z) is shown at y = 0. We
imagine that the velocity also decays with increasing |y| (not shown).
The parabolic lines coincide with the steering surface U(y, z) = ¢,

which intersects the plane z = z, along the steering lines y = %y,.
The steering surface extends only to the elevation zy.
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Xm=X—Ct

F1G. 3. Schematic sketch showing parcel trajectories near a steering
line in horizontal section. The arrows indicate the basic shear, which
is nonzero at the steering line. The trajectories are shown in a frame
of reference moving with the wave.

d U
—d—f =n 5 (2.93)
and
dn 2
@ —(—1)"k*®(ys, 2)E, (2.9b)

where dU/dy, denotes (dU/3y),-,,. It will be shown
shortly that n = 0(a'/?) so that the previously neglected
0(a) terms in (2.9a) are, in fact, negligible.

Substitution of the solution ¢ = 4e” and n = Be”
into (2.9a,b) leads to

—1)"ak*®(y;, z)(OU/dy;).  (2.10)

The fixed points are unstable when ¢ is real and stable
when ¢ is imaginary. In the former case there are con-
verging and diverging trajectories from the fixed points,
and in the latter, the trajectories form closed orbits
about the fixed points.

As will be shown in later sections, the stable and
unstable fixed points are generally centered in a het-
eroclinic “cat’s eyes” pattern. A qualitative represen-
tation for the case in which dU/dy, > 0 is shown in
Fig. 3. In interpreting this and later trajectory diagrams,
it is important to remember that the closed curves
forming the cat’s eyes are an artifact of the moving-
coordinate system. Plots of the corresponding parcel
paths in a rest frame would yield open curves. Nev-
ertheless, Fig. 3 describes the novel feature of trajec-
tories near a steering line: parcels having relatively large
separations in y can be brought into close proximity.
For example, parcels originating at A and B will come
into close contact when they are near the unstable node
C, whereas the parcels originating at D and E maintain
roughly the same y separation. The implications for

o= —
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parcel exchange are therefore clear; if slight deviations
from the base trajectories occur near the unstable node,
the parcel may be diverted to an entirely different path
and may be carried large meridional distances from its
undisturbed path. The deviations may be caused by
nonconservative processes such as diffusion (Dutkie-
wicz et al. 1993) or by secondary waves (del-Castillo-
Negrete et al. 1993; Behringer et al. 1991). (An example
of the latter is given in section 3.) These studies suggest
that the extent of mixing is sensitive to the particular
mode interaction or diffusion present. Alone, the tra-
jectories of Fig. 3 show no parcel exchange, and this
distinguishes the result from that of LB. The meridional
gradient of U ensures a nonzero U — ¢ along the tra-
jectory, and thus the unidirectional meridional move-
ment noted by LB is inhibited.

Since the unstable fixed points provide possible cen-
ters of parcel exchange, it is worth understanding the
associated kinematics on physical grounds. Suppose
that ®(y;, z) is positive at a particular z, so that the
perturbation pressure, a®(y;, z) coskX,,, is positive at
the fixed points X,, = nw/k (n even) and negative for
odd ». Consider the point n = 1, which has negative
perturbation pressure and is therefore associated with
cyclonic perturbation (or wave) vorticity. Referring to
Fig. 4, a parcel originating at point P; to the northeast
of the fixed point will tend to move northward due to
the anomalous positive vorticity. As it moves a distance
7’ northward, it is advected a distance £ eastward by
the basic velocity. Subsequent northward displacement
(n%) moves the parcel into latitudes of even stronger
eastward basic flow, and the parcel is carried away at
an increasing rate. A similar effect takes place in quad-
rant 3, this time with motion toward the southwest.
(Again the reader is reminded that “east” and “west”

uly)
2 4 1
P, EIZ
. 1 1 ! —
T‘a i. ] "J"tng
| s
' . M
g, P
/.~ fixed point -t
%‘rturbation
velocity
3 4

F1G. 4. Schematic sketch showing the direction of parcel motion
in quadrants 1 and 2 in the vicinity of a fixed point with finite shear.



1456

are directed relative to our moving frame.) In quadrants
2 and 4, basic advection and perturbation vorticity
combine to bring parcels closer to the fixed point. At
point P,, for example, the southward motion of the
parcel, induced by the cyclonic vorticity, is accompa-
nied by eastward advection.

In general, the pattern of outward movement in two
opposing quadrants accompanied by inward move-
ment in the remaining two quadrants arises whenever
the vorticity anomaly due to the wave opposes the basic
vorticity. When the two vorticities agree in sign, the
parcels orbit the fixed point, as can be shown by similar
arguments. Equation (2.10) is simply a mathematical
Jjustification of these physical arguments, the right-hand
side being positive when the sign of the pressure anom-
aly [(—1)"a®] opposes the sign of the basic shear
aU/dy;.

The width of the cat’s eyes pattern (twice the distance
A in Fig. 3) can be estimated from (2.6a) and (2.6b).
Dividing the latter by the former results in

dy _ —~ka®(Y, z) sinkX,,
de U(Y, Z) - C

(2.11)

In the case that the cat’s eyes width is much less than
the scale of y variation of U and $, we may approximate
® by ®(y;, z) and U — ¢ by the leading term in its
Taylor expansion about Y, namely Y (dU/dy;). In-
tegration of (2.11) from an unstable node to a point
w/ 2k downstream yields

_ [ 2a%(y;, 2) ]”2
- (6U/6J’)y=ys '

It is important to note that 4 ~ a'/“, so that linear
waves (a <€ 1) create cat’s eye patterns (and possible
parcel exchange ) over much greater meridional extent
than the streamline displacements. As the local merid-
ional shear dU/ 3y, decreases, A increases, and the me-
ridional band occupied by the cat’s eyes grows. As dU/
dy, — 0 (over the entire domain), the cat’s eyes fill
the entire plane, and the (moving frame) trajectories
become aligned north and south, as in LB.

(2.12)

/2

c. Trajectories for the case dU/dy = O at y = y;

When dU/dy = 0 at the fixed point, the arguments
of the previous section must be altered. One must now
consider the small changes in U due to the curvature
U,,, so that (2.9a) is replaced by

dg¢ 1 ,9%U

a 27 ay?’

[We show later that n2 = 0(a?/?), so that the neglect
of higher-order terms in the wave amplitude is consis-
tent.] If (2.13) is multiplied by £/(8*U/3y?) and (2.9b)
by #2/3(—1)"ak*®(y;,, z) and the two results are sub-
tracted, we find

(2.13)

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 25

_ 3(=1)"ak*¥(ps, )7
37U/ oy? ’

n=|co (2.14)
where ¢, is a constant. The trajectories for this case
form upward and downward cusps at the fixed points,
as shown in Fig. 5 for the case 2U/dy? > 0 (changing
the sign of 32U/dy? merely changes upward pointing
cusps to downward-pointing cusps, and vice versa).

The width of the meridional band of cusps (the dis-
tance 4’ in Fig. 5) can be estimated by approximating
U — cas 1»Y?3?U/dy? in (2.11) and repeating the
procedure used to obtain the cat’s eyes width. The re-
sult,

(2.15)

AI ~ [Gaé(ys? Z)]l/3,

3%U/dy?

shows that the meridional extent of the cusped trajec-
tories is now 0(a!/?) and therefore greater than the
case of finite horizontal shear. Despite this increase in
amplitude, the potential for mixing in this case of zero
local shear is possibly diminished from the case with
nonzero local shear. This is due to the difference in the
geometry of the trajectory patterns. As seen from Fig.
S, trajectories that are bringing waters from north of
the steering line are displaced one-half of a wavelength
from those bringing waters from south of the steering
line. This contrasts with the situation for local shear,
where the convergent trajectories approach the steering
line at the same place, thus bringing waters across the
jet into closer proximity.

d. Conditions for the existence of steering lines

According to (2.1), the condition U — ¢ = 0 can
occur only in special circumstances for neutral modes.
[Corresponding restrictions occur in the boundary
conditions (2.2) and (2.3) if U — ¢ = 0 at the upper
or lower boundary.] If the perturbation potential
vorticity 4(S~'9%/92)/9z + 3°®/dy? — k*® is nonsin-
gular at the steering line, then the expression (4Q/
W)P{=[B—9*U/3y* — 8/3z(S~'8U/3z)]1®}, must
vanish there. (Here Q is the potential vorticity of the
unperturbed flow field.) To meet the latter condition,
it is possible that ®(y;, z) could vanish; however, that
would be tantamount to having a rigid wall with no

uy)

FI1G. 5. Moving-frame trajectories near a steering line with
zero shear but finite shear curvature.
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normal velocity at the steering line, and no cat’s eye
patterns would exist there. Even if such modes oc-
curred, they would be of no interest from the standpoint
of parcel exchange. The more relevant situation would
be that Q/dy vanish, and we now discuss the likeli-
hood of this circumstance in more detail.

In barotropic flows, dQ/dy may vanish at one or
more values of y, corresponding to one or more values
of U. If the basic flow has continuously varying Q and
reasonably simple structure, dQ/dy will vanish at just
a few values of U, and possible neutral wave phase
speeds will be limited to these U values. Thus, the
number of neutral waves with steering lines (and with
® # 0 at the steering lines) is very restricted. An ex-
ception occurs when Q is piecewise uniform, and we
give some examples in the next section.

For the case of baroclinic flow, in which the positions
of the steering lines vary with z, the situation is even
more restrictive. In order for a steering surface with
nonzero ¢ to exist, the conditions dQ/dy = 0 and U
= constant must hold at all locations on this surface.
Although it is possible to contrive a basic flow with
this property (Charney and Stern 1962), it is better to
appeal to some physical process that might predispose
the basic flow to have this configuration. It is plausible
that critical-layer processes brought into play by a
forced wave would homogenize the potential vorticity
along a surface of U = constant. Haynes (1989) and
Haynes and Mclntyre (1987) have demonstrated that
this process can act in a barotropic flow, and it is pos-
sible that corresponding processes could take place in
baroclinic flows.

The third condition allowing U — ¢ = 0 in (2.1),
(2.2), and (2.3) is that the perturbation potential vor-
ticity is singular, as occurs in the continuous spectrum.
This case is discussed further in section 5.

3. Examples of trajectories for monochromatic
waves

Having focused to this point on the kinematics as-
sociated with steering lines that intersect planes of par-
ticle motion, we now investigate particle trajectories
from dynamically consistent flow fields. Because of
their analytical tractability, we have chosen to use mean
flows with piecewise-uniform potential vorticity. These
jets are able to support neutral modes having meridi-
onal structures that can be described as sinuous (leading
to a meandering behavior), symmetrical (leading to a
varicose behavior), or mixed (containing elements of
both). In this section we compute examples of trajec-
tories for waves of each type.

a. Sinuous Mode

The cusped jet of Pratt and Stern (1986), which
arises in an equivalent barotropic (or 11/ layer)
model, serves as a simple starting point for our ex-
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amples. The potential vorticity in the active layer is
assumed to be piecewise uniform, having (nondimen-
sional) value g, to the south of the line y = 0 and g,
+ 1 to the north, and the basic velocity is

U(y) = eV, (3.1)

This jet is linearly stable, and the normal modes are
described by the disturbance streamfunction

¢ = ae W cosk(x — ct), (3.2)
where
c=1—(1+k*»"12, (3.3a)
and
k= (1+k»"2, (3.3b)

where a and k are the wave amplitude (assumed <1)
and wavenumber, respectively.
The trajectory equations for the flow are

ax,
dr

=e ¥l —¢ (3.4a)

and
ay

dt

According to (3.1), the cusped jet has a velocity
profile that decays to the north and south of the cen-
terline (¥ = 0) over the Rossby radius of deformation
(= 1 in the current nondimensional units). When the
potential vorticity front forming the jet centerline is
disturbed, vorticity anomalies are set up, leading to a
restoring effect similar to that which acts in an ordinary
Rossby wave. The disturbances decay meridionally
over a scale x ™!, The decay is symmetric about the jet
axis, as is the corresponding meridional velocity. The
disturbance may therefore be classified as sinuous. Ac-
cording to (3.3a), the phase speed ranges from zero
(for long waves) to unity (for short waves), which is
also the range of variation of the basic velocity. For
this jet then, steering lines exist for all waves because
at each steering line the condition dQ/dy = 0 is ob-
viously satisfied. The only y that cannot be a steering
line is the centerline (¥ = 0) of the jet, where 6Q/dy
is essentially infinite. This exclusion is consistent with
the fact that jet centers have been described as barriers
to parcel exchange both experimentally (Behringer et
al. 1991; Sommeria et al. 1989) and observationally
(Bower and Lozier 1994).

Figure 6a shows the trajectory field for the wave
k = 1 and a = 0.01, which has steering lines at y;
~ =*1.23. Characteristic of sinuous modes, the two
rows of cat’s eyes are 180° out of phase. Note that
the amplitude of the wiggles of the centerline trajec-
tory, which we anticipate to be 0(a), are in fact con-
siderably smaller than the amplitude of the wiggles

= —kae """ sinkX,,. (3.4b)
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FIG. 6. (a) Moving-frame trajectories for a sinuous wave in —|y|
acusped jet: U(y) = e, k= 1,a =0.01, and ¢ = 0.29, (b) Fixed-frame
trajectories for a raft of floats launched at y = 0 for 1 = 0 with the
wave given in (a). The total elapsed time ¢ = 150 is the same for each
trajectory.

of the trajectories bordering the cat’s eyes, anticipated
to be 0(a'/?).

Figure 6b shows the trajectories executed by a num-
ber of floats launched over a range of latitudes. The
results were obtained using a Matlab fourth-order
Runge-Kutta scheme, with an error tolerance of 107°.
The float trajectories are plotted in a rest frame (X
rather than X,,,), so that no closed orbits exist. All float
paths were computed over a set time interval, and
therefore, because of the velocity shear, the distance
traveled in that time differs with latitude. The pattern
created by the differing float pathlengths is simply a
reflection of the velocity pattern. Paths also differ in
terms of wavelength and amplitude. Floats launched
near the centerline are characterized by smaller am-
plitudes and shorter wavelengths, with the former due
to the fact that the more rapidly moving floats are able
to overtake and pass through more waves in a given
time. Due to the symmetry of the jet, any two floats
launched at equal but opposite distances from the
steering lines have trajectories with identical wave-
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lengths, yet they are.out of phase. The maximum am-
plitude is reached near the steering line.

When floats are launched near or within the cat’s
eyes, the details of the motion are sensitive to small
departures from the monochromatic trajectory field.
As a demonstration, we add to the Fig. 6a wave a sec-
ondary wave of smaller amplitude and length. Figures
7a-c show the trajectories of parcels launched at Ay
= 0.005 and Ax = 0.0015 to the northeast of one of
the southern saddle points. The second wave has a
wavenumber k = 2 and corresponding amplitudes of
1073, 107%, and 1072, for Figs. 7a,b,c, respectively. As
the secondary wave amplitude is increased, the trajec-
tories begin to cross the critical line (y ~ —1.25) and
take on increasingly irregular appearances.

In their study of neutral waves of the Bickley jet,
del-Castillo-Negrete and Morrison (1993) show that
chaos is generally restricted to the region near the
critical line, provided that the wave amplitudes are
small. For a superposition of two neutral waves, cha-
otic regions will lie about the critical lines of each
wave and will be separated from each other by bands
of regular trajectories. If the wave amplitudes are
increased beyond infinitesimal levels, the regular
bands, which act as barriers, begin to disappear,
eventually resulting in a phenomenon known as res-
onance overlap.

Another phenomenon that can broaden the area
of chaos is seperatrix reconnection, in which the am-
plitude of one wave is sufficiently large that sepera-
tricies from different critical lines of that wave be-
come attached. Although our solutions display res-
onance overlap and separatrix reconnection, we
caution that both usually require amplitudes larger
than those that can be substantiated by a linear ap-
proximation. Although some fully nonlinear solu-
tions exist exhibiting Lagrangian chaos in simple
vortex structures (e.g., Polvani and Wisdom 1990)
none apparently have been found for meandering
jets.

We also note that fluid parcels do undergo weak
vertical excursions. At the interface separating up-
per and lower fluids, for example, the vertical ve-
locity is

w=—¢ %? = —eakce " sink(x ~ ct),

where e is the vanishingly small Rossby number. In
our frontal model, where meander crests lie at k(x
— ¢t) = nw, downwelling occurs to the right of crests
and to the left of troughs, or what is sometimes re-
ferred to as the front side of the meander. Upwelling
occurs on the “back side” of the meander, to the left
of crests and to the right of troughs. For any fixed x,
the vertical velocity has the same sign to the north
or south of the front. These patterns, which are in-
dicated in Fig. 6a, are consistent with the upwelling
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patterns computed in models due to Garvine (1988)
and Cushman-Roisin (1993) and with Gulf Stream
observations by Bower and Rossby (1989). In non-
quasigeostrophic models where the vertical velocity
could be large enough to influence horizontal trajec-
tories by moving parcels in a vertically sheared hor-
izontal velocity field, the general character of the
chaos might be considerably different than the pic-
ture presented here.

b. Varicose mode

Adding a second potential vorticity front gives the
model considered in ( 3.1) an extra degree of freedom,
allowing two meridional modes for each k. The basic
velocity,

U(y) = [e—lvall — re—ly—LzI], (3.5)

has cusps at two potential vorticity fronts, y = L, and
y = L,, with L, > L,. The parameter —r is the ratio
of the potential vorticity change across y = L, to the
change across y = L,. The wave-amplitude function is
given by
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F1G. 7. Fixed-frame trajectories for a parcel in the cusped
jet in the presence of two modes: k; = 1, ¢; = 0.0l and ky =
2,a, = 107%in (a), @; = 10~*in (b), and a, = 1072 in (c).

(e <O-LD (y > Ll)
(1-— be‘“\‘L)e‘U"L‘) + pe <L
a®(y) = ay (Ly<y<Ly) (3.6)
[(1 _ be—xAL)e—xAL + b]ex(y~L2)
[ (v < L),

where
b=e1+«k(c—1+re 2y},
AL=1L,—L,,
and c is determined by
= =re+1-kNHe—xe > —7)
+(1—re ) (e =r+ )
— k(1 —e ¥y =0, (3.7)

The derivation of these results and additional details
can be found in Pratt et al. (1991).!

! Readers who wish to investigate Pratt et al. (1991) should note
that the variables 2¢, 2U, [/,, a, and 4 in that reference should be
replaced by the present variables ¢, U, «, b, and a, respectively.
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We can investigate a variety of stable and unstable,
symmetrical and asymmetrical jets by varying the pa-
rameter r. The flow is stable for r < 0, and the corre-
sponding neutral waves all have steering levels, as be-
fore. First consider the case r = —1, for which the basic
velocity U(y) = [e”" 1! + 7177217 is distributed
symmetrically about the line y = (L, + L,)/2, as shown
in Fig. 8a. The phase speed for this case is given by

(3.8)

where “+” indicates a varicose mode and “—"’ a sym-
metric mode. The amplitude function for the former
case is

c=e A 4+ 1 — T lemrAL

’

e *—L)

a®d(y) = a{ [Le <07 — L)) [r e — ]

[—e™4f £ 1]e /[ — 1]
(3.9)

Varicose modes have ¢ ranging from ¢ 2*L to e 4L

+ 1, whereas U(y) ranges from 0 to ¢ 2L + 1, so that
all waves have steering lines but each value of y is not
necessarily a steering line.

A peculiarity of the case r = —1 is that the basic
velocity profile has a relative minimum at the centerline
and maxima at y = L, L,. As cis varied, it is therefore
possible for two to four steering lines to occur, de-
pending on whether c is less than, equal to, or greater
than the centerline value of U. The first possibility is
the most natural, as geophysical jets generally have one
velocity maximum and therefore at most two steering
lines. The case of three steering lines is less likely but
extremely interesting as the basic shear vanishes at the
middle steering line (the exceptional case discussed in
section 2c). We will therefore present one example
having two steering lines and one with three steering
lines. The case of four steering lines will be skipped.

Figure 8a shows the trajectories for a varicose wave
with k = 1 and a = 0.01. In contrast to the sinuous
mode (Fig. 6a), the two rows of cat’s eyes are in phase,
and the centerline trajectory is straight. Figure 8b shows
the trajectories for a raft of floats launched at various
values of y in the varicose wave field. As before, floats
launched near the cat’s eyes may execute irregular tra-
jectories, provided that some additional time depen-
dence or noise is introduced.

The interfacial vertical velocity for the varicose mode
is

w = —eakc{+} sink(x — ct),

where {+} is the expression in (3.9) evaluated using
the “+” sign. As labeled in Fig. 8a, w reverses sign on
either side of the centerline of the flow. To the north
of the centerline, upwelling occurs to the left of cat’s
eyes and right of saddle points (corresponding to the
left of troughs and right of crests of the north front).
Downwelling occurs to the right of cat’s eyes and left
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F1G. 8. (a) Moving-frame trajectories for a varicose mode in a jet
with a double cusp (and r = —1). The wave is given by k = 1, a
= 0.01, ¢ = 0.8326. (b) Fixed-frame trajectories for a raft of floats
launched at y = O for ¢ = 0 in the wave field of (a). The total elapsed
time, £ = 150, is the same for each trajectory.

of the saddle points. To the south of the centerline the
pattern is reversed.

Sinuous modes with two steering lines can also be
found for the case r = —1. However, the trajectory
patterns are qualitatively the same as those of the single
cusped jet (Fig. 6a). The sinuous mode does play an
important role in the discussion of the case of three
steering lines, which follows next.

c¢. Sinuous and varicose modes for the case dU /dy;
=0

It is possible to fix k such that U = ¢ at the centerline
latitude of the jet, where dU/dy = 0. For a varicose
wave, in which v is symmetric about the centerline,
there is no meridional motion there and the nearby
trajectories are parallel, east—west lines. [Since ®(y;)
= ( for this case, the cat’s eye width A’ is zeroin (2.14).]
The trajectory field for this case is qualitatively the same
as in Fig. 8a.

A more interesting situation arises when the wave
has three steering levels and a sinuous structure. Here
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the “—" sign must be used in (3.7) and (3.8) to obtain
the dispersion relation and amplitude function. Ac-
cording to (3.7), c ranges over zero to e~ L + 1, which
is also the range of variation of U(y). Choosing k
= 0.3 and AL = 1 gives a wave with steering levels at
y =~ +0.6 and y = 0. In contrast with the varicose wave
case, the meridional velocity is finite at y = 0, and
cusps form at the corresponding critical points as shown
in Fig. 9. The wave amplitude « is 0.01 for this case.
Notice that the trajectories near the cusps execute
somewhat larger meridional excursions than those near
the cat’s eyes, a consequence of the a'/3 width scale.
Unlike the case with cat’s eyes, however, all trajectories
are contiguous and do not appear to offer the same
opportunity for exchange.

d. Mixed mode

When —1 < r < 0, the basic velocity is asymmetric
and pure varicose and sinuous modes no longer exist.
(The Gulf Stream is an example of an asymmetric flow,
with the cyclonic shear stronger than the anticyclonic
shear.) For flow with two steering lines, the cat’s eyes
become phase shifted by an amount 0 < © < 7. An
example appears in Fig. 10 for the case r = 0.2, k
= 1.8, a = 0.01. Note that the cat’s eyes near y = 0 are
larger than those near y = 2.

4. Parcel motion in wave packets

Although our discussion has centered on mono-
chromatic and two-wave perturbations, in practice,
disturbances will consist of a superposition of waves
of different lengths from the discrete and continuous
spectrums. We will reserve discussion of the latter for
the next section. For the present, consider the parcel
motion due to a Fourier superposition of neutral waves:

1 o0
o(x,y, z, l)=v§—f F(k,z,y)
T V-

X cos[kx — wt + 0(k)}dk.

1.0 1.5 20 2.5
X—ct

FIG. 9. Moving-frame trajectories for a sinuous mode (k =~ 6.39,
a = 0.01, ¢ = 1.21) in the double-cusp jet with r = —1.
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F1G. 10. Moving-frame trajectories in an asymmetric jet (r = 0.2)
with a mixed neutral mode (k = 1, a = 0.01, ¢ ~ 0.27).

Using standard asymptotic methods, it is possible to
approximate the above integral for large 7 as

2F(k,y, z)
&(x,py,z,t) ~ m% cos[kx — w(k)t
—%sgnw”(k)] (1= ®), (4.1)
where

x/t = o'(ks).

In interpreting (4.1) we treat x and ¢ as independent
variables and regard k [and thus w(k)] as a function
of x/t. Substitution into (2.5a,b) yields

(4.2)

X
%l_ = U(Y, z) (4.3a)
and
dy d (2F(k, Y, z)

4

where k = k(X/t). In differentiating the right-hand
side of (4.3b), note that

di(X/1)  —k(X/0)X]1
dx t ’

_ Thel(k)
t

-z sgnw"(k)“ . (4.3b)

0 as t— .

We may thus regard k as constant when performing
the x differentiation.

In analyzing the trajectories for a monochromatic
wave, it was convenient to transform to a frame of
reference moving with the phase speed of the wave in

question. It would be less advantageous to do so here
since k would be time dependent. Instead let us choose
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‘a particular £ = ko and move at the group velocity
w'(ko). Letting

X=X — o'(ko)t
and substituting for X in 4.3a and 4.3b, we obtain

dX,
j = U(Y, z) — w'(ko)

dYy —2kF(k,Y, .
S —(T”((_kc)t)”zz) sm{ka — [w(k) — ka'(ko)]t

(4.4)

(4.5a)

- % sgnw"(k)] . (4.5b)
The advantage of this transformation is that if we re-
strict the range of X; so that k remains nearly constant
[Xk < w'(ko)t], then the functional dependence of &
on X/t becomes

k(X/1) = ko' (ko) + X/ 1]

= klw'(ko)] +0(t7") ~ ko (ast—> ),
and we may replace k by kq in (4.5b). It is worth re-
membering that this replacement is valid only over a
limited interval of the X}, axis.

An observer in the moving frame sees critical points
(dX;/dt =0, dY/dt = 0) determined by

U(Y, z) = o' (ks0) (4.6)

and
ks Xie = [lkuo) = kuow! (ko) )t = 5 s8ne” (keo)
=0, £n, X2, etc.

At fixed z, the critical points thus lie along the line
where the basic velocity equals the group velocity. Let
us denote the position of this line y = y, and call it the
“group line.” In the moving frame of reference, the
critical points occur at intervals of w/ky, along the
group line and appear to translate at speed w(k;o)/ k5o

Ay
<>
parcel ?
—————
X =gt

g

F1G. 11. Moving-frame streakline patterns for a wave packet at
about a line U(y) = ¢,. Initial conditions are given by (4.8) with k,
=land w = 2.
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F1G. 12. Fixed-frame trajectories for a raft of floats launched
in a dispersing wave packet.

— w'(kyo), the difference between the phase and group
speeds.

The situation is illustrated in Fig. 11. The streaklines
(aligned tangent to parcel motion at a given instant)
form the familiar cat’s eyes pattern about the group
line. The half-width of the cat’s eyes (4, in Fig. 11)
can be estimated using the previous procedure and is
found to be

— 4F(k30: yga Z) 172
— L(dU/dy) yey, [ (Kyo) 1]

Care must be exercised in evaluating the role of the
cat’s eyes, as they are time dependent and do not nec-
essarily imply greater trajectory amplitudes than in
other parts of the flow field.

Consider a parcel originating at ¢ = 0 in the vicinity
of an isolated disturbance and suppose that Y (0)
= 5. In a small amplitude wave field the parcel will
move in the x direction at a speed approximately equal
to U(ys, z) and may initially execute a complicated
sequence of oscillations as different wavenumber pulses
of the dispersing disturbance pass by. As time passes,
a fixed wavenumber determined approximately by
Uy, z) = o'(ko) will emerge (should such a kg exist),
the latitude y, will (approximately) become a group
line, and the parcel will therefore travel near or within
the cat’s eyes pattern. Unlike the case for plane waves,
the cat’s eyes move at 0( 1) speed relative to the parcel
and decay at rate 1~ '/* [see (4.7)].

The question now is whether a parcel moving near
a group line can execute the irregular trajectories
suggestive of mixing that were observed with just two
superimposed waves (section 3). Figure 12 shows a
raft of trajectories for parcels moving in an isolated
disturbance of the cnzlsped jet. [ The initial condition is
B(x, y,0) = g~ 1K 2Ivi=x¥/e? ook x| corresponding
to

A (4.7)
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F(k, y) = V2awe= (k! 21yl=wikkol4 (4 8)

with ko = 1 and w = 2.] The parcels originate at
different values of y and move left to right at a speed
approximately equal to U at the initial Y. The value
of U(Y(0)) ~ X/t determines the approximate
wavenumber and frequency of oscillation for each
trajectory through the relation (4.2) with «'(k) =
— (1 + k?)73/2, Parcels farthest from the jet axis (y
~ 0) have the smallest values of x/¢ and are therefore
associated with the lowest k. [ The wavenumber of
the trajectory is not k but w(k)/U(Y (0)).]

In the trajectories of Fig. 12, which are plotted over
the time interval 20 < ¢ < 170, all parcels have ample
time to settle into their appropriate wavenumber pulse,
as evidenced by the uniformity of the oscillation wave-
length within each trajectory. The oscillations also ex-
perience the anticipated ¢ ~'/* decay. The most striking
feature is the complete lack of any irregularity in the
trajectories. Thus, it appears that the continuous dis-
tribution of wavenumbers expunges behavior sugges-
tive of chaos or mixing, at least in the long-time be-
havior of our example. It is quite possible that other
initial conditions or other basic flows might produce
Lagrangian chaos. In the present case, varying the val-
ues of wand kg over 0.5 < ko< 2and | <w <4 does
not seem to change the conclusions.

Should a wavenumber k; exist at which the waves
are nondispersive, o'(k;) = w/k, then the streakline
cat’s eyes will appear stationary in the moving frame
of reference (and, in fact, become trajectories). This
situation is much closer to the one that produced ir-
regular trajectories earlier and would be interesting to
explore should such a jet exist.

5. Parcel motion due to nonmodal disturbances

The normal modes of the basic flows considered in
the previous sections are not complete. In the case of
the cusped jet, for example, one could impose an initial
condition containing nonzero perturbation potential
vorticity. Since the normal-mode perturbation poten-
tial vorticity is zero at all points away from the front,
the normal modes would be unable to synthesize the
disturbance. In order to overcome this difficulty, one
must solve the initial-value problem using the pren-
ormal-mode equations. The result of such a calculation
is a representation of the solution in terms of normal
modes plus a nonmodal component or continuous
spectrum. The latter has been used to describe the evo-
lution of highly localized atmospheric disturbances
(Ferrell 1987). Recently these ideas have been extended
to the ocean setting by Ferrell and Moore (1992) and
Moore and Ferrell (1993).

Our purpose here is to isolate the distinctive features
of nonmodal parcel trajectories. We attempt to do so
by considering the (highly idealized ) case of unbounded
Couette flow U = y, 8 = 0, a basic state with no normal
modes. The disturbance streamfunction ¢(x, y, t)
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obeys the prenormal-mode version of (2.1) for baro-
tropic flow:

94
ot
The general form for the perturbation potential vor-
ticity that obeys (5.1) is
g = bux + @y = Re[goe™ 7] (52)

An integral over k and / will synthesize an arbitrary
initial distribution of potential vorticity. The associated
streamfunction is

a
yg;)(éxx + ¢yy) =0 (5.1)

(5.3)

_q()eikx+i(1—kt)y
¢ = Re[

K2+ (- ke)?

The physical picture is the following. At ¢ = O the
potential vorticity (¢) field is sinusoidal in x and y with
lines of constant potential vorticity directed perpen-
dicular to the vector ki + /j. Subsequently, the back-
ground shear begins to deform these contours that re-
main perpendicular to ki + (/ — kt)j. If k and / have
the same sign, the contours become meridionally
aligned when ¢ = //k. It is at this point that the largest
values of meridional velocity ¢, occur, as indicated by
(5.3). Afterward, the constant g contours are tilted and
stretched until they are zonally aligned, and the me-
ridional velocity vanishes.

The opportunity for meridional parcel motion is
limited to the early stages of evolution of the flow field,
a fact that allows one to put a simple bound on the
total meridional excursion. The trajectory equations
are

ax

-dt

and

ar ko Gy SN + (1= ROY1. (5.4)

d KA -k
From (5.4) it follows that
I3
|Y(¢) — Y(0)] sfo | dY/dt|dt’
J‘ kqodt’
K+ (- kt)? (I — kt)?

/ )
= —qok[tan_'(l—{ - t) — tan ™! %]
< kgo| tan ™! ! + 2\ < kg
0 3 0
so that

Y (c0) — Y(0)] < wkgq.
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The bound suggests that large meridional excursions
are possible for large disturbances in potential vorticity
(large qo) with fine structure (large k).

Figure 13 shows some groups of trajectories for par-
cels launched in the eastward part of the flow (x > 0).
In Fig. 13a (k= 1,/ = 100, go = 1), most of the tra-
jectories show eastward drift with one parcel peeling
off and entering the westward flow (x < 0). (Note that
this parcel is not the one launched at the southern-
most position.) In addition, the parcels generally end
up at latitudes different from their launch positions.
In Fig. 13b, the amplitude g, of the initial potential
vorticity disturbance is increased to 10, and the re-
sulting trajectories show larger excursions with some
pairs crossing. In Fig. 13c, the same parameters but
different launch positions are used, which results in
even larger excursions and more crossings being seen.
In Fig. 13d, g, and [ are reduced somewhat, but k is
increased. As a result, the excursion bound wkqj is in-
creased from its value 107 in the previous two cases
to 307. Although the bound itself grossly overestimates
the actual excursions, an increase in excursions is ob-
served.

The trajectories shown in Fig. 13 all display two dis-
tinct characteristics. First, the northward excursions
take place monotonically during an isolated transient
stage. For large values of / this stage is short lived. Sec-
ond, the parcels may “mix” in the sense that their lat-
itudinal order of alignment may change.

_ (@) k=1;1=100; gg=1
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One caveat should be mentioned: the background
potential vorticity gradient in this example is zero, and
the presence of such a gradient could reduce the net
meridional excursions calculated.

6. Summary and conclusions

Fundamental changes in the geometry of parcel ex-
change have been found to occur when the meridional
structure of a zonal jet is taken into consideration.
Instead of enhanced parcel exchange isolated to a
steering depth, as with the baroclinic jet studied by
LB, parcel exchange is enhanced along a steering sur-
face that lies in the meridional plane. Each horizontal
plane of particle motion cuts through the steering sur-
face, leaving isolated steering lines, with the number
dependent upon the local geometry of the velocity
field. In this paper the characteristics of parcel motion
in the vicinity of these steering lines has been exam-
ined for the case of linear, neutral waves superposed
on a mean zonal jet.

Using kinematic arguments alone, it can be shown
that there are two fundamental modes of parcel be-
havior near steering lines. First, when the local velocity
shear is nonzero, a steering line will be characterized
by alternating stable and unstable nodes. For the
former, particle trajectories orbit a fixed point (in a
frame of reference moving with the wave speed) that
lies on the steering line. For the latter there are con-

_ {b) k=1;1=100; qg=10
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FI1G. 13. Fixed-frame trajectories for rafts of floats in a linear shear and in the presence of a
nonmodal disturbance. The wavenumbers (k, /) and initial amplitude g, of the disturbance are

listed.
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verging and diverging trajectories associated with a
fixed point lying on the steering line. As well docu-
mented in chaos theory, the converging and diverging
trajectories make the parcel paths sensitive to weak
secondary effects, such as diffusion or additional time
dependence.

The second mode of parcel behavior occurs when
the steering line lies where there is no local meridional
velocity shear. In such a case the steering line is either
a local maximum in U — ¢ or a local minimum. Thus,
relative to the particles at the steering line, all other
particles are moving faster (when there is a local min-
imum) or slower (when there is a local maximum).
Therefore, there are no longer any closed orbits and
all trajectories are in the same eastward (when there is
a local minimum) or westward (when there is a local
maximum) direction. This difference in the local ge-
ometry of the parcel trajectories means that the con-
vergence of waters from south of the steering line no
longer coincides with the convergence of waters from
north of the steering line. Thus, even though the relative
amplitude of these cusped trajectories is greater than
in the case of local shear, the opportunity for exchange
across the steering lines is potentially diminished. To
the authors’ knowledge, a formal theory for chaos (or
lack thereof) has not been established for this case.

To examine parcel trajectories in dynamically con-
sistent flow fields, cusped jets with piecewise-uniform
meridional potential vorticity structure have been ex-
amined. The selected jets support neutral modes with
sinuous, varicose, and mixed structure. For the case of
local shear, each of these modes shows the same local
pattern in the vicinity of the steering lines: cats’ eyes
alternating with convergent and divergent trajectories.
When the steering lines are located where there is no
local velocity shear, the sinuous and mixed modes ex-
hibit the same pattern: cusped trajectories approaching
the steering lines, with those from the north and the
south displaced. From these dynamically consistent
flow fields, parcel trajectories were analyzed. For the
case of a monochromatic wave, the trajectories are
characterized by simple periodic meandering with the
wavelength determined by the absolute value of U
— ¢. Such regularity does not occur when a second
wave is superposed on the zonal jet, in agreement with
the previously cited kinematic models. Instead, chaotic
trajectories result in the vicinity of the steering line.
Although it is tempting to associate a chaotic wave
field with strong mixing, we note here that chaotic par-
cel exchange is not synonymous with dynamical fluxes.

In an effort to test the robustness of the chaotic tra-
Jectories that resulted from the two-wave perturbation,
a Fourier superposition of neutral waves was imposed
on a zonal jet. Surprisingly, in the long time limit the
trajectories from such a superposition were marked by
nearly periodic meandering. There was no visual trace
of irregularity. For the initial condition and jet used,
the continuous distribution of waves curtails the chaotic
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behavior found in the two-wave case. Mixing in such
a system may be relegated to the initial stages after the
disturbance. These results warrant a further exploration
of other jets and initial conditions for generalization.

A further generalization, that of including nonmodal
perturbations, reinforces the notion that mixing is en-
hanced in the early stages after a disturbance, because
for this case all meridional velocities vanish over time.
In an effort to isolate nonmodal contributions to the
parcel paths, a simple Couette flow was used. Excur-
sions were found to be large in the early stages for large
potential vorticity perturbations and small wavelengths.
The nature of the excursions is such that parcels can
change their cross-stream positions, thus implying a
significant potential for mixing. Again, these results
should be reexamined under more general background
potential vorticity distributions.

The major result of this work, that parcel exchange
is enhanced at selected sites along a horizontal plane
of motion, implies that mixing within a jet, such as the
Gulf Stream, is not restricted to a single depth, but
rather occurs over a range of depths. For a typical Gulf
Stream velocity profile and for a typical Gulf Stream
phase speed, mixing would be at the edges in the upper
waters and would move toward the center of the stream
as depth increased. Such a scenario would be consistent
with interleavings found at the edges of the upper Gulif
Stream (Lillibridge et al. 1990) and homogenization
of water properties found at the center of the stream
for the middepths (Bower et al. 1985).

For the jets studied here a wavenumber can be found
such that each meridional position is a steering line,
except for the latitude demarcating the potential vor-
ticity front. It has been shown that for a neutral wave
to exist, a steering line must coincide with a region
where there is no potential vorticity gradient. For the
piecewise uniform jets of this study, this is not restric-
tive except for excluding the front itself. Considering
a jet with continuous meridional potential vorticity
structure, however, the choices of possible steering lines
are quite limited. Taking this a step further to a case
of a baroclinic jet, a steering surface must coincide with
an isotach. Although this can be achieved by choosing
a suitable velocity field, such a requirement in general
essentially precludes the existence of neutral modes
with steering lines and thus implies limited mixing. To
circumvent this exclusion, one can argue for potential
vorticity homogenization along a steering surface or
appeal to the unstable modes of the system. The latter
approach will be chosen for the major extension of this
work, which is to examine parcel behavior within a jet
marked by a continuous background potential vorticity
gradient. With this extension we aim to determine how
parcel pathways are affected by the dynamic constraint
of potential vorticity conservation.
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