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ABSTRACT

Two problems regarding the use of rotating hydraulic channel flow models are addressed. The first concerns
the difficulties encountered when trying to identify the “potential’ depth for a flow of uniform (but nonzero)
potential vorticity in a practical situation. Guidelines are given to check whether a chosen value of the potential
depth is consistent with the rotating hydraulic theory. The second problem deals with the applicability of the
so-called zero potential vorticity approximation. Tt is shown that the accuracy of this approximation depends
on the ratio of the channel width to the Rossby radius of deformation (based on the potential depth) and the
ratio of the fluid depth to the potential depth. To establish when this simplified model vields an accurate
approximation of a flow of constant (but nonzero) potential vorticity, the two models are compared for a

variety of channel geometries.

1. Introduction

Rotating hydraulic theory has been used a number
of times to estimate the maximum possible deep mass
transport through passages in the ocean (see Whitehead
et al. 1974; Whitehead 1986; Borenis and Lundberg
1988). In these models, the potential vorticity is usually
taken to be uniform and defined by

fre_ 1
D D,

Here f, £, and D represent the Coriolis parameter, rel-
ative vorticity, and fluid depth, respectively; D,,, the
*‘potential” depth, is the depth to which a particular
column must be stretched in order to make £ = 0, a
condition often imagined to occur in the deep upstream
reservoir or basin. [See Borenis and Pratt (1990) and
Pratt and Lundberg (1991) for a résumé of uniform
as well as nonuniform potential vorticity flows.]

In the present investigation, two different problems
concerning the practical use of the hydraulic models
will be addressed. The first is whether the potential
depth, D, is a quantity that can be identified easily.
It is usually assumed that in the main part of a very
deep/broad upstream basin the velocity as well as the
velocity shear is negligible. In the hydraulic models the
potential depth is consequently taken to be identical
to the fluid depth in the interior of the upstream basin.
Whether a chosen value of the potential depth is con-
sistent with the theory is examined by tracing the so-
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Iutions into the reservoir and then comparing the typ-
ical fluid depth in the basin (generated by the model)
with D,.

The second problem concerns the applicability of
the approximation often referred to as the “zero po-
tential vorticity” limit. If the right-hand side of Eq. (1)
is small compared to both f/D and £/D, then it is
possible to put £ ~ — fand solutions to the hydraulic
problem are obtained in explicit form. The assumption
that f/Dy, < f/D (or D/D,, < 1) has been called the
deep reservoir limit (Pratt and Lundberg 1991). To
assume that //D,, < ¢/D is equivalent to requiring
that the channel width is much less than the Rossby
radius of deformation based on the potential depth,
D.,. (The latter follows from a simple scaling argument
involving the geostrophic relation.) This is the narrow
channel limit (e.g., see Gill 1977).

An undesirable feature of the deep reservoir-narrow
channel limit is that it is not uniformly valid. Although
the approximation may hold over portions of the flow
field, it may fail elsewhere. In particular, the model
often predicts upstream features like large velocities,
areas of strong recirculation, or a separated flow. For
certain geometries the solutions may even cease to exist
when traced upstream. To establish when the simplified
model yields an accurate approximation of a flow of
constant ( nonzero) potential vorticity, the two models
are compared for a variety of channel geometries.

The paper is organized in the following way. The
equations for a flow of constant potential vorticity are
presented in section 2. In section 3 the problem of
identifying D,, is discussed. The simplified equations
are derived in section 4, and in sections 5-6 their ap-
plicability is examined for two basic channel configu-
rations. These are 1) a channel of constant depth that
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widens upstream and 2) a channel of constant width
that deepens upstream. The cross section of the channel
is taken to be rectangular, but a comment will also be
given for the case of a parabolic topography. A dis-
cussion of the results is given in section 7.

2. The governing equations for finite potentizal
vorticity flow

The derivation of the governing equations closely
follows that of Gill (1977). The shallow-water equa-
tions will be used for an inviscid fluid in a rotating
system. In Fig. 1 the geometrical notation is introduced.
For a gradually varying topography the alongchannel
flow is in geostrophic balance although the velocity
changes in the downstream direction. The flow is hence
described by

(2)

(3)

(4)
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Here u and v are the velocity components in the cross-
and downstream direction, f the Coriolis parameter,
and g the constant of gravity. (For a 11/>-layer system
g is replaced by the reduced gravity ¢’ = g/Ap/p, where
Ap is the density difference between the two layers.)
The reference level, z = 0, is taken to be the highest
elevation of the channel floor and 7 is the surface ele-
vation above this level. The total depth is given by D
= n + h, where z = —h is the position of the bottom.

From Egs. (2)-(4) the potential vorticity equation
can be derived

+ dv/ox
] (5)
where the streamfunction, ¢, is defined by
_ _ %
Du = ’ Dv = ox’

-w\ _ —Q w\ _0Q
'P(z)’ 2’ ‘P(z) 2"
Let the potential vorticity in the upstream reservoir
be uniform and given by G = f/D,,. (Note that D, is

not necessarily the reservoir depth.) Equation (5) can
then be rewritten as

Cross section
fl2

-z

D
! . :‘Z=-h

X=Wf 2

FiG. 1. Definitional sketches of the channel geometry.
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(6)

The potential vorticity and the Bernoulli function are
related by G = dB/dy, and the energy equation is con-
sequently given by

1
—vz+gn=—f—¢+C,

> D. (7)

where C is a constant.

It will now be assumed that in the main portion of
a very deep/broad upstream basin, the square of the
velocity is negligible compared to gn. Let = ; be a
streamline emanating from this quiescent region. Fur-
thermore, if the velocity shear, dv/dx, in the reservoir
is negligible compared to f, then the upstream elevation
for this streamline is given by 5., = Do, — Apax, Where
Arax 18 the maximum height of the sill relative to the
bottom floor in the upstream basin. (In later sections,
the validity of identifying the potential depth with the
depth in the upstream reservoir will be examined.) The
constant C can thereby be determined and Eq. (7) be-
comes

1 S
vt gn="— (Y~ ¥)+ (Do — Amax)g.  (8)
2 D,

Equation (8) will be used to compute the along-
channel structure of the flow. To find the cross-channel
structure, Eqs. (2) and (6) are combined, yielding

"’—2”-f—2(-’l—1)=o.

ox?* g \D,
Since the bottom is flat across the channel, 7 may be
interchanged by D in Eqs. (2) and (9). Before pro-
ceeding, the variables are nondimensionalized using
the following scales for width, velocity, and depth:

2 2
Wy = 2(8Dw) 2/, v, = (2%:)” . D, = (%)“ .

(9)

This choice of scaling is consistent with volume con-
servation (Q = wy,Dy) and the geostrophic relation
(fuvs/2 = gD,/w,). (In particular, w, and D, are the
scale width and depth of a current having volume
transport Q and potential depth D, flowing along a
single lateral boundary such that D vanishes at the off-
shore edge.) The nondimensional variables are thus
defined as

w* = w/w,

xX* = x/w;, D* = D/D,,

v* = ofv, WX =9/Q, A% - HAO;'

Using the identity n = D — (Anax — A) in the energy
equation, the nondimensional form of Egs. (2), (6),
(8), and (9) becomes
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1 v - D
Za—pw(,—w-—l), (11)

—1—v2+D=l—32—(¢"l/i)+DAw(l"—A)’ (12)

2D,
*D . (D
——4D |=——-1]=0.
ax? (Dw )

(Here the stars, indicating the nondimensional vari-
ables, have been dropped.) The parameter D, in Egs.
(10)-(13) is defined by

. D 2D2 i72
Doo =—2:( Oog) s
D o

the ratio of the potential depth to the scale depth D;.
This quantity is the nondimensional measure of the
potential vorticity. The scale depth is determined by
f, g, and Q; and Q is regulated by the sill height A .,
or minimum width under conditions of critical control.
Thus, the nondimensional measure of the magnitude
of potential vorticity varies with the geometry of the
controlling topography, even when the upstream value
of D, is held constant.

The solution to differential equation (13) is given

(13)

by
. . (D cosh2x sinh2 x
D=D ,+D |=——1|——+ 8D — s
b (DOO ) coshw sinhw
(14)
where

The expression for the velocity immediately follows
from Eq. (10):

cosh2 x
sinhw ~

—_— >'h
D_l)sm2x (15)

v= ﬁw =
(Doo coshw

When w > 1, the channel width is much greater than
the Rossby radius of deformation based on D, . In this
limit the flow takes on a boundary-layer structure, with
v proportional to exp(£2x — w)as x = + —w.

The Bernoulli equation is now applied on the two
boundary streamlines in order to determine D and 6D.
This yields an algebraic equation for D

~ (D 2 1
4y + 12D3|=— -1} +
o enp )

S

o0

|

+2D‘§0( - —1+A)=O, (16)

>
8
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where ¢ = tanh(w). After D has been computed, 8D is
given by

3DD = 1. (17)

Equations (16) and (17) are the same as those pre-
sented by Gill (1977), with the exception that here the
topographic parameter A has been scaled with D, in-
stead of D,.

The solutions to Eq. (16) will be discussed in more
detail in sections 5 and 6, but some general features
will be outlined here. For each set of D, ¥;, w, and
A at most two solutions exist for a flow in the positive
y direction. As the geometry varies, the two branches,
representing a sub- and supercritical flow, respectively,
may merge into a branch point beyond which no so-
lution exists for the particular parameters chosen. The
branch point solution is critical, or controlled, since
no downstream disturbances can travel through the
constriction and alter the upstream conditions. This
solution can only exist at a geometrical extremum of
the channel. The controlled flow is of particular im-
portance since it represents the largest possible trans-
port through the channel for the given upstream con-
ditions.

The examples discussed in the following sections are
restricted to unidirectional upstream flows, that is, flows
for which —1/p < {; < 1. The case ; = 0 corresponds
to an upstream flow equally divided between the two
boundary layers. For ; = —1/5, the flow is confined to
the right-hand boundary (looking in the downstream
direction), whereas for ; = 1/; the flow is along the
left-hand wall. Only geometries for which the fluid wets
the floor all across the channel will be considered. When
the flow becomes separated, the depth on the left-hand
side equals zero, and from (17) and the definitions of
D and 6D, it follows that D = 1.

To illustrate the numerous combinations of critical
width/critical sill height for a given value of the pa-
rameter D,,, Figs. 2a~-c have been constructed for ¢;
= —1/2, 0, and 1/2. (The dashed line indicates the de-
marcation between separated and nonseparated flow
at the critical section.)

3. The problem of identifying the “potential” depth

To apply the hydraulic theory for constant potential
vorticity, it is necessary to know the potential depth
D,,. In practical applications it is natural to identify
D, with the upstream depth at some interior location.
The key requirement is that the choice be consistent
with the results generated by the hydraulic theory using

FIG. 2. Controlled solutions for a flow of constant (but nonzero)
potential vorticity given as critical width [zc = tanh(w,)] versus critical
sill height for various D,,,. Above the dashed line the flow has separated
at the control section: (a) ¥; = —1/2, (b) ¢; = 0, (c) ¢¥; = 1/5.
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this specific value of D, . The choice is consistent with
the theory if the assumptions made in the Bernoulli
equation are satisfied; that is, the kinetic energy must
be negligible compared to the potential energy in the
interior upstream basin and the relative vorticity must
be negligible compared to f. The first requirement may
be expressed as v’[2g79.,,]~! < 1 and the second as (dv/
dx)f ™! < 1 orequally D/D,, ~ 1 [see Eq. (1)].

In this section, an attempt will be made to determine
the minimum upstream width and/or depth required
to ‘make the choice of D, compatible with the as-
sumptions made in the Bernoulli equation. Put differ-
ently, does the hydraulic theory predict an interior
depth that is close to the one observed (the depth which
is taken to represent D, ) in a particular upstream ba-
sin? Is the velocity predicted by the theory small enough
there? To answer these questions, the solutions are fol-
lowed upstream from the control section and the depth
and velocity profiles are calculated for the midchannel
(between x = —w/4 and x = w/4). If the kinetic energy
is less than 5% of the potential energy over the interval
[—w/4, w/4] and if also the difference between the
depth and D, is less than 5% over the same interval,
then the chosen value of D is taken to be acceptable.

Since the combinations of different upstream con-
figurations are infinite for a given width of the control
section, the investigation is limited to four basic chan-
nel geometries. The first is a channel of constant depth
that widens upstream, and in Figs. 3a—c the results are
presented. For any width (¢.) of the control section the
graphs indicate the minimum width of the upstream
basin required to let the assumed potential depth be
identified as the upstream interior depth. In the main
graphs the delimiting curves are shown in the ¢, — ¢
space. For clarity, when ¢, is close to 1 the diagrams
are presented in the w, — w space.

The figures show that, as a general rule, the upstream
width has to be at least two times the Rossby radius of
deformation (¢ = 0.96) unless the channel is very nar-
row at the control section (¢, < 0.1). It is also dem-
onstrated that for flows characterized by ¥; = 0 and y;
= 1/, the requirements above are satisfied already at
the control if this section is very wide (w, =~ 6). It is
a bit different for ;, = —1/, that is, when the upstream
flow is confined to the right-hand wall. The parameter
D, now has to be very small for controlled solutions
to exist if the critical width, w,, is larger than about 2
(see Fig. 2a). The upstream depth profile displays a
very shallow layer in the interior and left part of the
basin, while the surface rises to D ~ 2 toward the right-
hand wall. Although the absolute difference between
the interior and the potential depth is as small as in
the case of y; = 1/, the relative difference is much
larger. Therefore, the upstream basin now has to be
very wide for the assumed potential depth to be iden-
tified as the interior upstream depth.

In Fig. 4, a graph similar to Fig. 3 has been con-
structed for the case of a channel that deepens up-
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stream. The depth and velocity profiles have been cal-
culated in the upstream basin, where A = 0, for all
combinations of critical widths and sill heights for
which the flow remains attached to the walls at the
control section. The upstream width has been taken
to be equal to the critical width w, (solid curve), two
times w, (dashed curve), and four times w, (dotted
curve). The thin dashed curve indicates separation at
the control section.

For the first configuration, ( Wypsiream = W,) sill heights
between 0.4 and 0.7 are required for the assumed po-
tential depth to be identified as the upstream interior
depth. The lower values of the sill height pertain to
narrow channels, and for these widths (¢ < 0.1) there
is no significant difference between flows with different
values of the parameter ;. There is, however, a second
regime for which the assumed potential depth may be
identified as the upstream interior depth and that is
for ¢. close to 1. For y; = 0 this regime starts at w,
=~ 3.5 and A =~ (.25, and when w, is increased the
required height of the sill decreases down to zero as
pictured in Fig. 4b. Here the critical width is around
6 (see also Fig. 3b). For ¢, = /5, the height of the sill
is very close to zero for nonseparated solutions to exist.
(This regime is indicated by the dot in the lower right
corner in Fig. 4c.) Hence, the critical width has to be
close to, or larger than, ~6, as was shown in Fig. 3c.
Finally, for ; = —1/> this second regime starts at w,
~ 4.2 and A = 0.5 (indicated by the dot in Fig. 4a).
The flow is very close to separation and the picture
remains the same for critical widths up to around 10.
For larger values the accuracy in the calculations be-
comes unsatisfactory.

For Wypsiream = 2w, the required sill height is reduced
to zero for channels with very narrow control sections.
Also, for any critical width the required sill height is
generally reduced by increasing the upstream width.
The second regime starts, for ;, = —1/3, at w, =~ 2.1
and A, =~ 0.5. The required height remains the same
for critical widths up to around 10, after which no cal-
culations were made. For ; = 0, the second regime
starts at w. =~ 1.5 and A, =~ 0.3, and the minimum sill
height is reduced to zero when the critical width is
larger than 2.85. When ; = 1/5, the critical width has
to be larger than 2.9 in the wide channel regime where,
again, the sill height is very close to zero.

For the third configuration, Wypsiream = 4W., a further
reduction of the required sill height is demonstrated.
For channels with narrow control sections the mini-
mum sill height is zero and the same is true when w,
2 1.35(¢; = 0)and w. = 1.75 (; = 1/2). In the case
of ; = —1/ the minimum sill height for wide control
sections is A, ~= 0.4. Again, no calculations were made
for w, > 10. )

A specific example will now be given to demonstrate
the use of the figures in this section. Consider the case
of a sill overflow that is believed to be maximized and
suppose that hydraulic theory will be used to estimate
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FI1G. 3. Graphs showing the minimum upstream width required
[ for given ¢, = tanh(w,.)] in order to identify the potential depth
as the upstream interior depth for a widening channel of constant
depth. For large upstream widths the graphs are shown in the w,
— w space. The parameter space below the diagonal line has no
mele}ning since here ¢ < 1.: (a) ¢; = —1f2, (b) ¥i = 0, (c) ¥
= 2_
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the transport. Suppose also that a hydrographic cross
section has been taken at a location in the upstream
basin where the width has increased to twice the width
at the sill. At this section the interface is flat in the
interior, and the depth below the interface is therefore
chosen to represent the potential depth, D, . Assume
that the sill width is 10 km, the interior depth 1000 m,
the reduced gravity 10> m? s ™!, the Coriolis parameter
107*s7!, and the sill height (measured as the height
of the sill crest above the bottom where the upstream
section was taken ) 350 m. The nondimensional values
of the critical width and sill height become w, = 0.5
(t. == 0.46) and A, = 0.35, respectively. When entering
these values of 7. and A, in Fig. 4, one concludes that
regardless of the upstream distribution of the flow (i.e.,
¥;:), the assumed value of D, is not compatible with
the theory since the point ¢, ~ 0.46, A, = 0.35 lies
below the dashed curve in all the three panels. (The
upstream width was twice the critical width and there-
fore the dashed curves should be used.) According to
the hydraulic theory, the interior depth at an upstream
cross section that is twice the critical width should differ
from D, by more than 5%. Hence, the observed flow
field is in this case incompatible with the theory. This
situation could occur if, for example, the observed flow
is not controlled, the potential vorticity is not uniform,
the velocities in the interior of the upstream basin are
not close to zero, or the friction is not negligible. Had
the upstream cross section been wider, say four times
the width at the control section, the assumed value of
D, would have been consistent with the hydraulic the-
ory, provided that the upstream flow distribution was
characterized by ¢, = 0.

4. The deep reservoir-narrow channel limit

The deep reservoir-narrow channel limit is obtained
by assuming that the right-hand side of Eq. (1), f/ Dy,
is much smaller than both f/D and D~!(dv/dx). These
assumptions imply that the fluid depth is much less
than the potential depth (D < D, ) and that the width
of the channel is much less than the Rossby radius of
deformation based on the potential depth (w? < gD,/
/?). The vorticity equation (11) now becomes dv/dx
~ —2D,, , which in dimensional form is dv/dx ~ — f.
In the Bernoulli equation (12) the term 2(y — ¢;)/
D, will be much smaller than any of the other terms

FIG. 4. Graphs showing the minimum sill height required [ for
given . = tanh(w,)] in order to identify the potential depth as the
. upstream interior depth for a channel that deepens upstream. The

OO\ A solid curve pertains to a channel of constant width. The dashed curve
| N shows the results for a channel with an upstream width equal to 2w,.
For the dotted curve the upstream width equals 4 w,. The dots in

0.0l
0.0 0.5 1.0 panels a and ¢ show the minimum sill height in the limit ¢, — 1.

t (See text for details.) Above the thin dashed line the flow has separated
c at the control section: (a) ¥; = —1/2, (b) ¢; =0, (c) ¥; = 1/2.
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and may hence be neglected. The differential equation
(13) is reduced to

4’D <

—— +4D, =0, (18)

with the solution

2
- 26D
D=D—Dw(2x2—1”—)+—x.
2 w
F'rom Eq. (10) it follows that the corresponding velocity
becomes

(19)

. oD
v=-2D,x+—. (20)
w

To determine D and 8D the continuity equation to-
gether with Bernoulli equation (applied along one of
the boundary streamlines) are used. The resulting
equation for D is

w2D? +—1_—+2152 —.D:— 1+A)}=0, (21)

© w 2 D 2 © Dw s

and again the relationship between D and 6D is given
by Eq. (17). [ Note that Eq. (21) can be derived directly
from Eq. (16) if the term involving y; is ignored and
the approximations tanh(w) ~ wand D/D,, < 1 are
made. Within the parentheses in Eq. (21) the term D/
D, has to be kept since A — 1 might also be small.]
These expressions for D, v, and D are those associated
with the so-called zero potential vorticity approxima-
tion.

Equation (21) is a third-order equation in D and
the roots are given by

_ D 2
Di===|1-a-%|1-2c0s0,], (22)
3 2
where
2
®1=®, ®2=®+"’§‘, ®3=®+—3‘,
and O is obtained from
27 _q
4D% w2 (1 — A — w?/2)3 |

cos30 = (

Only two of the solutions correspond to a physically
realizable flow. The branch point at which the two so-
lutions coalesce is characterized by cos3@ = 1 or
8Diw2(1 — A, — w?/2)3/27 = 1. Here the transport
is maximized for a given geometry and potential depth.
In dimensional form the maximum transport becomes

372 2 £273/2
0= (2] w0, - 8y - 2L
3 8g

This is exactly the expression presented by Whitehead
et al. (1974). The upstream elevation above the sill,
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corresponding to £, in Whitehead et al. (1974), is rep-
resented here by D, — A.

It is only for the deep reservoir-narrow channel limit
that simple, explicit solutions exist. Hence, it is desir-
able to try to establish the parameter range for which
these solutions give an accurate description of a con-
stant (nonzero) potential vorticity flow.

All possible controlled solutions for a constant
(nonzero) potential vorticity flow (that is unidirec-
tional in the upstream basin) have already been pre-
sented in Figs. 2a—c. The corresponding graph for the
simplified flow [based on Eq. (21)] is shown in Fig. 5.
To facilitate a comparison between the constant po-
tential vorticity model and the simplified model, the
graphs for the former have been overlaid in Fig. 5 using
dashed curves.

The first thing to notice when comparing the con-
trolled solutions is that for 7. < 0.1, there i1s hardly any
difference between the two models. It might seem sur-
prising that the solutions agree so well even when the
sill height is very low (and the approximation D/D,,
< 1 is very poor). The reason can be found after ex-
amining the second term in Eq. (16) and the first in
Eq. (21). These terms are proportional to the difference
between the squares of the velocities on either wall at
the control section. If the channel is very narrow and
the sill low, the velocity difference across it will be small.
Therefore the second term in Eq. (16) and the first in
Eq. (21) is almost negligible for these geometries and,
since tanh(w) =~ w is a very good approximation for
small w and the importance of y; quickly diminishes
as D, is increased, the two equations become nearly
identical.

Another feature demonstrated in Fig. 5 is that the
controlled flow described by the simplified equations
generally separates for lower values of the critical sill
and width (for given D, ) compared to the constant
(nonzero) potential vorticity flow. Only for narrow
channels with large sill heights will separation occur
for the same geometry. The former flow will separate
when w2 > (1 — A.)/2. Transforming this expression
to dimensional form gives the same criterion as the
one given by Whitehead et al. (1974). A flow of con-
stant (nonzero) potential vorticity separates when

—Ac Z\PI + Ac - 2'¢/iAc 12

12
7 W+ A (29 + A)?

As mentioned in section 2, the controlled solution
represents the maximum flow rate for a given geometry
and potential depth. To compare the accuracy of the
flow rates predicted by the simplified model, Fig. 6 has
been constructed. In the graph the ratio of the maxi-
mum transport for a deep reservoir-narrow channel
flow to the maximum transport obtained for a constant
(nonzero) potential vorticity flow has been computed
for a given potential depth and geometry at the control
section. Again it is demonstrated that for narrow chan-
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nels the agreement is very good for all three upstream
flow figurations. In particular, for flows characterized
by ¢; = 0 and y; = 1/, the transports given by the
simplified model will never differ with more than
around 20% regardless of the geometry at the control
section (provided that the flow has not separated).
Whitehead (1989) compared the flow obtained from
the simplified model and a constant potential vorticity
flow (corresponding to the case y; = 1/2) for a widen-
ing channel of constant depth (A, = 0). He found that
the difference in maximum flow rate was at most
around 20%. As Fig. 6b indicates, this number de-
creases when a sill is introduced.

When comparing the simplified solutions with those
of a constant (nonzero) potential vorticity flow for
which ¢; = —1/2, the agreement rapidly diverges when
t. is increased. The approximation underestimates the
maximum flow rate by up to two-thirds for the worst
possible case. Another feature demonstrated in Fig. 6
is that the width affects the results much more than
the sill height, especially when ; = —1/ or 0.

A somewhat surprising behavior is shown in Fig. 6¢
for the case y; = 1/;. Here the agreement first decreases
as the width of the control section is increased, as ex-
pected. However, at some point the solutions get closer
together as the width increases and the improvement
continues until the zero potential vorticity flow sepa-
rates. When the upstream flow is confined to the left-
hand wall, the initial velocity shear and its redistri-
bution at the control section is such that for a given
geometry and potential depth, a smaller amount of
water is carried through the channel compared to, for
example, the case when y; = —1/; (see Fig. 2). If the
width at the control section is increased (for fixed A
and dimensional potential depth) the increase in
transport (or equally the decrease in D, ) is smaller for

¥; = 15 than for y; = —1/5. At the same time the de-
crease of the mean depth, D, is larger for ¥, = 1/ than
for ; = —1/2. The result is that when y; = —1/3, the

ratio D/D,, grows as the critical width is increased,
while for ; = 1/ this ratio actually decreases. Hence,
for the latter flow the assumption that D/D,, < 1 be-
comes more accurate as the width of the control section
increases as opposed to the assumption that tanh(w,)
~ w,. The features shown in Fig. 6¢ could therefore
be explained by the combined effect of the two ap-
proximations used in the second term in Eq. (21).

5. A channel of constant depth that widens upstream

In this section, the case of a channel of constant
depth that widens upstream will be examined in more

FIG. 5. Controlled solutions obtained from the narrow channel-
deep reservoir approximation given as critical width [#. = tanh(w,}]
versus critical sill height for various D,,. The solutions are super-
imposed on those of a constant.(nonzero) potential vorticity flow
presented in Figs. 2a—c (shown here as thin dashed curves): (a) ¥;

=—1/2,(b)¥i =0, (c) ¥; = 1/2.
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detail. For this geometry the constant (nonzero) po-
tential vorticity flow is described by Eqgs. (14)-(16),
where A is put equal to zero. The solutions of Eq. (16)
for ¢; = —1/2, 0, 1/» are shown as solid curves in Figs.
7a-c. Each curve relates the average wall depth 12 to
the width of the channel for given potential depth D,.
The thin solid line in each graph indicates the branch
point, or the controlled, solutions. This curve corre-
sponds to the x axis in Figs. 2a—c. (Other horizontal
cuts for which the depth remains constant when mov-
ing upstream will show the same pattern, since it is
only a question of changing the origin of the z axis.)
Above the thin curve the flow is subcritical, whereas it
is supercritical below it. For D < 1, the flow is separated
from the left-hand wall, looking in the downstream
direction.

The problem discussed now is how far upstream the
deep reservoir-narrow channel approximation can be
used. The simplified solutions obtained from Eq. (21)
are shown as dashed curves in Figs. 7a—-c. (Since these
solutions are independent of y;, the dashed curves are
identical in the three graphs.) The critical widths are
taken to be the same as for the constant (nonzero)
potential vorticity flow. To obtain controlled solutions
for these widths, the values of D, have to be modified
for the simplified flow, as indicated in the graphs. The
branch point solution for the approximation is given
by the thin dashed line.

For the flat bottom geometry there is no section in
the channel where the inequality D/D, < 1 holds.
But, as was pointed out in the previous section, as long
as the width of the channel is very smali, the term
representing the cross-stream variation of the velocity
[i.e., the second term in Eq. (16) and the first term in
Eq. (21)] will be negligible. Consequently there is a
good agreement between the solution curves for small
values of ¢. Even for somewhat larger widths, the con-
trolled solutions for D show a good agreement. When
comparing the solutions of Egs. (16) and (21), it turns
out that deviations of the latter from the former will
appear in the depth profile rather than in the mean
depth.

Following the solutions upstream from the critical
section, the branch corresponding to a subcritical flow
obtained from the simplified equations (the upper part
of the dashed solution curves) soon diverges from the
curve describing a subcritical flow of constant (non-
zero) potential vorticity flow. Eventually the former
will separate from the left-hand wall and, as the channel
widens, an increasing part of the floor will become dry.

FIG. 6. The ratio of the maximum transport obtained from the
simplified model to the maximum transport for a constant (nonzero)
potential vorticity flow for given potential depth and geometry at the
control section. Above the dashed line the former flow has separated
at the control section: (a) ¥; = —1/2, (b) ¢ = 0, (c) ¢; = 1/2.
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FIG. 7. The solution of Eq. (16), solid lines, for various
D,,. The mean depth, D, is given as a function of the
width, ¢ = tanh(w). The channel is of constant depth and
widens upstream. The solutions of Eq. (21) are shown as
dashed lines. The numbers in italic refer to the modified

values of D, required for the simplified flow to have a
branch point at the same critical widths as the constant
(nonzero) potential vorticity flow. The thin solid and
dashed curve represents the branch point solutions for a
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flow of constant (nonzero) potential vorticity and the ap-
proximation, respectively: (a) ¢; = —1/2, (b) ¢; = 0, (¢)
Y =12,
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Despite the fact that there is a streamline in the up-
stream basin on which v = 0, this flow configuration
does not in any way resemble the kind of upstream
scenario outlined in section 2.

The results discussed above will now be illustrated
by an example that describes a controlled flow through
a narrow channel (z. = 0.08). For the constant (non-
zero) potential vorticity flow y; is chosen to be 1/5, and
Fig. 7c shows that the maximum flow for this geometry
is obtained for D,, = 5. The corresponding value of
D, for the simplified model is around 4.85. The dif-
ference in maximum transport in this case is close to
6%. In Figs. 8a and 8b, the velocity distribution is
shown for the two models, starting at the control section
and going upstream to a width w ~ 7w,. The depth
profiles are also given (in Fig. 8c) at the control section
and at sections where the channel has widened to 2.5
and 7 times, respectively, the width at the narrow. The
deep reservoir-narrow channel approximation is very
accurate at the control section. When w =~ 2.5w, (sec-
tion B) the depth structures agree fairly well but the
difference in slope is large enough for the velocity pro-
files to diverge. For the upstream situation (w =~ 7w,,
section C) there is no similarity between the constant

Section A

Section A

Section C

-3

w
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(nonzero) potential vorticity flow and the approxi-
mation. The latter flow exhibits a large recirculation
area and high velocities, whereas the former shows the
preassumed conditions of a quiescent upper basin. The
recirculation is in consequence of the fixed velocity
shear (—2D,,), which characterizes the simplified flow.
The wider the channel gets, the larger the required ve-
locity difference between the two channel walls.

6. A channel of constant width that deepens
upstream

The solutions of Eqgs. (16) and (21) will now be
compared for channels of constant width that deepen
upstream. The results presented are for a channel /basin
of width ¢ = 0.3 and ¢ = 0.5, respectively. Equation
(16) has been solved for various values of D, for which
different critical sill heights are obtained. When cal-
culating the corresponding solutions for the deep res-
ervoir-narrow channel flow, the values of D, have to
be modified when inserted in expression (22) in order
to get a critical flow for the same channel geometries.

In Figs. 9a—c, the results are shown for a channel/
basin of t = 0.3 and y; = —1/2, 0, and 1/». [ As before,

€ Section A
w=w.=0.08
5

Section B
w=0.2

Section C w=0.55

2

-275

1
0 275
X

FI1G. 8. (a) Velocity field for a controlled flow of constant (but nonzero) potential vorticity in a channel of constant
depth that widens upstream. The critical width is given by 7. = tanh(w,) = 0.08. The flow is characterized by D, = 5
and y; = 1/2. (b) Velocity field for a controlled flow described by the narrow channel-deep reservoir model. The
channel geometry is the same as in (a), and D ~ 4.85. (c) Depth profiles at the control section #, = 0.08 (w, ~ 0.08),
fort = 0.2 (w = 0.2) and 1 = 0.5 (w = 0.55). Solid lines pertain to the constant (nonzero) potential vorticity flow

and dashed lines to the simplified flow.



120 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 24

_FI1G. 9. The solution of Eq. (16), solid lines, for various
D,,. The mean depth, D, is given as a function of the height
above the upstream bottom, A. The channel is of constant
width, ¢ = 0.3, and deepens upstream. The solutions of Eq.
(21) are shown as dashed lines. The numbers in italic refer
to the modified values of D, required for the simplified flow
to have a branch point at the same critical heights as the con-
stant (nonzero) potential vorticity flow. The thin solid and
dashed curve represents the branch point solutions for a flow
of constant (nonzero) potential vorticity and the approxi-
mation, respectively: (a) ¥; = ~1/2, (b ¢ = 0, (¢) ¢; = 1o,
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the solution of Eq. (21) is independent of ¥, ; therefore,
the curves for the zero potential vorticity flow are the
same in the three graphs.] The channel width is some-
what larger in Fig. 10, ¢ = 0.5. The thin solid and thin
dashed curves represent the maximum flow solutions,
corresponding to vertical cuts in Figs. 2 and 5. In con-
trast to the case of a widening channel, the simplified
solution and the constant (nonzero) potential vorticity
solution now follow more closely when traced upstream
of the sill. However, as ¢ increases the agreement be-
comes less good and the range of sill heights for which
the simplified flow is nonseparated is rapidly reduced
relative to the case of a constant (nonzero) potential
vorticity flow.

Now, let us take a closer look at a particular channel
configuration. The critical width is given by ¢, = 0.3

BORENAS AND PRATT
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and the sill height by A, = 0.8. For the constant (non-
zero) potential vorticity flow the value of ¥; is again
taken to be 1/2, and the maximum flow is obtained for
D, = 10 (see Fig. 9¢c). The corresponding value for
the approximation is D, =~ 9.93, and the difference
in transport is only about 1%. Figures 11a,b show the
two velocity fields and in Fig. 11c the depth profiles
above A, (i.e., n) are given for the control section and
for sections where A = 0.5 and 0. At the critical section
the depth profiles correspond well but the deviation in
curvature near the left-hand wall is large enough for
the velocity profiles to differ here. For both flows there
is a large recirculation area on the upstream side of the
sill. When the potential vorticity is constant ( but non-
zero) the flow becomes unidirectional when the chan-
nel flattens out, whereas the deep reservoir-narrow

FIG. 10. Same as in Fig. 9 but for ¢ = 0.5:
()¢ = —1/2,(b) ¢; = 0, (c) s = V2.
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F1G. 11. (a) Velocity field for a controlled flow of constant (nonzero) potential vorticity in a
channel of constant width (¢ = 0.3) that deepens upstream. The critical height is given by A, =~ 0.8.
The flow is characterized by D, = 10 and ¢; = 1/2. (b) Velocity field for a controlied flow described
by the narrow channel-deep reservoir model. The channel geometry is the same as in (a) and D,
~ 9.93. (¢) Depth profiles at the control section A, ~ 0.8, for A = 0.5 and A = 0. Solid lines
pertain to the constant (nonzero) potential vorticity flow and dashed lines to the simplified flow.

channel equations predict a recirculation area that ex-
tends throughout the upstream basin. Again, this is
due to the fact that the velocity shear has to equal —2D,
everywhere. Therefore, the upstream velocity structure
will not, in general, resemble the one of a quiescent
basin.

7. Summary and discussion

The two questions addressed in the Introduction
concerned the identification of the potential depth in
rotating hydraulic models for flows of constant (but
nonzero) potential vorticity and the applicability of
the deep reservoir-narrow channel approximation. The
questions were mainly raised for practical purposes. If
there are reasons to believe that the flow through a
strait or over a sill is maximized, then the hydraulic
theory for flows of constant (nonzero) potential vor-

tion given in Figs. 3 and 4 would also be valuable when
designing laboratory experiments.

It was stated in section 2 that the flow takes on a
boundary structure when the upstream basin is wide
enough, leaving the interior quiescent. An alternative
upstream situation for a wide basin has been presented
by Killworth (1992). The velocities in the upstream
reservoir in this case are small in the entire basin, a
state that requires a nonuniform distribution of the
potential vorticity.

In sections 4-6 the deep reservoir—narrow channel
approximation was examined in detail. It was shown
that in order to obtain the simplified equations, often
referred to as the zero potential vorticity equations, it
was necessary to assume not only that the width of the
channel was small (compared to the Rossby radius of
deformation based on the potential depth), but also
that the depth close to and at the constriction was much

ticity provides an estimate of the transport given the . smaller than the potential depth (the “high sill” ap-

geometry at the control section, the upstream distri-
bution of the flow, together with the values of f, g’, and
the potential depth. Suppose that a hydrographic cross
section has been taken in the upstream basin and that
it demonstrates a flat interface in the interior. Using
the depth (of the lower layer) in this region in the width
and depth scales in section 2, it is possible to assert
from Figs. 3 and 4 whether it is compatible with the
hydraulic theory to identify the potential depth with
the measured upstream, interior depth. The informa-

proximation ). The crucial parameter turned out to be
the width of the channel. It was shown that for very
narrow straits (. < 0.1) the maximum transport pre-
dicted by the deep reservoir—narrow channel approx-
imation was accurate regardless of the height of the
sill. This was due to the fact that D/D,, appeared in
the term that represents the cross-stream velocity dif-
ference, a term that is very small when the channel is
narrow. When tracing the approximate solution up-
stream, the depth profiles follow those of a constant
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(but nonzero) potential vorticity flow quite accurately
as long as the channel width remains narrow. The cur-
vature is, however, larger for the former flow, which
leads to an enhanced discrepancy between the velocity
profiles. The difference in the depth and velocity pro-
files becomes more pronounced the wider the channel
gets. The problem with the simplified model is that the
velocity shear is set equal to —2D,, and the curvature
of the surface is also determined by this quantity. To
keep the transport constant, the depth profile moves
across the section to adjust to a widening or deepening
channel. The result will finally be a separated flow or
a recirculation area extending to infinity in the up-
stream basin. Whenever w? > (1 — A)/2 + [(1 — A)?/
4 — 1/D2]'/? there will always be one streamline on
which v = 0 and D = D,,. For the other streamlines
the Bernoulli function will be made up by a lower value
of the depth and a nonsmall velocity term.

The strength of the deep reservoir-narrow channel
model is that it provides a good approximation of the
maximum transport for a constant (nonzero) potential
vorticity flow characterized by ¢; = 0, 1/2. It was shown
that the difference only amounts to around 20%. For
these flows the agreement of the depth and velocity
profiles between the two models is also good at, and
close to, the control section. Away from this section
the simplified model becomes increasingly inaccurate
(demonstrated especially in the velocity profiles) and
should be avoided.

Finally, a comment will be given on the case of a
channel of parabolic cross section. When the deep res-
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ervoir-narrow channel approximation is used for this
geometry, the solution to the equation corresponding
to Eq. (21) may cease to exist. The reason for this
behavior is that the flow cannot separate from the wall
in order to maintain a constant transport since there

~ is no distinction between the wall and the bottom. The

use of the simplified model is therefore more limited
for a parabolic channel than it is for a channel of rec-
tangular cross section.
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