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ABSTRACT

Interactions between an unstable jet and eddy are explored using a jet with piecewise constant potential
vorticity. A linear theory is developed for the case where the jet is nearly zonal and the eddy is far away in the
sense that the eddy may be replaced by a point vortex that induces velocity perturbations in the jet small
compared with the maximum jet velocity. The calculations are extended into the nonlinear domain by the
method of contour dynamics. Specific examples of barotropic and equivalent barotropic jets are discussed, with
particular attention to processes leading to eddy propagation.

In the barotropic case, long-range eddy—jet interactions are dominated by the jet instability, which breaks the
jet up into eddies downstream from the forcing eddy. For a forcing eddy south of an unperturbed eastward
flowing jet, the initial eddy propagation tendency is southwestward (SW) for cyclones and northeastward (NE)
for anticyclones. In the equivalent barotropic case, the fact that long waves in the jet are neutrally stable modifies
the interaction considerably. The instability triggered by the eddy may be advected downstream rapidly enough
that it does not affect the eddy. A long wavelength, steady lee wave may develop downstream from the forcing
eddy, and this results in a propagation of the eddy in the opposite direction from the barotropic case (NE for
cyclones, SW for anticyclones).

Short-range interactions tend to be strongly nonlinear and can resuit in stripping of fluid from the edge of
the jet. The detached fluid and eddy can then propagate as a vortex pair away from the jet, and the whole
process therefore inhibits absorption of eddies by the jet. Some Gulf Stream warm outbreaks may result from
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such interactions.

1. Introduction

Gulf Stream rings originate from pinched off mean-
ders of the Gulf Stream and are among the most ener-
getic eddies in the world oceans. Once separated from
the stream, rings follow varied and complicated tra-
Jectories (Richardson 1983). The drift of a Gulf Stream
ring may be attributed to a variety of physical effects.
First, it will be advected by the large-scale flow that
surrounds it, such as the recirculation regions of the
Gulf Stream. Second, the ring may be constrained by
large topographic features, such as the continental shelf.
Third, if the eddy is axially asymmetric (Smith and
Bird 1989) or has a baroclinic structure (Hogg and
Stommel 1985), this may induce self propagation. Fi-
nally, the ring may interact with the potential vorticity
distribution that surrounds it, resulting in a drift. For
example, it may interact with the background planetary
vorticity gradient (Nof 1981; McWilliams and Flierl
1979), nearby rings, or the Gulf Stream itself. All of
these effects contribute to some extent to the motion
of Gulf Stream rings, and at any given time a combi-
nation of several effects are likely responsible for the
observed motion of a ring.

Corresponding author address: Dr. George 1. Bell, US West Ad-
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In this paper we concentrate on eddy propagation
due to interactions with the potential vorticity field of
a neighboring jet. In the majority of cases we will rep-
resent the eddy by a point vortex and the jet by a band
of potential vorticity fronts (in cases where the eddy
nears the jet, we will represent it by a patch of constant
potential vorticity).

Stern and Flierl (1987), hereafter abbreviated SF,
suggested a simple and intuitive mechanism for me-
ridional eddy propagation due to interaction with a jet.
In Fig. 1, we show an eddy interacting with the edge
of a barotropic shear layer (such a shear-layer edge,
across which the potential vorticity jumps discontin-
uously, will be called a contour). The eddy advects the
contour away from its zonal alignment, and the po-
tential vorticity anomalies created in the jet in turn
induce a meridional drift of the eddy. In an analogous
fashion, an anticyclonic eddy would be convected to-
ward the shear layer.

The jet considered by SF was stable and symmetric.
Because jets arising in geophysical settings are typically
unstable and often asymmetric, it would appear useful
to understand how these additional elements alter the
dynamics of eddy—jet interactions. The calculations
presented herein are attempts to quantify the eddy drift
direction and describe the qualitative phenomena oc-
curring in several idealized jet models. In particular,
we concentrate on one barotropic and one equivalent
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FIG. 1. A cyclonic eddy interacting with an anticyclonic shear
layer. The shear-layer edge (or contour) is initially aligned zonally,
resulting in the velocity profile shown on the right. As the eddy advects
the contour around itself, the vorticity anomalies induced advect the
eddy away from the shear layer.

barotropic jet, each having the simplest possible un-
stable potential vorticity distribution. A piecewise uni-
form potential vorticity distribution allows one to con-
struct a simple linear theory to predict the initial mo-
tion of the eddy toward or away from the jet.
Nonlinearities associated with the growth of unstable
waves in the jet and the movement of the eddy close
to the jet are beyond the scope of the linear theory,
and numerical solutions are required to determine
whether initial tendencies persist.

The jets considered are not posed as Gulf Stream
models but, rather, as flows having certain elements in
common with geophysical jets. The first example is a
barotropic triangular jet composed of four regions of
uniform vorticity (Fig. 2a). When perturbed at the
most unstable wavelength, this jet breaks up into a
vortex street (see Fig. 7). Although not particularly
relevant to the Gulf Stream, the triangular jet is a direct
extension of previously studied barotropic shear flows
(SF; Bell 1990), and may be relevant for other geo-
physical jets.

The second case considered (Fig. 2b) is that of an
equivalent barotropic jet that is unstable as well as
nonsymmetric meridionally. Such a jet has been used
previously in connection with the study of the for-
mation process of eddies known as Gulf Stream warm
outbreaks (Pratt et al. 1990). When perturbed, this jet
meanders and sheds eddies but does not break up into
isolated eddies as does the triangular jet.

An eddy interacting with an initially zonal triangular
jet is depicted in Fig. 3. When the basic shear flow is
unstable the direction of meridional drift of an inter-
acting eddy is not as obvious as in Fig. 1. While the
perturbations to the outer interfaces induce southward
propagation of the eddy, the middle interface (twice
as strong ) induces northward propagation. In addition,
because the jet itself is unstable, we expect it to begin
to break up as the interaction proceeds.

It is useful to introduce a notation for the sign of an
eddy relative to the side of the jet that it lies on. Ikeda
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and Apel (1981) referred to an eddy that was opposite
in sign to a Gulf Stream ring as an opposite eddy. Fol-
lowing this convention, an eddy will be referred to as
a regular eddy if the velocity field it induces at the jet
opposes the flow of the jet. Both cold core rings (cy-
clonic) to the south of the Gulf Stream and warm core
rings (anticyclonic) to its north are regular eddies. An
eddy that is not a regular eddy will be referred to as an
“opposite” eddy (anticyclone south of Gulf Stream, or
cyclone north of it). A “warm outbreak” is an example
of an opposite eddy. Note that some jets, such as the
triangular jet, tend to break up into opposite eddies,
while meandering jets, such as the Gulf Stream, tend
to pinch off regular eddies (Gulf Stream rings).

In section 2 the equations of motion for the jet and
point vortex are presented. A linear theory valid for
long-range eddy-jet interactions is given in section 3.
In this linear theory, changing the sign of the forcing
eddy merely reverses the sign of the contour displace-
ments and the eddy propagation direction. When the
eddy is near a jet, their interaction is nonlinear, and
in section 4, we argue that fundamentally different
phenomena are expected for cyclonic versus anticy-
clonic eddies based on the location of stagnation points
in the flow. A generalized expression for the meridional
eddy drift rate, valid for arbitrarily large displacements
of the contours, is also presented in section 4.

Sections 5 and 6 present numerical results for baro-
tropic and equivalent barotropic cases, respectively. In
short, we focus on the physical processes leading to
propagation of the forcing eddy and the differences be-
tween the two cases. In the barotropic case, we will
show that no long resonant waves exist and that the
drift of the eddy is due entirely to unstable waves.

In the equivalent barotropic case resonant waves are
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FIG. 2. Unperturbed potential vorticity distribution and velocity
profiles of two unstable jets: (a) the barotropic triangular jet and (b)
an equivalent barotropic jet (—r denotes the potential vorticity jump
across the southern contour).
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FI1G. 3. A cyclonic eddy interacting with a triangular jet. The vor-
ticity anomalies induced do not sum to give an obvious meridional
propagation direction (compare with Fig. 1).

present, and they completely change the nature of the
interaction. Unstable waves are often advected so far
downstream that their interaction with the jet is neg-
ligible compared with the resonant waves. Just down-
stream of the eddy, a standing lee resonant wave forms,
leading to eddy propagation directions opposite that
of the barotropic case. In section 7 we discuss the long-
wave properties of barotropic and equivalent barotropic
jets and suggest that these properties control how that
jet interacts with distant eddies.

A nonlinear phenomenon shared by both types of
jets is the stripping away of opposite-signed vorticity
by a nearby regular eddy. This stripped-off vortex and
eddy advect one another away from the jet as a dipole
structure. In section 8 we argue that this stripping pro-
cess is analogous to the formation of warm outbreaks
in the Gulf Stream by cold core rings.

2. Equations of motion

We consider a model in which the jet is represented
by x initially parallel potential vorticity discontinuities
(contours), with y coordinates g;, as depicted in Fig.
4. The potential vorticity jump across the jth contour
is Aj, and the deviation of the contour from its undis-
turbed position y = g; is denoted L;( x, t). Our con-
vention (opposite that of SF) is that a positive 4; cor-
responds to an increase in potential vorticity as y in-
creases. The eddy is represented by a point vortex
located at x,(¢), y,(¢) (later, we will relax this to include
patches of constant potential vorticity ). We move into
a reference frame translating uniformly with the initial
drift speed of the point vortex, ¢. We choose the origin
of our coordinate system so that (initially) y = O is at
the point of maximum velocity of the jet, and the point
vortex lies on the line x = 0, that is, x,(0) = 0.

Length and time scales for the problem are deter-
mined as follows: we choose as our length scale / some
measure of the jet width (in contrast to SF, who chose
a length scale based on the point vortex circulation IT').
We define a time scale based on the maximum mag-
nitude () of the potential vorticity in the jet. Thus,
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we scale distance by /, time by @ !, velocity by /Q, and
streamfunction and circulation by /2. In nondimen-
sional variables, the streamfunction for the flow is de-
termined from the potential vorticity distribution g by

[VZ-y Yy =qg= 2 NH(y+ L{x, 1) — a)

Jj=1
+ To(x = X)6(y — yp)» (1)

where T is the circulation of the point potential vorticity
vortex; H(x) is the Heaviside step function, equal to
1 for x > 0 and O for x < 0; and 8(x) is the Dirac delta
function. The parameter v is the (dimensionless) in-
verse deformation radius, defined by

Jol

Y= T2

D)7

where f; is the effective Coriolis parameter, g’ the re-
duced gravity, and D is the reference layer depth at y
= —oo. Note that by defining D in this fashion the
potential vorticity south of the jet is zero.

Since ¢ is advectively conserved, the motion of each
contour and the point vortex (in the uniformly trans-
lating frame of reference) is given by

a3 ad d
[— - c—]L,- =S+ L(x 0,01 ()

ot ox
ax, Ay
—2=- .= ) — 3
% ay (X, Vpr t) — ¢ (3)
dy, _ oY
—_—_— —— . 4
3% ox (Xps Yps 1) 4)

Following SF, we split the streamfunction into three
parts: ¥(y), the streamfunction of the undisturbed
flow; ¥/, the contribution due to the perturbations of
the contours; and ¥, the streamfunction of the point
vortex:

(3)

Lsx, t)

(%, yp)\:)

FIG. 4. A perturbed shear layer with piecewise constant
potential vorticity.
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=2 MH(y + Lix, t)y — @) = H(y — a)] (6)

j=1
[VZ =721y, = To(x = x,)8(y — yp).  (7)
Associated with each streamfunction is a velocity field,

denoted by (U, 0), (¢, v'), and (u,, v,), respectively.
Note that by definition

—¥,(3,(0)) = U(y,(0)). (8)
Using the split streamfunction, the equations of motion
(2)-(4) may be rewritten

daL;

5L =00 @+ Ly )+ 0,05, 4+ L, 1)

Cc =

JdL;
- a_xj [U(aj + LJ) + u’(.x, aj + Lj, t)

+uy(x,aq;+ L, 1)y —c] (9)

ax,

6—1" =u'(Xp, Yp, 1) + U(yp) — ¢ (10)
ay, ,

“&E=U(Xp,yp, l)~ (11)

By integrating the Green’s function for the operator
V2 — ~2 over the perturbation potential vorticity, we
may invert (6) and (7). From such an integral repre-
sentation of the streamfunctions ' and ¢,, the ad-
vecting velocities are determined by differentiation. For
the point vortex,

r
¥p = — P Ko(y[(x = x,)* + (¥ — ,)71'7%),
where K is the modified Bessel function or order zero.
For the flow field induced by the contour displace-
ments,

1 n ) Li(x't)
Y(x,y,1) - > Ajf_ L Ko(y[(x — x')?

j=1
+ (=) Hdydx. (12)

By applying Green’s identity in the plane to (12), the
associated velocity field may be written in terms of
integrals over the contours L; (see Polvani 1988). The
nonlinear calculations in sections 5 and 6 were obtained
by making minor modifications to existing contour
dynamics programs. The codes used and their modi-
fications are summarized in appendix B.

3. Linear theory

The basic assumption of the linear theory is that
| L;| < 1. In dimensional terms, the displacements of
the contours that form the jet must be much less than
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the jet width and the characteristic wavelength of the
displacement. Let d be the distance between the point
vortex and closest contour at ¢ = 0. We define

u,(0, d)
v |’

(13)

where ¢ is the ratio of the maximum eddy-induced ve-
locity at the jet to the maximum unperturbed jet ve-
locity. If € > 1, then the eddy is stronger than the jet
and will tend to wind the jet around itself. When e
< 1, the jet is robust and its structure persists: we will
refer to such an interaction as a weak interaction.

If the jet is stable and ¢ < 1, then the first two terms
on the right-hand side of (9) will balance and (to lead-
ing order) the contour amplitudes will remain O(e)
for all time (as in SF and Bell 1990). However, since
the basic jets we are considering are themselves unsta-
ble, the linear solution will always break down in finite
time.

Assuming ¢ < 1, then u, and v, evaluated at any
point in the jet are O(¢). If we assume L; = O(¢) ini-
tially, then the perturbing velocities due to contour
deformations, 1’ and v’, are O(¢) everywhere. The lin-
earized versions of the jet evolution equation (9), the
perturbation streamfunction (6), and the point vortex
streamfunction (7) are

aL; oy , %Y, y_ 9L Ny
_(97 - ax (x, aj’ t) + ax (x, aj) ax [U(aj) C]
(14)
V2=’ = -3 Ad(y — @)L (15)
j=1
[VZ = ¥21¥, = T8(x)6(y — 1,(0)).  (16)

Following SF and Bell (1990), we take the Fourier
transform (with respect to x) of (14). We define

Lik)= f_w Li(x)e **dx

and L as the column vector with components L;. The
system of linear ODEs that results may be compactly
written
%+ik(A—cl)L=ikf, (17)
where the column vector f (k) represents the point vor-
tex forcing, the matrix A(k) embodies the linear sta-
bility properties of the jet, and | is the n by »n identity
matrix (see appendix A for detailed definitions of f
and A).
The solution to the system of linear ODEs (17) may
be represented conveniently in terms of exponentials
of matrices (definition in appendix A). Using this no-
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tation, the solution to (17) has exactly the same form
as if L and A — ¢l were scalars,

L(k, t) = exp[—~ik(A — ch)t]L(k, 0)
evolution of initial condition
— (A = c) ' exp[—ik(A — cDA)E (k)
response due to eddy forcing
+ (A ~ cl)™"f(k) steady solution. (18)

To see why the matrix A embodies the linear stability
properties of the jet alone, consider the more standard
approach for determining linear jet stability. To do
this, we remove the point vortex (f = 0) and let

Lj( X, l) = bjeik,(x_wl). (19)

Substitution of (19) into (14) results in a solvability
condition, which is that b (as a column vector) must
be an eigenvector of A(k') with ¢igenvalue w. To obtain
(19) using (18), substitute in L(k, 0) = bé(k — k)
f(k)=0and c = 0to get

L(k,t) = e ™ b3k — k') = e *“'bs(k — k'). (29)

>

The last equality holds because if b is an eigenvector
of A with eigenvalue w, then b is an eigenvector of e**
with eigenvalue e*“. We see that (20) is exactly the
assumed form in (19). Thus, the first term on the right-
hand side of ( 18) is the linear response of the jet to the
initial condition. The second term is the response gen-
erated by eddy forcing, while the third term is a steady
solution to (17).

From the form of (18), it is apparent that there are
two types of waves that are important to the long-term
evolution of the system. First, unstable waves have
wavenumbers k, such that A(k,) has complex eigen-
values. The existence of an unstable wave implies that
small disturbances in L grow exponentially with time.
The phase speed of unstable waves is generally larger
than the drift speed of the point vortex. Thus, they
tend to drift downstream while growing to reach finite
amplitude. In some cases unstable waves may drift
downstream rapidly enough that they are unable to
influence the eddy.

Second, resonant wavenumbers k, are those for
which A(k,) — cl fails to be invertible. Physically these
correspond to neutral waves that drift at the same speed
as the forcing eddy. In appendix A it is shown that for
t large a resonant wavenumber k, results in a linear
growth of | Li(k,, t)| with time. Such linear growth, as
we shall see, corresponds not to a linear growth in the
actual contour amplitude but rather a downstream
spreading of the resonant wave.

It is interesting to note that an unstable wave can
never be a resonant wave. The forcing induces pertur-
bations in the contours that are in phase, while unstable
waves must be phase shifted relative to one another, a
feature necessary for the extraction of kinetic energy
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from the flow by the disturbance (Pratt and Pedlosky
1990). Therefore, an unstable wave with phase speed
¢ will grow exponentially by itself, but cannot grow at
the expense of the eddy—jet separation, as is the case
for a resonant wave.

Both unstable and resonant waves can induce me-
ridional eddy drift, but by rather different mechanisms.
Unstable waves induce meridional eddy drift when they
grow to finite amplitude, provided they reach finite
amplitude close enough to the eddy. On the other hand,
a resonant wave induces meridional drifting completely
within the framework of the linear theory. We can pro-
duce a formula for the direction of meridional drift
resulting from the creation of a resonant wave. In ap-
pendix A, we derive the formula

r s oAb (21)

al Jj=Ln

where k, is the resonant wavenumber and b(k,) is the
eigenvector of A(k,) with eigenvalue ¢. Note that (21)
specifies that by knowing the form of the resonant wave,
we may calculate the direction of meridional eddy drift
that the formation of the lee wave induces.

4. Nonlinear theory

Conservation of the x component of perturbed mo-
mentum ¢’ /3y for the system (9)-(11) leads to the
exact identity (see Bell 1990; Bell and Pratt 1993),

pr_19 {
or 20t
where the integrals are interpreted as contour integrals
over the contours L;. This result was first derived by
Bell (1990) for the case of a single contour. For a single
contour, the sum in (22) contains only one term and
the integral on the right-hand side is positive and should
increase as the perturbations due to the eddy disperse
along the contour. Thus, a definite direction of merid-
ional drift is specified (toward or away from the jet)
even when the interaction is highly nonlinear. The jets
considered here are unstable and are composed of
multiple contours with A; of both signs. The momen-
tum conservation law (22) remains valid but does not
specify a single direction of meridional drift as the con-
tours deform. Nonetheless, it is useful in understanding
meridional drifting.

A simple kinematic argument can also give quali-
tative information about eddy—jet interactions. Polvani
et al. (1989) were able to predict the filamentation of
an elliptical vortex by tracking the location of a stag-
nation point in the flow. We use an analogous argu-
ment here to predict filamentation in the jet contour
nearest the eddy. Suppose we move into a reference
frame drifting zonally at the same speed as the eddy.
Provided the jet is stronger than the eddy in the sense

S o[ e orad, @

j=ln
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that € < 1, there is always a stagnation point in the
flow between a regular eddy and the jet (at this point
the fluid velocity is identically zero in this reference
frame). This situation is depicted in Fig. 5a, where we
show streamlines for an eastward jet and regular (cy-
clonic, I' = 0.75) eddy. In contrast, streamlines for the
same jet with an opposite (anticyclonic) eddy of the
same strength and in the same location are shown in
Fig. 5b, and there is no stagnation point between the
Jjet and eddy.

In Fig. 5, the shaded regions denote fluid particles
inside the jet that lie on streamlines that eventually
pass to the south of the eddy. Note that in the case of
a regular eddy, more than half of the incoming jet lies
in this region, while for the opposite eddy none of the
incoming jet lies in this region. If the flow were steady,
all the fluid particles entering from the left into the
shaded region would be diverted around the eddy.
While the pattern of streamlines changes radically as
the flow evolves and the stagnation point moves as
well, fluid that is always between the eddy and the stag-
nation point is destined to circulate south of the eddy
rather than pass to the north of the eddy in the jet. We
anticipate that when a stagnation point lies inside the
jet for a significant percentage of an eddy turnover time,
a regular eddy may strip off potential vorticity from
the near edge of the jet. Being regular eddies, Gulf
Stream rings may induce such a stripping phenome-
non. Indeed, the relation of stripped regions and Gulf
Stream warm outbreaks will be discussed in section 8.

-3.0
-3 -2 -1 o} 1 2 3

x

FI1G. 5. Streamlines of an eddy interacting with the jet of Fig. 2b,
in the frame of reference translating with the eddy (solid lines are
streamlines, dotted lines are contours). (a) Regular (cyclonic) eddy;
note stagnation point (parameters of Fig. 17). (b) Opposite (anti-
C}T_/clonic) eddy.
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5. The triangular jet

The triangular jet (Fig. 2a) is the simplest symmetric
barotropic jet (composed of contours). The dimen-
sional jet width is 2/, and the undisturbed flow is

0, for |yl =1

for

U(y) = [

1= |yl fyl <L

For an eddy outside an unperturbed jet, note that the
initial eddy drift velocity c is always zero.

This jet is a special case of the type studied by Drazin
and Howard (1962). Figure 6 shows the dispersion
relation (the eigenvalues w of A versus k). The neutrally
stable symmetric mode is characterized by L, = 0 and
L, = — L;. Since the eddy tends to force interface dis-
placements that are in phase, no resonance with this
mode occurs. Also shown in Fig. 6 is an unstable mode
with a short-wave cutoff (near k = 1.8) but no long-
wave cutoff.

Nonlinear calculations of the triangular jet were
performed by a contour dynamics code (see appendix
B for the details). When the fastest growing wave (k
= k, = 1.224) is used as an initial condition (Fig. 7)
the jet rolls up into a train of eddies of alternating sign
(a vortex street). In our terminology, these eddies are
all opposite eddies because of their sign and location
relative to the original center of the jet. Pozrikidis and
Higdon (1987) have considered the nonlinear evolu-
tion of unstable modes in an asymmetric triangular
jet, and show that the wake structure varies consider-
ably both in the location and number of the wake ed-
dies.

Because the initial zonal drift speed of the point vor-
tex is zero, a resonant wave must be a neutrally stable
stationary wave. From Fig. 6 we see that there are no
stationary neutral waves (except for a mode that dis-
places an entire contour uniformly, k = 0). Thus, there
are no resonant waves in this eddy—jet interaction. We
can anticipate that the dominant interaction will be
that between the finite-amplitude unstable waves and
eddy.

Suppose we begin with an unperturbed jet, L,( x, 0)
= (. Figure 8 shows the prediction of the linear theory
(18) for the Fourier amplitude of the middle contour,
for I' = —2 and y,(0) = —4. That the spectrum of Fig.
8 is always dominated by waves with wavenumber less
than k,, indicates that as nonlinearities become impor-
tant, the dominant wavenumber of the spectrum will
be less than that of the most unstable mode. The fully
nonlinear simulation (Fig. 9) shows the development
of a vortex street downstream from the eddy with a
period greater than that of the most unstable mode.
The spacing of the resultant eddies is 1.3A,, where A,
= 5.133 is the wavelength of the most unstable mode
(1.3 was arrived at by averaging the distances between
eddy centers).
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FIG. 6. The dispersion relationship for the barotropic triangular
jet; k, is the wavenumber of the fastest growing unstable wave.

A similar shifting of the dominant wavelength of the
instability due to eddy forcing has been observed by
Ikeda and Lygre (1989). They attributed the shift to
changes in the zonal eddy drift speed. (As ¢ increases,
the eddy forces the most unstable wave more strongly,
and the dominant wavelength of the instability de-
creases.) In this case, a similar shift results from the
fact that the eddy forces wavelengths longer than the
most unstable mode preferentially. If the eddy was ini-
tially farther from the jet than in Fig. 9, the wake eddy
spacing would be even larger (see Table 1).

By Fourier transforming the middle contour of Fig.
9 (at least when it is single valued ) and comparing with
Fig. 8, we may test the validity of the linear theory.
The relative error,

u Lgxact . leinear ” 2

(23)

[T
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10 ;\;\// ¢

S I S ¢t = 10
2 S M t=0

T
0 2 4 10 12 " 3

8
X
FI1G. 7. The nonlinear development of the most unstable wave, k,

= 1.224, initial amplitude | L,| = 0.01, showing the formation of a
vortex street.
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FiG. 8. The linear prediction of the Fourier transform of the middle
contour of the triangular jet with Lk, 0) = 0, I' = -2, and y,(0)
= —4. Note that the spectrum is dominated by waves with k < k,,.

where || f]|*> = fOL [f(x)JPdx increases more or less ex-
ponentially with time from 10 atz=0to 1072 at ¢
= 20).

The linear theory may be invoked to calculate the
initial meridional propagation velocity of the eddy
starting from an initially zonal jet. According to (41),
T and dy,/dt have opposite signs. Thus, regular eddies
initially propagate away from the jet, while opposite
eddies propagate toward the jet. This direction is in
agreement with the calculations of SF and (21), where
only a single contour representing the near edge of the
jet is used.

Further study shows that the wake pattern, as well
as the eddy drift, is quite sensitive to the initial con-
ditions. For example, suppose we start using the pa-
rameters of Fig. 9 but for the initial jet use the linear
steady solution in (18). The simulation (no figure)
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F1G. 9. Contour dynamics simulation of an eddy interacting with
an initially zonal jet, with the same parameters as Fig. 8. The track
of the eddy from ¢ = 0 is shown in each frame.
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) TAB.LE 1. Summary of nqmerical experiments for the triangular jet: e [defined by (13)] is the ratio of the maximum eddy-induced velocity
in the jet to the maximum jet velocity. The asterisk indicates that the separation of eddies in the wake could not be determined because it

was too variable.

Figure r p(0) € Eddy drift Initial condition Wake eddy period
7 0 — — — most unstable mode Ay = 5.1333
9 -2 -4 11 NE Li(x,0)=0 ~1.3\,
none —4 -8 .09 NE Li(x,0)=0 ~ 1.5\,
none -2 —4 11 E linear steady solution W
10 +2 -3 .16 SW Li(x,0)=0 *
11 -2 -2 32 NE Li(x,0)=0 *

shows that nonlinearities rapidly destroy this suppos-
edly steady solution and that the wake pattern, while
qualitatively similar to that of Fig. 9, contains signifi-
cant differences. For example, the wake eddy spacing
is \,.. The eddy drifts primarily east, and there appears
to be some tendency for the steady solution to persist
locally above the eddy.

Increasingly nonlinear interactions starting from a
zonal jet (Figs. 10 and 11) suggest that dy,/dt and T’
generally remain of opposite sign. When a regular eddy
is placed closer to the jet (Fig. 10), it begins to strip
off negative potential vorticity from the edge of the jet,
and the resulting pair move away from the jet as a
vortex dipole. Opposite eddies continue to move to-
ward the jet and eventually (Fig. 11) become incor-
porated into the wake eddies. Note that the eddy of
Fig. 11 is a circular patch of constant vorticity (although
a point vortex would behave nearly identically). The
effect of replacing a point vortex by a patch will be
discussed in section 7.

The parameters used in the numerical experiments
on the triangular jet are summarized in Table 1. In
conclusion, interactions between an eddy and trian-

t=40

5 AN
R,

t=32

SNNNENNNNN

gular jet are characterized as follows: the steady-state
solution in (18) generally does not form, even locally
near the eddy. The location and separation of the wake
eddies is quite sensitive to small alterations in the initial
state of the jet, and the separation of wake eddies in-
creases as the forcing eddy is moved away from the jet.
That the resulting wake is not periodic in x, combined
with the long decay scale for the velocity induced by
a barotropic eddy, implies that the wake does not drift
uniformly downstream and the wake will eventually
grossly affect the forcing vortex. The drift tendency for
a regular (opposite) eddy interacting with an initially
zonal jet is upstream and away from the jet (down-
stream and toward ). In a nonlinear interaction regular
eddies tend to strip off potential vorticity from the edge
of the jet and move away from it while opposite eddies
move into the jet and become incorporated into the
wake.

6. The asymmetric equivalent barotropic jet

Our second example is an asymmetric jet used pre-
viously for modeling Gulf Stream processes (Pratt et

40

I

t=24
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FIG. 10. A regular eddy stripping off an opposite eddy from the
edge of the jet (I' = +2, ,(0) = —3). Note the track of the eddy,
which indicates southwestward propagation.
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FiG. 11. An opposite eddy is incorporated into the vortex street
(I = -2, y,(0) = —2). Initially, the eddy is a circular patch of constant
vorticity of radius 0.5.
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al. 1990). We use a length scale equal to one defor-
mation radius (v = 1) and two contours separated by
half a deformation radius. The basic velocity profile
U(y) decays by a factor e ™' over a deformation radius,
and the total width of the undisturbed jet is therefore
approximately two and one half deformation radii, or
about 100 km (comparable to the Gulf Stream). The
parameter r measures the strength of the potential vor-
ticity jump across the southern contour relative to the
jump across the northern contour. Observational evi-
dence (Pratt et al. 1990; Hall 1985) suggests a value
of r = 0.3 to 0.8 for the Gulf Stream. The undisturbed
velocity profile is given by (28)

UG) = le = ey ()
Figure 2b shows the velocity profile U(y) for several
values of r.

The nonlinear evolution of the flow was calculated
numerically by a contour dynamics method (see ap-
pendix B). The dispersion relation for the case r = 0.2
is shown in Fig. 12. In contrast to the triangular jet of
section 5, this jet has a long-wave cutoff and all the
unstable waves have relatively large phase velocities.
As 7 increases, the band of unstable waves expands,
and when r = 1, there is no longer a long-wave cutoff.

Figure 13 shows the evolution of the most unstable
mode when r = (.2, given by k, = 2.1886. The con-
servation law (22) (with T = 0) implies that the south-
ern contour will undergo larger deformations than the
northern one, even in a nonlinear sense. Indeed, this
is the case, and the growing waves in the southern con-
tour eventually break, forming eddies. Pictorially, the
break down of this jet is similar to that of the triangular
jet (Fig. 7), but the resulting velocity fields are very

03 v —

FI1G. 12. The dispersion relationship for the equivalent barotropic
jet with r = 0.2. Here k, is the wavenumber of the fastest growing
unstable wave, and k, is the wavenumber of the resonant wave when
s(0) = =2.
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FI1G. 13. The nonlinear development of the most unstable wave, &,
= 2.1886, initial amplitude | L,| = 0.005.

different. Figure 14a shows the velocity field of the tri-
angular jet (Fig. 7, t = 30), while Fig. 14b shows the
velocity field for the equivalent barotropic jet (Fig. 13,
t = 120). The triangular jet has broken up into isolated
eddies, while the equivalent barotropic jet is changed
little from its unperturbed velocity profile, the only
noticeable difference being a small amplitude meander
at the wavelength of the most unstable mode. The weak
influence of the instability on the jet velocity field in
Fig. 14b is due to the fact that the total potential vor-
ticity jump across the jet is large (7 is small).

Another significant difference between this jet and
the triangular jet is that resonant waves are generally
present. The eddy drift speed ¢ = U(y,(0)) is given by
(24), and is small when the eddy lies more than one
deformation radius from the jet. Figure 12 shows that
there exist long neutral waves with small phase speeds.

Figure 15 shows the prediction of the linear theory
(18) for the Fourier amplitudes of the northern con-
tour, for r = 0.2 and y,(0) = —2. There is a resonant
wave with k, = 0.51 (indicated in Fig. 12). In Fig. 15,
the spectrum for ¢ > 60 is dominated by two peaks.
The resonant mode corresponds to the first peak with
k just over k, = 0.51. This mode grows linearly with
time as predicted by the linear theory. The second peak,
with a wavenumber just under k,, corresponds to an
unstable mode that grows exponentially with time. The
shift in these peaks away from k, and k,, is due to the
fact that the maximum forcing occurs between the
peaks, near k = 0.6.

Figure 16 shows the fully nonlinear eddy-jet inter-
action with the same parameters as Fig. 15, calculated
by the contour dynamics program. The basic jet insta-
bility is triggered, but drifts downstream rapidly and is
replaced by a long wavelength meander. The wave-
length of this meander is approximately 0.9\, (where

A =~ 12.5), and its development corresponds to the
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FIG. 14. Velocity fields (in a stationary frame of reference) for the nonlinear development of the
most unstable mode for (a) the triangular jet (¢ = 30, Fig. 7) and (b) the equivalent barotropic jet

(¢ = 120, Fig. 13).

linearly increasing amplitude of the resonant mode in
Fig. 15. The relative error (23) between the exact and
linear results increases more or less exponentially with
time, from 10 %at¢ = 0to 102 at r = 70.

The wake instability in Fig. 16 is not periodic in x;
however, the wake instability continues to drift down-
stream and essentially exerts no influence on the eddy.
This drift is also suggested in the velocity field of the
most unstable mode (Fig. 14), which shows that this

25
k k.,
2t =100 ]
t=80!
1.5+ 4
s t=60
Ll (k ’ t)
1F i
=40
0.5 it=20 b
0 i .
0 0.5 1 15 2 25 3
k

FiG. 15. The linear prediction of L.(k, t), showing a resonant
wave growing linearly at k ~ k, = 0.51 and an unstable wave growing
exponentially at k = k, = 2.1886.

jet remains more coherent and provides stronger ad-
vection. The stagnation point in the flow, indicated by
the plus sign (+) in Fig. 16, is well away from the jet,
and consequently no stripping occurs.

Starting from L, x, 0) = 0, the linear theory may
be utilized to determine how far the most unstable wave

AR v

t=150

t=120

t=60

T
-5 ° 5 10 % 20 25

7
30 35 40 A5

FIG. 16. Weak interaction with r = 0.2, T = 0.5, »,(0) = =2,
showing the wake instability and steady solution forming behind.
Plus sign (+) marks the location of a stagnation point in the flow,
in the frame of reference translating with the eddy. The eddy track
shows slow northeastward propagation.
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has drifted away from the eddy when it reaches finite
amplitude. The result of such a calculation is that for
0 < r <exp(—0.5) ~ 0.6, in a weak interaction the
unstable wave will reach finite amplitude too far from
the eddy to influence it. From (21) we may calculate
that in this case the direction of meridional eddy drift
will be toward the jet for a regular eddy and away from
the jet for an opposite eddy. For a jet in the parameter
range r > 0.6, the unstable wave will grow to finite
amplitude near the eddy and will thus dominate its
drift.

Figure 16 shows a regular eddy approaching the jet
from the south. What is the ultimate fate of such an
eddy? According to the weak interaction theory of the
previous paragraph it should drift into the jet. As the
eddy—jet separation decreases, however, eventually the
interaction is no longer weak and linear theory is no
longer valid. In Fig. 17 we again begin with an unper-
turbed jet (r = 0.5), but decrease the initial eddy—jet
separation from 2 to 1.5. Here the southern contour
becomes deformed to a much larger extent than the
northern one, and an eddy forms from a pinched off
section of the Southern contour. In Fig. 17, the eddy
and pinched off anticyclonic eddy move southward,
away from the jet as a dipole. Southward eddy drift is
consistent with (22) because the southern contour is
deformed to a much greater extent than the northern
one, which is necessary by (22) for southward propa-
gation.

The stagnation point in Fig. 17 (marked by the plus
sign ) begins inside the jet (Fig. 5a). As the anticyclonic
eddy is created from the deformation of the southern
contour, the stagnation point moves eastward until it
is barely outside the southern contour. When the eddy
pinches off, at 1 = 24, the stagnation point moves rap-
idly westward through the narrowing neck and then
southward away from the jet. Using the parameters of

FIG. 17. A regular eddy stripping off an opposite eddy from the
south edge of the jet (r = 0.5, T = 0.75, y,(0) = —1.5). Plus sign
(+) marks the location of a stagnation point in the flow.
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Fig. 17, but reversing the sign of T, the interaction is
much less dramatic (no figure). The eddy does not
drift at all meridionally and merely drifts sluggishly
eastward.

When a regular eddy lies to the north of this partic-
ular jet, it 1s not possible for it to strip off an opposite
eddy. This is because the vorticity just inside the jet
from the northern side is not of the correct sign. Figure
18 shows an anticyclonic eddy (now represented by a
patch of constant potential vorticity ) approaching the
jet from the north. The eddy is drawn in to the jet and
incorporated with the anticyclonic eddy that forms due
to the basic jet instability.

Table 2 summarizes the parameters used in the nu-
merical simulations of this jet. The numerical results
of this section demonstrate that when e < 1 and 0 < r
< 0.6, unstable waves drift downstream too quickly to
affect the eddy and that a wake of resonant waves will
form behind the eddy. Regular (opposite) eddies tend
to drift toward (away from) the jet. The wake structure
is relatively insensitive to the initial conditions. When
a regular eddy approaches a jet, if the near jet edge
contains opposite potential vorticity, then the eddy
eventually strips an opposite eddy from the edge of the
jet and the resulting pair advect one another away from
the jet.

7. General eddy-jet interactions

By combining the results of the past two sections
with known results on linear jet stability theory, infer-
ences about how an eddy will interact with a general
jet may be drawn. We will also discuss the effect of
modeling the eddy by a vortex patch rather than a point
vortex.

Many of the differences in how our two example jets
interact with eddies can be traced back to the differences
in the behavior of long wavelength jet perturbations.
Drazin and Howard (1962) showed that for a distur-
bance to a barotropic jet of phase speed w and wave-
number k, in the limit that k — 0,

k o0
ot~ = wa [U()]2dy, (25)

and Flierl (private communication) has proven the
same result for a barotropic jet with piecewise constant
potential vorticity. According to (25), long waves in a
barotropic jet are unstable, and thus, there are no long
resonant waves.

The initial meridional drift of an eddy interacting
with a zonal barotropic jet is given by (41):

0 T
B T Uy~ @)1y, (26)

Because the integrand in (26) is positive for an eastward
jet, the initial meridional eddy propagation tendencies
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FiG. 18. A regular eddy drifting into the jet from the north (r
= 0.5, T = —0.75, y,(0) = +1.5). Initially, the eddy is a circular
patch of constant potential vorticity of radius 0.4.

for the triangular jet are shared by all barotropic jets.
We should note, however, that the meridional drift
tendency is very sensitive to the initial jet profile. In
general, in a jet where long waves are unstable, the
meridional drift of an interacting eddy will eventually
be dominated by the nonlinear development of growing
unstable waves. Growing unstable waves may break to
form eddies, which interact with the forcing eddy, or
they may reach finite amplitude in the form of mean-
ders. In the latter case it is the propagation speed of
the meander and the phase of the eddy relative to the
meander that determines whether or not the eddy-jet
separation increases or decreases [a phenomenon dis-
cussed by Ikeda and Apel (1990)].

On the other hand, in a jet where long waves are
stable, unstable waves may drift downstream rapidly
enough that they have no affect on the eddy. Flierl
(private communication) has shown that for long
waves in an equivalent barotropic jet,

" wowre

e o)

(27)

w~ k?

v? f_i U(y)dy
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According to (27), long waves are stable and have small
phase velocities (when the jet has nonzero net trans-
port). Such long waves are good candidates for reso-
nant waves, and predictable meridional drifting is ex-
pected. The direction of meridional drift depends on
the form of the resonant wave [by (21)]; however, for
the jet considered in section 6 when r < 0.6, regular
(opposite) eddies tend to drift toward (away from)
the jet.

As an eddy nears the jet, clearly it is unrealistic to
model it by a point vortex. We repeated all of the cal-
culations in this paper replacing the eddy by a circular
patch of radius p with the same total circulation. The
weak interactions of Figs. 9 and 16 were virtually un-
changed over the range 0 < p < 0.7. Some of the stron-
ger interactions (Figs. 10, 11, 17, and 18) show sen-
sitivity to the value of p.

To understand how a circular patch of potential
vorticity reacts to the shear of the jet it is useful to
recall barotropic studies of a uniform elliptical patch
of vorticity wp in a shear flow U(y) = —sy, with vorticity
s. The work of Moore and Saffman (1971) on steady
solutions and Kida (1981) on the dynamics of such
vortices concludes the following: an initially circular
patch is infinitely elongated by the shear unless —0.21
< §/wo < 1. Thus, a vortex that agrees with the shear
remains coherent (is not infinitely elongated ) in shears
nearly five times as powerful as a vortex that opposes
the shear. Recalling the sign of shear that is imposed
by the jet upon neighboring vortices, this conclusion
may be restated as regular eddies are much more vul-
nerable to filamentation as they move into the shear of
the jet.

Our numerical simulations with a circular patch
representing the eddy support this statement. Indeed,
we did not find a single case of an opposite eddy fila-
menting or breaking up, even when the eddy was pulled
into the jet (Fig. 11), for p values up to 0.7. Regular
eddies in strong interactions generally filamented or
broke up as p was increased. In Fig. 18 (p = 0.4), the
eddy merges with one of the eddies formed by the jet
instability, and in the process a long filament is pulled
off the eddy. If p is increased to 0.7, the eddy is rapidly
pulled out into a long filament parallel to the jet and
does not merge with the jet. Regular eddies involved
in the stripping effect (Figs. 10 and 17) also tend to

TABLE 2. Summary of numerical experiments for the asymmetric equivalent barotropic jet. Here ¢ [defined by (13)]
is the ratio of the maximum eddy-induced velocity in the jet to the maximum jet velocity.

Figure r r ¥,(0) € Eddy drift Comments
13 0.2 0. — — — Growth of the most unstable mode
16 0.2 0.5 -2 .05 NE Resonant wave forms downstream
17 0.5 0.75 -1.5 21 Sw Negative vorticity fluid stripped off
none 0.5 -0.75 —-1.5 21 E Surprisingly weak interaction
18 0.5 -0.75 1.5 .10 SE Eddy pulled into jet
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filament as p is increased from zero, but the filaments
wrap back around the eddy and the stripping phenom-
ena is unchanged. In summary, the only process sig-
nificantly altered by substituting a distributed eddy for
a point vortex is that of a regular eddy moving into
the jet. Such an eddy can merge into the jet but only
if it is robust enough to survive the shear at the edge
of the jet.

8. Discussion

In this paper we have explored weak and strong in-
teractions between an initially zonal, unstable jet and
eddy represented by a point vortex. The strength of
the interaction is measured by the parameter ¢, the
ratio of the maximum velocity induced by the eddy in
the jet to the maximum jet velocity. A weak interaction
is by definition an interaction where ¢ < 1.

One important conclusion is that the long-wave be-
havior of a jet greatly influences a weak eddy—jet in-
teraction. If long waves are stable and have small phase
speeds, then resonant waves usually exist and the for-
mation of a lee wave results in a meridional drift of
the eddy relative to the jet. In the equivalent barotropic
jet considered here, regular (opposite) eddies drift to-
ward the jet and downstream (away from the jet and
upstream). Shorter wavelength, unstable waves prop-
agate downstream, away from the eddy, and do not
significantly influence the eddies position. If long waves
are unstable (as in a barotropic jet) then there are no
significant resonant waves possible. Meridional drifting
may be predicted for a short time after an eddy interacts
with an initially zonal jet (and the direction is opposite
from that of the equivalent barotropic case), but even-
tually the effect of finite amplitude unstable waves can-
not be ignored.

When the interaction is not weak [e = O(1)], eddy
propagation tendencies are more complicated and de-
pend on the specific potential vorticity structure of the
jet. One phenomenon that is quite common is the
stripping of potential vorticity from the near edge of
the jet. Three ingredients appear to ensure that such a
stripping process will occur: the forcing eddy must be
a regular eddy, the near edge of the jet must contain
potential vorticity of opposite sign from the eddy, and
a stagnation point must exist in the flow that remains
inside the jet for a significant percentage of an eddy
turnover time. When these three conditions are met
the eddy strips off an opposite eddy from the near jet
edge and the resulting pair move upstream and away
from the jet. This “vortex stripping” effect has been
observed previously in the two-layer primitive equation
simulations of Smith and Davis (1989). In the context
of a smooth potential vorticity distribution, they dem-
onstrated that this stripping effect may be interpreted
as a perturbation in the eddy’s azimuthal structure that
induces propagation of the regular eddy away from
the jet.
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Concrete comparisons with observed eddy drift pat-
terns are problematic since a variety of propagation
mechanisms are present in geophysical settings. In the
Gulf Stream, many rings follow paths that one might
anticipate on the basis of recirculation patterns. A 50
Sv (Sv = 10% m?® s™!) recirculation distributed over 1-
km depth and 1500-km lateral extent would produce
a characteristic velocity about 3 cm s™!. This value
agrees in magnitude with the advection speed estimates
of Halkin and Rossby (1985). In the present 1'2-layer
model (which seems more applicable to the Gulf
Stream than the barotropic model) dimensional prop-
agation speeds can be calculated using the previously
defined length and time scales determined by the
Rossby deformation radius and maximum jet velocity.
For weak interactions (Fig. 16), the typical meridional
propagation speed predicted by the linear theory will
always be much less than 1 cm s™!, so that we expect
the effects of recirculation to dominate. For strong in-
teractions the velocities observed in the numerical ex-
periments (Figs. 17 and 18) range from a few centi-
meters per second up to 60 cm s~!, so that advection
by the recirculation may be secondary. They may be
partially valid near 68°-75°W, where Gulf Stream
transport reaches a maximum and the meridional ve-
locity due to recirculation is zero.

Another basis for comparison of the 1Y2-layer model
and the Gulf Stream involves warm outbreaks. Pratt
et al. (1991) found that outbreaks formed as a result
of an instability on the jet side having the weaker po-
tential vorticity jump (the south side) in agreement
with the observations of Cornillon et al. (1986). How-
ever, the latter also observed that external cold core
rings were often involved in the formation process.
Here we have shown that regular eddies can, in fact,
strip fluid from the southern edge of the jet, creating
a mass of detached fluid resembling a warm outbreak
(Fig. 17). A corresponding phenomena does not occur
at the north edge of the jet. To this extent, theory and
observations agree.

A phenomenon observed at the north edge of the
Gulf Stream and not present in our model is shingling
(the formation of shallow, backward breaking fila-
ments). Shinglelike features have been reproduced in
the calculations of Meacham (1991), who considers a
jet model similar to that in this paper but with two
layers and additional fronts. Shingle formation involves
a small-scale shear instability that forms within a rel-
atively narrow potential vorticity band. We anticipate
that a similar effect would arise if a third front having
relatively weak potential vorticity jump was added a
short distance « to the north of the northern front in
Fig. 2b. In this configuration it is unlikely that the
shingling process would be strongly influenced by an
external eddy since the length scale of eddy forcing
would be much greater than the typical wavelength
O(«) of the instability. In summary, we believe our
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1%2-layer model to have insufficient horizontal reso-
lution to display shingling but that, unlike the for-
mation of warm outbreaks, the formation of shingles
would be relatively insensitive to the presence of an
external eddy.
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APPENDIX A
Properties of Weak Eddy-Jet Interactions
1. The basic linear solution

Applying the Fourier transform to (14), we get the
system of linear ODEs (17), where

fitk) = TGila; — y,(0))
Ajm(k) = Am("k(aj - am) + Iij(aj)

and where G(») is the Green’s function for the op-
erator 92/9y* — v? — k?; that is,

62
[a—yz ok Al kz:le(y) =6(p).

Specifically,

Gi(y) = exp[—(v* + k%) 2 |y]1.

1
2(72 + k2)l/2
For the triangular jet of section 5, a; = 1, a, = 0, a3
=—1,and A, = =1, Ay = 2, Ay = —1. For the asym-
metric equivalent barotropic jet, a; = 0, a, = —0.5,
and A, =1, A, = —r.
Note, also, that the basic flow U(y) may be repre-
sented in terms of the Green’s functions G.(y):

-2 AiGo(y — @),
j=1

uy)=< .
2 Ay —apH(y —a), if yv=0.
j=1

if y#0

(28)

2. The growth of unstable and resonant modes-

In this section we begin with the linear solution for
the contour displacements in Fourier space (18),

Lk, t) = exp[—ik(A — c)t]L(k, 0) + (A —cl)™!
X {1 — exp[—ik(A — ch)t]}E(k), (29)
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and from this derive approximate formulas for the long-
term evolution of the contours. Here the exponential
of a matrix B is defined as the limit of the series

(30)

We will assume that the nonsymmetric matrix A
— ¢l is always diagonalizable, meaning that it may be
decomposed as

A —cl =P 'DP,

where P is invertible and D is a diagonal matrix with
diagonal elements equal to the eigenvalues A;; that is
Dy = 8;\;. Note that since A is a function of k, so are
P and D. For the two cases considered in this paper, A
— cl is always diagonalizable.

Using the definition of an exponential matrix (30),

e* A=) = p~! pelp, (31)
Applying the identity (31) in (29), we find
Lk, t) = P"'e *PPL(k, 0)
+ PTID7I[1 — e~ *PIPE (k).  (32)

If k, is the wavenumber of the fastest growing wave
with corresponding eigenvector w(k,) and eigenvector
b(k,), then it is clear from (32) that for ¢ large

L(k,, t) oc e *lkdip(k,). (33)

A resonant wavenumber &,, on the other hand, is
one for which A(k,) has ¢ as an eigenvalue, or D has
a zero diagonal element. In this case D is not invertible,
and (32) must be evaluated with care. By using the
definition of the matrix exponential (30) we may re-
write (32) as

L(k,, 1) = P~'e *PPL(k,, 0) + ik,tf(k,)
(~ik,1)’D + (—ik,1)’D?
2! 3!

If there are no unstable waves with wavenumber k,,
then all the elements of D are real, and the first and

third terms on the right-hand side of (34 ) are bounded.
Thus, for ¢ large, only the second term contributes and

L(k,, t) = ik, tf(k,). (35)

Equation (35) is also the leading-order term in (34)
in the case where ¢ is small, L(x, 0) = 0, and the
wavenumber is arbitrary.

- p! + « -« Pf(k,). (34)

3. Linear predictions of meridional eddy drift

The nonlinear expression for meridional eddy drift
(22) may be applied to the linear solution (18). In two
special cases we can derive analytic expressions for the
meridional eddy drift.
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First, we can calculate the eddy drift when the jet is
stable. In that case, the first two terms in ( 18) are tran-
sients that eventually drift away from the forcing eddy,
at which time the solution is well approximated by the
steady solution. We now transform this steady solution
in (18) back to x. Define B(k) = A(k) — cl. Then,
formally,

B! = (detB)"'(adjB),

where adj B is the adjoint matrix of B. Inverting the
steady solution in (18), we have

=

L(x) = i (detB)'(adjB)f(k)e™*dk. (36)

For large | x|, the dominant contribution to the integral
in (36) is from the poles where detB = 0 (note that
detB(k,) = 0 is the definition of a resonant wavenums-
ber). Since we do not allow waves to enter to the west
of the forcing eddy (this is an outgoing radiation con-
dition), we require that L(x) = 0 for x < 0. Assuming
(for simplicity) that there is only one resonant wave
at k = k,, then, by the residue theorem for x » 0,

d(detB)

L{x) = —[[ v

}_l(aij(k,))f(k,)] sink,x.
k=k,

(37)
Now note that by definition
B(k,) adjB(k,) = detB(k, )l = 0.

Therefore, the expression in brackets in (37) is a mul-
tiple of the eigenvector b corresponding to the eigen-
value 0 of B(%,). Thus, for x > 0,

L(x) ¢ b sink,x.

If no resonant waves are possible, L(x) dies out at
X = *oo; hence, by (22), dy,/6t = 0. If a resonant
wave exists, then a growing wake of resonant waves
forms (as in Bell 1990), and 8y,/dt — C, where C is
a constant. The sign of C is determined by the merid-
ional drift implied in (22) for a growing wake of res-
onant waves; namely,

I‘%oc Z Aj}bj(k,)lz

ot (38)

j=Ln

Surprisingly enough, if the jet is unstable and the un-
stable waves drift downstream rapidly enough, (38)
may still give an accurate estimate of the eddy drift
rate.

Second, the eddy drift rate may also be calculated
directly by substituting the linear solution (18) into
the nonlinear conservation law (22). In the linear the-
ory | L;| is small, and consequently the integrals in
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(22) are simply standard integrals over x; by Parseval’s
relation, (22) becomes

dy, 1 0
r 47r8t{

ot

If we substitute in the general linear solution (18), un-
fortunately the result is an unwieldy expression that
can only be evaluated numerically. More specific in-
formation can be obtained by assuming that the jet is
initially zonal and ¢ is small—in this case the linear
solution simplifies to (35). In the barotropic case the
integrals in (39) may be evaluated with the result

oy, Tt

t _

» Ajf |k, t)lzdk}. (39)

j=l,n

(40)

We may replace the sum in (40) by an integral by
substituting —U"(y) for A; and y for g;. Integrating by
parts twice, the boundary terms are zero if the flow is
identically zero outside the jet where the eddy is (this
is the case for the triangular jet). Thus, (40) may be
rewritten

L7,

r
-~ 2 [y - mol . 4

For an eastward flowing jet, the integrand in (41) is
always positive, and consequently, dy,/dt and T have
opposite signs. This result is valid for any eastward-
flowing barotropic jet where the flow is identically zero
outside the jet.

APPENDIX B
Notes on the Numerical Codes

An extensive literature exists on contour dynamics
algorithms (Zabusky et al. 1979; Zabusky and Over-
man 1981; Pratt and Stern 1986; Polvani 1988). Simple
modifications were made to existing programs to pro-
duce the output presented here. The parent programs
and their modifications are discussed briefly in this ap-
pendix.

The nonlinear calculations of section 5, as well as
those in section 6 using a circular patch, were produced
by a highly recommended two-layer code (Meacham
1991). The computational domain is periodic in x.
Nodes were automatically redistributed according to
curvature, and contour surgery was not implemented.

The calculations of section 6 using a point vortex
were produced by modifying a program used by Pratt
et al. (1990). This program is faster than Meacham’s,
but considerably less general. The stagnation points of
Figs. 16 and 17 are roots of the velocity field in the
frame of reference translating zonally with the eddy.
These roots were found numerically by a secant method
for a 2 X 2 system of equations (see Dahlquist and
Bjork 1974).
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The area under each jet contour, as well as the total
momentum (see Bell and Pratt 1993 ) were monitored
to check the accuracy of the calculation. The initial
number of nodes and the time step were adjusted so
that these quantities changed less than 1% over the
course of a run. In the figures shown herein, initial jet
contours contain between 100 and 200 nodes. At the
end of the calculation, in some cases, the number of
nodes in a contour had increased to nearly 1000.

One advantage of the contour dynamics technique
is that it is relatively cheap computationally. Runs in
section 5 required an average of 45 minutes CPU time
on a Sun Sparkstation, while most runs in section 6
took less than 15 minutes.
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