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ABSTRACT

The hydraulics of strait and sill flow with friction is examined using a reduced gravity model. It is shown
that friction moves the critical (or control) point from the sill to a location downstream. If the strait has constant
width, the control point lies where the bottom slope is the negative of the drag coefficient C,. If —C,; exceeds
the bottom slope everywhere, the flow cannot be controlled (in the classical sense that energy and flow force
are minimized). Friction also decreases the minimum obstacle height required to establish hydraulically controlled
flow in the classical laboratory towing experiment. Also, friction greatly encourages the establishment of stationary
hydraulic jumps in the lee of the sill and, under certain conditions, gives rise to stationary jumps on the upstream
face of the obstacle. Some consequences of these results for deep-ocean overflows are given using the Iceland-

Faroe overflow as an example.

1. Introduction

Open-channel hydraulic theory has been used ex-
tensively by oceanographers interested in the dynamics
of strait and silt flow. Studies range in time from Stom-
mel and Farmer’s (1952) pioneering investigation of a
two-layer exchange flow and Long’s (1954) laboratory
experiments with unidirectional sill flows to recent
studies of dispersive and multilayered flows (e.g., Armi
and Farmer, 1984; Baines, 1984; Pratt, 1984a; Law-
rence, 1985; Farmer and Denton, 1985). With very
few exceptions, the fluid flows investigated in these
studies have been frictionless, a restriction that can be
justified in some sea straits but is unrealistic in many
others. The importance of bottom friction in a given
strait can be roughly ascertained through the following
argument. Suppose that a deep layer of water enters
the strait from an upstream basin and is hydraulically
controlled by a sill located in the strait. In longitudinal
section the flow might look like the Iceland-Faroe
overflow, which appears in Fig. 1. Let H and U be the
mean thickness and velocity of the deep layer and L
be the alongstream distance over which H and U
change significantly due to hydraulic effects. Then U?%/
L measures the parcel acceleration (which is crucial to
the hydraulic control of the layer) through the strait,
while C;U%/ H measures the parcel deceleration due to
friction, parameterized here using the dimensionless
drag coefficient C;. The relative importance of friction
is thus indicated by C;L/H, and approximate values
of this parameter for several well-known sea straits,
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computed using a conservative' value C; = 1073, are
listed in Table 1. Most of the straits listed have 0.7
< C4L/H < 2.0, indicating that friction is important.
The only strait listed in which friction is apparently
weak is Gibraltar, with C;L/H = 0.1.

The purpose here is to determine how friction
changes the basic properties of hydraulically controlled
flow and how control is exercised. Because hydraulic
control is an essentially nonlinear process, it is ex-
tremely difficult to treat friction in a purely deductive
way. Therefore, friction is parameterized using a qua-
dratic law, and the analysis is carried only to the point
of determining gross effects, rather than details. Atten-
tion is restricted to the hydraulics of single-layer flows
with no rotation, the purpose being to lay the ground-
work for the treatment of more difficult, multilayer
and/or rotating flows. In particular, I will investigate
the effect of friction on the mechanisms by which hy-
draulic control is exercised, the location of the point
of control, the minimum sill height needed for control,
and the existence of hydraulic jumps.

2. Review of inviscid hydraulics

Consider a layer of fluid of uniform density p + Ap
flowing steadily over an isolated obstacle of height b,,
in a strait of rectangular cross section (see Fig. 2). Above
this layer lies a deep inactive layer of density p. If the
ratio of the obstacle height b, to its length 2L is suf-
ficiently small, the lower layer behaves according to
the shallow water equations:;

! Recent direct measurements of C; along the California shelf by
Grant et al. (1984) show that C, can be as large as 4.4 X 1073, in-
dicating that the values in Table | may well be underestimates.
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FI1G. 1. Percent of Norwegian Sea deep water on section normal to the central Iceland-Faroe
Ridge (from Hansen and Meincke, 1979). The flow is from right to left.

udu/dx + g*dh/dx = —g*db/dx — Cau*/h  (2.1)
hdu/dx + udh/dx = —w™'uhdw/dx. 2.2)

Here, 4 is the thickness or “depth” and u the depth-
independent velocity of the active layer, g* is gravity
reduced in proportion to Ap/p, b is the bottom eleva-
tion, and wis the channel width. The effect of variations
in bottom topography on the active layer are essentially
the same as those of width variation, and w will there-
fore be made constant in all that follows. However, 1
will occasionally note the generalization of results to
nonconstant w.

Integrating (2.1) and (2.2) from the point x = —L
at the upstream edge of the obstacle to a point x over
the obstacle yields

TABLE 1. Values of C,L/H for various sea straits: L the
alongstream length, H the average layer depth, and C,; = 1073,

Sea strait H (m) L (m) C,L/H

Strait of Gibraltar

Outflow (Lacombe :

and Richez, 1982) 2% 107 2X10*% 0.1
Vema Channel

(Hogg, 1983) 3IX10? 2% 10° 0.7
Bornholm Strait

(Walin and

Petren, 1976) 30 2.5X10° 0.8
Denmark Strait

(Grant, 1968) 5% 10? 5X10° 1.0
Ecuador Trench

(Lonsdale, 1977) 3 X 10? 3x10° 1.0
Iceland-Faroe Ridge

(Hansen and

Meincke, 1979) 4% 10? 4X10° 1.0
Bering Strait

(Stigebrandt, 1984) 50 10° 2.0
Bosphorus ‘

(Tolmazin, 1977) 20 2% 10* 1.0

20072+ g Ih(x) + b))
= w2 +gh—Cy | ARIMDIEE (23

u(x)h(x) = Q/w 24)

where Q is the volume flow rate and u, = w(—L), h,
= h(—L). Dividing (2.3) by g*b,, to nondimensionalize
and eliminating u(x) using (2.4) yields an integral
equation for the layer thickness:

2 2 x/L

ST+ () e s
(2.5)

where

q=0Q/(g*"*b,,**w) (= dimensionless flow rate)

By =2+ g*h1)/8*bm

or Bernoulli function at x=—L)

(= dimensionless energy

a=Cy4L/b, (=friction parameter).

The frictionless (o = 0) solutions to (2.5) are well
known and their salient features will now be summa-
rized briefly. Suppose that one first specifies the to-
pography and a value for the dimensionless flow rate
g, then considers the different solutions obtained by
varying the dimensionless upstream energy B,. This
has been done in Fig. 3 using ¢ = 1 and a parabolic
obstacle:

b=bu,[1—(x/Ly"], Ix/L|<1. (2.6)
The figure shows the interface profiles for three val-
ues of By, and the profiles are distinguished primarily

by their ability to support upstream wave propagation.
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An infinitesimal, long interfacial wave propagating

against the current has speed
c-=u—(g*h)'?= bu’g*!"2

h
With g = 1 this speed clearly vanishes (the flow is crit-
ical) when (4/b,;) = 1. The solution labeled A-A' in
Fig. 3 is called subcritical since A/b,, is everywhere
greater than unity, implying ¢_ < 0, and arrows have
been drawn indicating that upstream propagation is
allowed. Both this solution and the solution labeled
D-D’ have the same upstream energy B; = 2.86. The
latter is supercritical (c_ > 0) everywhere since /b, is
everywhere less than unity. If B, is decreased, the so-
lution curves go through a succession of subcritical and
supercritical curves resembling A-A’' and D-D’ until
the value B, = 2.5, and here the two curves intersect
at x = 0. At the point of intersection the figure indicates
that h/b,, = 1, so the flow is critical c. = 0. For curve

[q - (h/ bm)3/2]'

25 @

FLOW DIRECTION
—_—

(h+b)/bm

-10 -05 o] 05 1.0
x/L

FIG. 3. Steady solutions over a parabolic obstacle with « = 0. All
solutions have the same dimensionless flow rate g = 1, but different
energy constants B).

B-B’ of the intersecting solution, the flow is subcritical
upstream of the sill and supercritical downstream. This
solution is said to be hydraulically controlled, the term
“control” having implications for the way in which
this flow adjusts to time-dependent changes in bottom
topography or upstream conditions, as discussed below.
The second branch (curve C-C') of the intersecting
solution is unstable (see Pratt, 1984a) and has never
been realized in the laboratory. Further decreases in
the value of B, lead to solutions that are not continuous
over the obstacle, as exemplified by curves E-E’' and
F-F'in Fig. 3. These solutions simply have insufficient
energy to surmount the sill.

The hydraulically controlled solution (curve B-B')
has several features worth reviewing. From the pro-
ceeding discussion, it is already clear that this solution
possesses the minimum energy necessary to surmount
the obstacle. Also consider the dimensionless “flow
force”

M(x/L) = [12h+ g*h*/2]/(g*bn?)

= (bl h)+5 (/b @7
and “specific energy”:
E(x/L)=(1%/2 + g*h)/(g *brm)
= qX(bm/h)*/2+ h/bp, (2.8

both of which are plotted as functions of (4/b,,) for ¢
= 1 in Fig. 4. Note from the figure that both £ and M
are minimal when the flow is critical (i.e., when A/b,,
= 1)

oM

——{ =0, when h/b,=1 2.9
3hibm),.. / @9
oF
=0, when h/b,=1. 2.10
3h/bm),., / @19

In summary, the hydraulically controlled flow at the
sill possesses the lowest flow force and specific energy
of any point of any possible g = 1 solution, and the
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FIG. 4. Dimensionless specific energy E and flow force F
as functions of depth h/b,, for g = 1.

controlled solution as a whole possesses the lowest en-
ergy of any ¢ = | solution.

To fully understand the meaning of hydraulic con-
trol, it is helpful to think about the way in which steady
solutions can be established in the laboratory. The
classical method, first used by Long (1954), is to tow
an obstacle at speed u, through a long tank of fluid of
equilibrium depth 4,. An observer moving with the
obstacle then sees a steady flow established in the vi-
cinity of the obstacle, and this steady state depends
upon the ratio of obstacle height to initial depth b,,/ho
and the Froud number Fy = uy/(gho)"?. Figure 5 (taken
from Baines and Davies, 1980) shows the different
steady flows that can occur, along with a sketch of the
upstream-propagating disturbance which establishes
the steady flow. When the towing speed is small enough
so that Fy < 1, there is a critical dimensionless obstacle
height b,,,/ho given by curve AB required to establish a

1—"10/_\

ho —
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controlled steady flow. To the left of this curve the flow
adjusts to a subcritical solution and no choking or par-
tial blocking occurs; that is, the depth upstream of the
obstacle remains identical to the initial depth. To the
right of AB, the upstream flow 1, and 4, (seen by the
moving observer) has insufficient energy and flow force
to surmount the sill. The result is that a bore forms
which propagates upstream, producing a new upstream
state with the minimum energy and flow force neces-
sary to surmount the sill. Thus, the new flow is hy-
draulically controlled. If the obstacle height is large
enough, the flow can be completely blocked; the critical
b,/ ho required is given by line BC in Fig. 5. The curve
AD in Fig. 5 divides flows having hydraulic jumps in
the lee of an obstacle from flows without lee jumps.

When Fy > 1, the situation is complicated by the
fact that bores can become stationary (relative to the
obstacle) in the upstream flow. The values of F;, and
bm/ho for which this occurs are given by curve AF.
Curve AE indicates values of Fy and b,,,/h, for which
the approaching flow has the minimum energy nec-
essary to surmount the sill and is the continuation of
curve AB. In the area FAE it is possible to have either
a controlled or noncontrolled flow, depending on how
the obstacle is started from rest. The associated hys-
teresis is discussed by Pratt (1983) including a numer-
ical example. Further discussion of the curves in Fig.
S5 and their derivation will be given in section 4.

If one could imagine the deep circulation in a hy-
pothetical flat-bottom ocean with no straits and sills,
then the towing experiment results say something about
the amount of topographic relief it would be necessary
to introduce to hydraulically influence the circulation.
Although the forcing mechanism is somewhat unreal-
istic, the transients excited as the flow adjusts to the
obstacle are in many respects independent of the forc-
ing. In fact, it can be shown (Houghton and Kasahara,
1968) that the adjustment excites the most general re-
sponse possible within the context of shallow water

Partially blocked QJ\_,

supercritical.
F )

E Parﬁolli blocked, no Ie; jump

0
F= :
o‘\/g ho
Subcritical flow
h*o Y

— fh_

=7 e % 05

b/ hg

i

Partially blocked with lee jump

N
c—7 h
0 W ~ 4

Complete blocking

P_‘IG. 5. Regime diagram showing the different steady flows established in the towing experiment.
Fy is the Froude number based on the towing speed w4, and the equilibrium depth Ao, while b,,, is

the sill height (from Baines and Davies, 1980).
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theory. Therefore, the results of the towing experiment
provide valuable insight into the response to other types
of forcing (see Pratt, 1984b).

3. Steady solutions with friction

Now reconsider the momentum equations (2.1) and,
(2.2) with nonzero Cy (and constant w). If u, is elimi-
nated between the two, a single equation for the vari-
ation in layer thickness is obtained:

dh _ dbjdx+ CF’

dx  F—1 (3-1)

where
F?=12/g*h.

If the bottom is level (db/dx = 0), friction causes the
layer thickness to increase (dh/dx > 0) in the direction
of flow under supercritical (F > 1) conditions. When
the flow is subcritical (F < 1), however, the thickness
decreases (and the velocity increases) in the flow di-
rection; that is, friction causes the flow to accelerate!
This nonintuitive result can be made clearer if one
considers the specific energy curve in Fig. 4. For a non-
sloping bottom, the specific energy is essentially the
energy or Bernoulli function and is conserved in the
absence of friction. Suppose that an observer starts at
point P on the subcritical branch of the energy curve
in Fig. 4, corresponding to a dimensionless depth of
2.5. Since friction deletes energy from the flow, the
observer must move to the left (toward P') on the energy
curve as proceeding downstream, and this results in a
decrease in layer thickness. The physical meaning of
this result is as follows: when the flow is subcritical,
the energy is composed primarily of potential energy,
the proportion of kinetic energy being small. Thus en-
ergy can effectively be deleted from the flow only by
deleting potential energy, i.e., decreasing the layer
thickness.

Now consider the conditions which must hold in
order that the flow be critical, F = 1. For frictionless
flow it has already been shown that critical flow occurs
only over the sill of the obstacle. In fact, this result can
be obtained by setting C; = 0 and F = 1in (3.1). Clearly
db/dx must be zero in order that dh/dx remain
bounded. With nonzero C,, (3.1) indicates that critical
flow occurs at the position x = x, such that

db/dx] ey, = —Cj. (3.2)

This slope is known as the “critical slope.”? Since C,;
is positive, the point x, of critical flow must lie on the
downstream face of the obstacle where the bottom slope
is negative. It should also be noted that the quadratic
drag law does not alter the dynamical significance of
the critical flow condition; the definition of the long-

2 When channel width variations occur, (3.2) is generalized to
(db/dx)'x-xc - (hw-ldw/dx)'x-x, = _Cd~
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wave speed is unaltered by friction, and such waves
continue to remain stationary when u = (g*h)"/2. Fur-
thermore, since the arguments leading to (2.9) and
(2.10) were based only on conservation of mass, critical
flow occurs when the specific energy and flow force are
at a minimum. Therefore, the features that associate
critical flow with the process of hydraulic control are
present regardless of quadratic friction.

It is interesting to speculate where critical flow might
occur in the Iceland-Faroe overflow of Fig. 1. The
downstream face of the ridge can be broken into three
sections having slopes of about 0.002, 0.003, and 0.01
respectively, as shown. If the overflow was frictionless,
critical flow would occur at the sill located near the
275 km mark on the horizontal scale. A drag coefficient
of 0.002 would indicate that critical flow could occur
0-15 km downstream of the sill, while C; = 0.003
would indicate a point 15-60 km downstream of the
sill. Of course, this computation neglects the effects of
width variations, the earth’s rotation, and other factors
that may influence the hydraulics of this overflow but
are difficult to estimate.

Now consider the steady solutions obtained by fixing
the dimensionless flow rate at value ¢ = 1 and varying
the energy B, of the flow immediately upstream of the
obstacle, as before. The resulting interfacial profiles are
shown in Fig. 6. The topography here is given by (2.6)
and the friction parameter a has value 0.5. The sub-
critical solution (curve A-A’, B; = 3.25) experiences a
net decrease in elevation across the obstacle, as sug-
gested by the remarks at the beginning of this section.
In fact, an indiscriminate observer might be misled by
the solution’s asymmetry into thinking that this solu-
tion is hydraulically controlled. Decreasing B, to the
value 3.10 leads to the hydraulically controlled profile
B-B'. A larger value of B, than in the inviscid case (Fig.
3) is required for this controlled flow since the fluid

FLOW DIRECTION
R

2.5

(h+b) /by
- n
o o]

5

05

x/L

FIG. 6. As in Fig. 3 but with « = 0.5. Note that the Bernoulli
function B, is not conserved as in Fig. 3. Here B, represents the
energy measured at x/L = —1.
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must overcome both an elevation change and a drag
to surmount the obstacle. The location x,./L of the crit-
ical or control point can be predicted by using (3.2) in
(2.6), with the result

x/L=af2, |x|<L. (3.3)

For a = 0.5 we have x./L = 0.25 and this marks the
location where intersection with the curve C-C’ occurs
in Fig. 6. At the sill the Froude number of the hydrau-
lically controlled flow is 0.76, and one could easily be
misled by this value into thinking that the flow is of
type A-A'. To be certain, one must measure the Froude
number at the location given by (3.3).

Some other examples of hydraulically driven, fric-
tional flow can be found in the literature; among them
are flow down an incline of constant slope (Turner,
1973) and tidally forced subcritical flow through a
weirlike constriction (Stiegebrandt, 1980). In particular,
Turner discusses qualitatively how the flow can change
from subcritical to supercritical, and vice versa, over
a uniform slope, and his Eq. (3.2.8) is essentially my
Eq. (3.1).

4. The initial value problem

I now discuss the effect of friction on the establish-
ment of steady solutions. Figure 7 shows the transients
that established hydraulically controlled states in the
previously discussed towing experiment. The figure is
drawn in a reference frame moving with the speed 1,
of the obstacle. To the left of the obstacle a bore moves
upstream, partially blocking the flow. A stationary hy-
draulic jump is shown on the downstream face of the
obstacle, and a rarefaction wave propagates down-
stream to the right of the jump. For sufficiently large
towing speed, the hydraulic jump can move off the
obstacle and propagate downstream as a bore. Far up-
stream and downstream the depth is just the undis-
turbed depth Ay. If this depth is known, along with the
obstacle height b,, and towing speed uy, it is possible
to compute the entire transient flow field using shock-
joining theory.

How does friction affect the flow field shown in Fig.
7? First of all, friction will have no effect on the far-
field u, and A, since this part of the flow is at rest
relative to the flat bottom. Friction should also have

bore

A
1
|
l

Yo ho I
1
|
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no effect on the type of transients excited, since these
transients constitute the most general response allow-
able in shallow water theory, regardless of the value of
«. On the other hand, friction will certainly alter the
segments of steady flow that occur in the near field
(roughly between sections 1 and 3 in Fig. 7). One would -
expect friction to be strongest in the shallow region
over the obstacle with weaker frictional effects in the
subcritical flow upstream of the obstacle and down-
stream of the jump.

In fact, if the fluid depth away from the obstacle is
sufficiently large, it should be possible to neglect friction
there. Following an argument similar to the one used
by Stigebrandt (1980), suppose that 4; and u, are scales
for the layer thickness and velocity away from the ob-
stacle. If this flow is subcritical, the primary momentum
balance will be between the terms g*dh/dx and C?/
hin (2.1), and this balance suggests that the friction
will change the layer thickness over the horizontal
length

A= g*h lz/Cdulz.

If this length is small compared to the characteristic
obstacle length L, then one should be able to ignore
friction away from the obstacle to a first approximation.
Using u;? = Q¥/w?h,? = g*h>/h\?, where h, denotes
the critical layer thickness, the approximation is equiv-

alent to
L _(LCy\(h. 3
v (i) <

For the Iceland-Faroe overflow (Fig. 1) let L = 4 X 10°
m, 7, = 500 m, A, = 50 m and C; = 0.003, giving L/
A=24X1073

Under the condition (4.1) the adjustment of a resting
fluid to a towed obstacle will proceed as follows. There
will be an initial adjustment, the time scale of which
will be roughly L/(g*ho)'/?, the time required for a
gravity wave to traverse the obstacle. During this initial
phase, blocking bores and rarefactions form and move
away from the obstacle, leaving behind a nearly steady
flow, as in Fig. 7. Although some interfacial slope will
develop away from the obstacle, this slope will be neg-
ligible compared to the hydraulically and frictionally
induced slopes over the obstacle. It is this initial ad-
justment that will be computed here. After a time

4.1

rarefaction
—_—

jump

—

Yo

2 3

FiG. 7. Sketch of the blocking bore, hydraulic jump, and rarefaction wave that
develop when critically controlled flow is established in the towing experiment.
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M(g*ho)'"? the cumulative effect of friction away from
the obstacle may become as important as the obstacle
itself in determining a solution. However, in most lab-
oratory and oceanographic situations of importance,
other complications (such as reflections from basin
walls) will intervene before friction does.

In order to maintain the greatest degree of simplicity,
I will work with an obstacle of parabolic shape as given
by (2.6). This shape contains the single horizontal
length scale L, and friction will enter the problem
through the single parameter « = C4L/b,,. First con-
sider Eqs. (2.3) and (2.4) for the steady flow over the
obstacle, rewritten here as

002+ g*h(3) + )]
= w2+ g —Cs | LADMNME (4

u(x)h(x) =wh. 4.3)

The subscript 1 denotes a value measured upstream of
the obstacle but downstream of the blocking bore, as
shown in Fig. 7. The flow #, and Ao far upstream is
connected to #; and A, through the Rankine-Hugoniot
conditions of mass and momentum conservation:

c(ho— hy) = uoho — ushy 4.4)
c=1uo—[g*hi(h + ho)/2ho)'?  (4.5)

where c is the bore speed. Downstream of the obstacle,
u, and A, can be connected to u; and A; across the
jump using relationships of the same form as (4.4) and
(4.5). Finally, u3 and 43 can be connected to #p and /g
across the rarefaction wave using conservation of the
Riemann invariant: )

us — 2(g*h3)'? = up— 2(g*ho)'2. (4.6)

[See Stoker (1957) for a thorough discussion of this
condition and (4.4)—(4.5).]

In addition, (3.3) indicates that critical flow will oc-
cur at location x./L = «/2, corresponding to obstacle
elevation

be=b,(1 — a?/4). 4.7)

Note that critical flow can occur only for values of «
< 2; for larger values the bottom slope will be too small
to satisfy (3.2).

Where jumps and bores occur, mass and momentum
flux may be exchanged between layers, and, strictly
speaking, (4.4) and (4.5) should be modified to include
these effects. However, the correct forms of these mod-
ifications are not well established, particularly with re-
gard to the question of entrainment of mass. Further-
more, the experiments upon which Fig. 5 are based
were done with a single-layer system in which (4.4)
and (4.5) hold. To make comparisons with these results
and to maintain the goal of illustrating only gross
changes due to friction, I will neglect upper-layer in-
teractions and use (4.4) and (4.5) as they are.
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a. The curve BAE

The curve BAE of Fig. 5 (due to Long, 1954) indi-
cates the threshold obstacle height above which 1, and
hy are insufficient to allow inviscid fluid to surmount
the obstacle in a steady state. It is also the curve for
which the amplitude h, — hg of the blocking bore in
Fig. 7 is zero. That is, the curve is determined by those
values of #y and 4, that specify the upstream state of
a steady flow which becomes critical over the obstacle.
Evaluating (4.2) and (4.3) at x = X, and setting u,
= u, and hy = h, gives

3g*he+g*bu(1—a?/4)

— w2 +gho—Co | LROMAME @48)

uoho=g*"*h;>">. 4.9)

Eliminating 1, between these equations and dividing
the result by g*h, leads, after some rearrangement of
terms, to

blho=1=3F3 4+ Fe? + 2 alb/ho)

o af2
><{5—F02 f_ l [ho/h(x/L)]3d(x/L)]. (4.10)

Setting a = 0 in (4.10) gives the inviscid curve BAE.
For finite a, (4.10) shows that the threshold obstacle
height b,,/hy is altered by two competing effects. The
first, associated with the term o?(b,./ho)/4, is due to the

.movement of the critical point (or control point) to a

lower elevation, and this movement tends to increase
the threshold height. The second effect, associated with
the integral in (4.10), is the frictional drag caused by
that portion of the obstacle upstream of x,.. This drag
tends to decrease the threshold height.

Figure 8 shows how the curve BAE is altered when
« has its maximum possible value (=2.0). The new
(dashed) curve has been obtained by solving (4.10) nu-
merically and the algorithm is described in appendix
B. Apparently, the drag effect mentioned above is al-
ways larger than the critical point displacement effect,
since the b,,/ho required to cause partial blocking is
decreased by friction. This decrease is not dramatic
when Fy < 1 but is huge when Fy > 1, due to the
greater influence of friction under supercritical con-
ditions. Note that no shock joining has been employed
to obtain these curves, so the results are valid for both
the single-layer and the two-layer (reduced gravity)
models.

To the right of the dashed curve BAE' in Fig. 8, the
flow 4 and Ay (seen in the moving frame) has insuf-
ficient energy and flow force to surmount the obstacle.
Partial blocking of this flow will result, leading to a
critically controlled state. To the left of this curve there
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FIG. 8. The threshold obstacle height curve for « = 0 and a = 2.
To the right of this curve, a steady flow of upstream Froude number
F, has insufficient energy and flow force to surmount the obstacle.

may be a slight blocking effect due to frictional drag,
but the flow nevertheless has sufficient energy to sur-
mount the obstacle, and a noncontrolled steady state
will be established.

b. The curve AF

The curve AF of Fig. 5 (due to Long, 1970) marks
those values of Fy and b,,/h, for which the upstream
blocking bore is stationary. For finite « the curve can
be calculated as follows. Proceeding as in section 4a,
evaluate (4.2) and (4.3) at x = x, and combine the
results, obtaining

by = 1=2F2P + 22+ albyf )

a af2
x[E—FJ L 1 [hdh(x/L)]’d(x/L)]. 4.11)

Also, setting the bore speed ¢ = 0 in (4.4) and (4.5)
and combining the results gives the relationship,

(h/ho)=[1+(1+8F)'2)/(4F?).  (4.12)

To find a point (b,,/hy, Fy) for which the blocking bore
is stationary, first choose a value for F; and use (4.11)
and (4.12) to find b,,/h, and h,/hy. Finally, compute
b,./he and F; from

b/ ho = (bm/h1)(h1/ho) (4.13a)

Fo=F(hy/ho)** (4.13b)

(the latter follows from 4.4). See appendix B for more
details.

Figure 9 shows the curve AF, along with its « = 2.0
counterpart, labeled AF’. Also shown are the curves
AE and AF), indicating the threshold obstacle height
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for « = 0 and « = 2 based on energy (or flow force)
considerations. First consider the significance of the
inviscid curves AF and AE. In the shaded region FAE,
the outcome of the towing experiment depends upon
how the towing is initiated. Suppose one initiates the
towing experiment by arranging for b,,/hy and Fy to
lie at point p in Fig. 9. Then no partial blockage occurs
and a steady supercritical flow will develop over the
obstacle. If F; is then decreased by decreasing the tow-
ing speed so that the point p’ is reached, the flow will
continue to be supercritical over the obstacle. Further
lowering F, until point p” is reached does result in the
formation of a blocking bore, and this bore moves up-
stream, leaving behind a critically controlled flow over
the obstacle. However, if Fj is now increased back to
the value indicated at point p’, the bore continues to
move upstream and the critically controlled state is
maintained. To reestablish a supercritical flow it is
necessary to raise Fj, above the line AF, wait for the
bore to return to the obstacle, and then lower F;, back
to its value at p'. (For a numerical example of a similar
chain of events, the reader is referred to Pratt, 1983.)

Now consider the shaded region E'AF’ for a = 2.0
and note that the stationary bore curve AF’ lies to the
right of the threshold curve AE'. Thus, if one begins at
point g and moves to ¢, partial blockage is initiated
because the flow at ¢’ has insufficient energy to sur-
mount the obstacle. However, the blocking bore will
be unable to move upstream, as g’ lies to the left of the
stationary bore curve AF'. Apparently, the only possible
outcome is that the bore remains stationary over the
upstream face of the obstacle (a feature not possible
under frictionless conditions). There will be a unique

FIG. 9. Curves AF (a = 0) and AF’ (o« = 2) indicate steady flow
with stationary upstream bores. The curves EAB and E'AB are as in
Fig. 8. Hysteresis occurs in the shaded area EAF. In region EAF’
stationary bores occur on the upstream face of the obstacle and there
is no hysteresis.
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position for this stationary bore determined by F, and
b,./hy. If one moves from ¢’ to ¢”, the bore moves
upstream. Returning to ¢’ will cause the bore to become
stationary again at the predetermined position. Thus,
multiple steady states are apparently not possible in
region E'AF'. -

¢. The curve AD

The curve AD of Fig. 5 (due to Houghton and Ka-
sahara, 1968) gives those values of Fy and b,,/hy for
which the hydraulic jump remains stationary at the
downstream edge x = L of the obstacle, as shown in
Fig. 7. Below the curve AD, jumps lie on the sloping
portion of the obstacle, 0 < x < L; whereas above the
curve, jumps propagate downstream. Calculating the
curve requires quite a bit of algebra, and I leave the
details to appendix C. Briefly, one starts by assuming
that a steady flow exists over the obstacle and that a
stationary jump exists at x = L. Using Fig. 7 as a model,
one then constructs the different segments of the flow
field using the steady flow equations (4.2) and (4.3)
and the shock-joining conditions (4.4)—(4.6).

The change in curve AD that occurs when a = 1
and « = 2 is shown by the solid curves in Fig. 10. Note
that increasing « tends to raise this curve, thereby en-
larging the parameter space in which lee jumps occur.
Conversely, increasing a moves the control point
downstream, thereby decreasing the distance over
which stationary jumps occur. The result is a decrease
in the amplitude A; — A, that the stationary jump can
have. The limiting case is « = 2; here the flow is critical
at x = L and any jump must have zero amplitude [see
Eq. (4.12)]. The dashed curves in Fig. 10 give the di-
mensionless amplitude (h; — hy)/h; of the stationary
jump when the jump lies at x = L. If one picks values

0"
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0 02 04 06 o8 10 12

bm/ho
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FIG. 10. The solid lines indicate values of F and b,,/ho for which
a stationary jump exists at x = L. Results are plotted for a = 0, 1
and 2. The dashed curves are contours of the dimensionless amplitude
(hy — h3)/h; of the jump at x = L.
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FIG. 11. The towing experiment regime diagram
" for a = 0 and « = 2 (cf. Fig. 5).

of b,,/hy and Fy, then the corresponding « read from
the solid curves in Fig. 10 gives the friction parameter
necessary to establish a stationary jump at x = L. The
dashed curves give the amplitude of this jump, repre-
senting the maximum amplitude that any stationary
jump can have at the given b,,/hy and Fy. For fixed
b,/ hy (or Fp) this maximum amplitude decreases with
increasing a.

d. The curve AC

This curve gives the obstacle height needed to com-
pletely block the flow. Since the steady state that forms
near the obstacle is one of no motion, friction plays
no role and the curve AC is independent of «.

5. Discussion

Although many of the well-established, basic ideas
concerning hydraulic control, critical flow, and energy
and flow force minimization remain essentially unal-
tered by the inclusion of the quadratic drag law, many
quantitative alterations take place. One is the displace-
ment downstream of the control point, as determined
by (3.2). It has been suggested that such a control point
could lie as far as 60 km downstream of the sill in the
Iceland-Faroe Channel. If the drag coefficient is so large
that (3.2) cannot be satisfied, the flow cannot be crit-
ically controlled and friction completely dominates
hydraulic effects. Friction also gives rise to asymmetries
in the interface profiles that can cause, among other
things, subcritical solutions to resemble controlled so-
lutions. ,

It is also possible to predict how friction influences
the outcome of the classical towing experiment under
the approximation (4.1). Figure 11 summarizes these
findings by showing the flow regimes that occur for
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given (b,,/ho, Fo) in the frictionless case a = 0 and the
case of strongest allowable friction a = 2. Although
friction does not affect the minimum obstacle height
required to completely block the flow (curve BC), it
decreases the minimum obstacle height required to
produce hydraulically induced partial blocking (curve
EAB versus E'AGB). Friction also enlarges the param-
eter space in which lee hydraulic jumps occur (area
DABC versus D’ABC) and apparently can give rise to
a new region (area E’'AF’) in which stationary bores
occur on the upstream face of the obstacle.

One question unanswered by the present study con-
cerns the case o > 2. What is the nature of the adjust-
ment that occurs in this friction-dominated case and
can the approximation allowing negiect of friction away
from the obstacle still be made?
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APPENDIX A
Numerical Method for Solving (2.5)

Using the trapezoidal rule, the integral in (2.5) can
be approximated as

(x+Ax)/L x/L
[ Gumpaemy= | nmpaoary

Ax[{ bn \? bn
+—==) +H——] |- @
2L [(h(x)) (h(x+ Ax)) ] (AD
Substituting (A1) and (2.6) into (2.5) and evaluating
the result at x + Ax leads to the quartic equation

71:.,.1 + [1 - E?:H + % an(En_H - En)hn—3 - Bn]h?ﬁl

307w +50q% 1~ £) =0 (A2)
where
En=Xu/L, Xpr1=Xnt+Ax, hn = h(xn)/bm

By=h(=1)+34%/F(-1)
—300* DE- b0+ ER). (A3)
i=1

To compute 71(5) over the parabolic obstacle for given
g and By, start at the upstream edge £ = —1. To find
h(t = —1), substitute 7 = 0, £,y = & = —1 and
B, = B, into (A2) and solve for /,. (At most, two real
positive roots will occur, corresponding to subcritical
and supercritical solutions. If only one real positive
root occurs the flow is critical. If none occur, B, must
be increased.) Next, set n = 1, B, = By; solve for A,

L. J. PRATT

1979

= h(—1 + A¥); calculate B, from (A3); set n = 2 and
reiterate. All profiles in Fig. 3 except B-B' and C-C’
were calculated using Af = £, — &, = 0.02. More
resolution is needed to calculate B-B' and C-C’, and
A£ = 0.005 was used.

APPENDIX B

Numerical Method for Calculating the Curves
of Figs. 8 and 9

Curve E'AB is calculated by solving (4.10) for b,,/ho
with given « and F;,. The procedure is to first guess
b../ho. [A good first guess may be obtained by setting
a = 0 and solving (4.10) directly.] Using this guess,
evaluate the integral in (4.10). To do so, it is necessary
to calculate the depth profile from x = —L to x = X,
over the parabolic obstacle by integrating (2.1) from
position x to x.. The result can be obtained simply by
replacing ug, hg, and —L by u(x), A(x), and x in (4.8)
and (4.9). The results of these substitutions can then
be combined, yielding

LFH 2+ bt (b o)1~ ) =3 Fo®

af2
+ (bl o)1 — o/8) + aFo Bl o) L Jdy (Bl)

where & = h/hy, £ = x/L, and the relation &, = Fo* is
used. Proceeding as in appendix A, one applies the
trapezoidal rule to the integral, yielding the quartic
equation

Foer + [(brfho)(o? /4 — £7)

— 3 Fo bl hon—En-ha> ~ Bl

+3Foth =3 aF(bnlho)fn— ) =0 (B2)

where

B, =2 Fo+ L abe(bmfho) D (&~ b1-)h> + i)

=2
(B3)

and where £, is as defined in appendix A. Starting with
n= l’ En = xc/L = ot/2, E;H'l = gn - AE? én = %F02/3s
and h, = Fy*?, calculate h,., from (B2). Then set n
= 2, calculate B, from (B3) and reiterate, working
backward toward the upstream edge £ = —1 of the
obstacle. When & = 1 is reached, the value B, — 3F*?
approximates the value of the integral in (4.10). If this
value, the guessed value of b,,/hy, and the given values
of Fy and « are substituted into the right-hand side of
(4.10), the result gives a new estimate of b,/ /.
Using A£ = 0.02, the above procedure was used to
construct curve E'AB in Fig. 8. For F < 0.5, it is only
necessary to iterate b,,/hy three or four times to obtain
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a solution accurate to 1%. For Fy > 0.5, as many as
ten iterations were sometimes necessary.

To calculate the curves of Fig. 9, one first chooses
values « and F, and computes b,,/h; using the above
procedure. Next the shock-joining conditions (4.13)
are used to calculate Fy and hg/h,, giving a point on
the appropriate Fy versus bo/hg curve of Fig. 9.

APPENDIX C
Numerical Method for Calculating Curves in Fig. 10

To calculate curves A-D, A-D', and A-D’ in Fig.
10, specify F, and calculate a corresponding value of
b../h, using the method of appendix B. Next, use Eq.
(B3) with Fy and A replaced by F, and A, to find the
fluid depth A,/h; at the foot of the obstacle. The cor-
responding Froude number F; is given by conservation
of mass as Fy(h,/h,)*%. Following Fig. 7, the depth and
Froude number /3/h, and F; on the downstream side
of the hydraulic jump can be computed from the shock-
joining conditions

ha/hs = (F3/F;)*? (C1)
F?P =[1+4(1+8F,%)'?)/4F,*3, (C2)

Finally, it is possible to eliminate ¢ and %, from
Egs. (4.4)-(4.6), resulting in the following equation
for ko = h()/h]

ho* —9he? — 84hy*? — 247+ Dhe+1=0
where
A=F(hs72=1)=2h3'2,  hy= hy/h,.

Using the value of 3 computed from (C 1) and (C2),
only one physically realizable root of (C3) can be found.
Once Ay is known, one can compute b,,/hy = (b./hy)/
ho. Also, Eq. (4.6) can be rearranged, yielding

Fo=2[1—(hs/ho)"*) + Fa(hs/ho)" .

(C3)

The result is that one point (Fy, b,,/hy) on the desired

curve is obtained.
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