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The Rossby adjustment problem for a homogeneous fluid in a channel is solved for
large values of the initial depth discontinuity. We begin by analysing the classical
dam break problem in which the depth on one side of the discontinuity is zero. An
approximate solution for this case can be constructed by assuming semigeostrophic
dynamics and using the method of characteristics. This theory is supplemented by
numerical solutions to the full shallow water equations. The development of the flow
and the final, equilibrium volume transport are governed by the ratio of the Rossby
radius of deformation to the channel width, the only non-dimensional parameter.
After the dam is destroyed the rotating fluid spills down the dry section of the
channel forming a rarefying intrusion which, for northern hemisphere rotation, is
banked against the right-hand wall (facing downstream). As the channel width is
increased the speed of the leading edge (along the right-hand wall) exceeds the
intrusion speed for the non-rotating case, reaching the limiting value of 3.80 times the
linear Kelvin wave speed in the upstream basin. On the left side of the channel fluid
separates from the sidewall at a point whose speed decreases to zero as the channel
width approaches infinity. Numerical computations of the evolving flow show good
agreement with the semigeostrophic theory for widths less than about a deformation
radius. For larger widths cross-channel accelerations, absent in the semigeostrophic
approximation, reduce the agreement. The final equilibrium transport down the
channel is determined from the semigeostrophic theory and found to depart from the
non-rotating result for channels widths greater than about one deformation radius.
Rotation limits the transport to a constant maximum value for channel widths greater
than about four deformation radii.

The case in which the initial fluid depth downstream of the dam is non-zero is
then examined numerically. The leading rarefying intrusion is now replaced by a
Kelvin shock, or bore, whose speed is substantially less than the zero-depth intrusion
speed. The shock is either straight across the channel or attached only to the right-
hand wall depending on the channel width and the additional parameter, the initial
depth difference. The shock speeds and amplitudes on the right-hand wall, for fixed
downstream depth, increase above the non-rotating values with increasing channel
width. However, rotation reduces the speed of a shock of given amplitude below the
non-rotating case. We also find evidence of resonant generation of Poincaré waves
by the bore. Shock characteristics are compared to theories of rotating shocks and
qualitative agreement is found except for the change in potential vorticity across the
shock, which is very sensitive to the model dissipation. Behind the leading shock
the flow evolves in much the same way as described by linear theory except for the
generation of strongly nonlinear transverse oscillations and rapid advection down the
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right-hand channel wall of fluid originally upstream of the dam. Final steady-state
transports decrease from the zero upstream depth case as the initial depth difference
is decreased.

1. Introduction
The existence of rotationally influenced, hydraulically driven flows in deep ocean

straits has been known for some time. These flows can be strongly time-dependent,
a feature which hinders interpretation in terms of rotating, hydraulic theory (e.g.
Whitehead, Leetma & Knox 1974; Gill 1977). Prominent examples include deep
overflows of the Denmark Strait (Smith 1976) and the Faroe Bank Channel (Cederlf,
Lundberg & Sterhus 1989). The ultimate understanding of such complicated flows
will require reference to idealized models in which generic transients can be isolated
and studied. In non-rotating hydraulics, Long’s towing experiments (Long 1954,
1955, 1970) and the classical dam break problem (Stoker 1957) have provided a
foundation for investigating more complex phenomena. In geophysical fluid dynamics,
the classical Rossby adjustment problem (see Gill 1982) and its extension to a channel
setting (Gill 1976; Hermann, Rhines & Johnson 1989; Tomasson & Melville 1992)
have played a similar role. In the latter, a cross-channel barrier separating two semi-
infinite regions of homogeneous fluid of different depths is destroyed, causing the
deeper fluid to intrude into the shallower fluid. Gill (1976) solved a linearized version
of this problem (assuming an infinitesimal depth difference across the barrier) and
showed how a steady current was set up by Kelvin waves moving away from the
barrier. The Kelvin wave propagating into the shallower fluid is trapped at the right-
hand wall while the Kelvin wave moving into the deeper fluid is trapped at the left
wall. The resulting steady flow approaches the section of the initial barrier along the
left wall, crosses the channel at that section, and continues along the right wall.

Hermann et al. (1989, referred to as HRJ) later extended the solution to cases
where the depth difference was small but finite. For large times the Kelvin waves
of the linear solution have propagated far from the dam site leaving behind a
geostrophically adjusted state (the steady solution to the linear problem). Subsequent
nonlinear advection of the potential vorticity front down both sides of the channel
occurs. HRJ examined the complexities of the slow time scale evolution of this
potential vorticity front using contour dynamics and numerical solutions to the full
shallow water equations. Tomasson & Melville (1992) also studied the problem in
the weakly nonlinear limit, but added the effects of weak non-hydrostatic dispersion.
They focused on determining when the evolution cannot be separated into a linear
wave regime followed by nonlinear effects on a slow time scale. They also explored
the nonlinear evolution of the leading solitary-like Kelvin wave and showed that it
could force Poincaré waves by a direct resonance mechanism described by Melville,
Tomasson & Renouard (1989).

The assumption of small initial depth change is a feature which limits the hydraulic
behaviour, that is strong departures from geostrophy in the along-channel momen-
tum balance leading to shocks, rarefaction waves, and certain types of separation
phenomena. The purpose of the work described herein is to explore the strongly
nonlinear, time-dependent regimes created when the depth difference across the bar-
rier is not small. We perform calculations over a range of channel widths and depth
differences beginning with the case of zero downstream depth: the dam break in a
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rotating channel. An assumption of semigeostrophy (meaning a geostrophic balance
in cross-channel but not along-channel momentum) allows an approximate solution
based on the method of characteristics and conservation of Kelvin wave Riemann
invariants. The sole dimensionless parameter for this case is the ratio of the channel
width to the Rossby radius of deformation based on the initial upstream depth. Small
values produce flows similar to the classical non-rotating dam break experiment, as
described in Stoker (1957). Larger values produce an assortment of interesting fea-
tures, including separation of the current from the left sidewall (facing downstream),
formation of a rarefying intrusion along the right sidewall, and departures of the
speeds of the separation point and the intrusion nose below and above the corre-
sponding non-rotating values. Results are compared to numerical simulations based
on the full, two-dimensional shallow water equations. The dam break problem allows
us to explore fundamental issues arising from the presence of flow separation during
geostrophic adjustment. In addition, comparison with the numerical solution provides
a measure of the validity of semigeostrophic theory.

We also investigate cases in which the downstream depth is non-zero. The re-
sulting adjustment is complicated by the fact that the intrusion contains a bore (a
moving hydraulic jump) leading to non-conservation of potential vorticity. The result-
ing formation of regions of non-uniform potential vorticity render the characteristic
approach much less tractable due to the difficulty in formulating shock-joining con-
ditions. Hence, our solutions are based entirely on numerical simulation. The leading
bore may extend across the channel and intersect both walls, or it may be attached
only to the right-hand wall. In both cases the bore results in a strong off-shore jet.
Bore speeds and amplitudes are found to increase with increasing channel width for
a fixed downstream depth. Many of these features are consistent with Fedorov &
Melville’s (1996, referred to as FM) theory for bores propagating along a coastline.
However, the theory slightly overpredicts the bore speeds. Lagrangian advection of
new fluid down the channel is discussed.

The solution to the dam break problem also allows investigation of the concept of
‘geostrophic control’ (Toulany & Garrett 1984), essentially a bound on the volume
transport between two rotating reservoirs with unequal surface levels. The bound is
proportional to the square of the difference in interior surface elevations between the
two reservoirs. A connection with the present problem can be made by thinking of
the regions upstream and downstream of the original barrier in our rotating channel.
As we will show, the asymptotic (t→∞) flow that develops is steady and uniform in
the along-channel direction, provided the channel width is finite. Therefore the final
elevation difference between the two ‘reservoirs’ is zero and the bound fails. However,
we will also show that the bound is valid when based on the initial elevation difference.
Moreover, in the limit of infinite channel width, the asymptotic flow does not become
longitudinally uniform but, instead, preserves the initial elevation difference between
reservoirs. Here the transport bound exactly matches the actual transport.

The formulation of the problem and the semigeostrophic approximation are ad-
dressed in § 2. Method of characteristic solutions to the semigeostophic theory for the
case of zero downstream depth are developed in § 3. These solutions are then discussed
and compared to numerical solutions of the full nonlinear shallow water equations
in § 4. The numerical study of the non-zero downstream depth problem is presented
in § 5. In § 6 we discuss the results and compare them with several studies (Stern,
Whitehead & Hua 1982; Kubokawa & Hanawa 1984a, b; Griffiths & Hopfinger 1983)
of two-layer Rossby adjustment along a coast.
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2. Mathematical formulation and the semigeostrophic limit
Consider a shallow, homogeneous layer of fluid contained in a channel which

rotates in the horizontal (x, y)-plane at angular speed f/2, f > 0. The channel bottom
is horizontal and the cross-section rectangular. The motion is governed by the inviscid
shallow water equations (in dimensionless form)
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The layer thickness d is scaled by the initial depth behind the dam D, x (cross-channel
dimension) by the deformation radius
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One consequence of (2.1)–(2.3) is that the potential vorticity q is conserved following
fluid parcels,
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We first investigate the breaking of a dam in an infinitely long channel of constant
width w and zero depth downstream of the dam. The initial and boundary conditions
are

u(x, y, 0) = 0, (2.6)

v(x, y, 0) = 0, (2.7)

d(x, y, 0) =

{
1, y < 0
0, y > 0,

(2.8)

u(±w/2, y, t) = 0. (2.9)

The parameter δ =
√
gD/fL in (2.1) is the ratio of the deformation radius

√
gD/f

to the length scale of the flow L (or equivalently the cross-channel to the along-
channel velocity scales). In the limit δ → 0 the acceleration terms in (2.1) can be
neglected and v becomes geostrophically balanced. The resulting semigeostrophic
equations remain hyperbolic and can be solved using the method of characteristics.
In our dam break problem we may think of L as being the distance along the channel
bottom between the leading edge of the intrusion, which moves towards positive y,
and the leading edge of the transient that moves towards negative y. According to
this definition L steadily increases from zero at t = 0 and thus the semigeostrophic
approximation will be formally valid only after L becomes� w. For narrow channels
the constraining effects of the sidewalls should suppress large u velocities and v should
become geostrophic soon after the dam is removed. For wide channels a significant
u velocity will develop in the central portion of the channel shortly after the dam
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breaks. Both features are confirmed by comparison of the semigeostrophic solution
with numerical solutions to the full shallow water equations (2.1)–(2.3).

In the limit δ → 0, the potential vorticity (2.5) is approximately q = (1 + ∂v/∂x)/d.
Combining this result with the geostrophic relation for v gives

∂2d

∂x2
− qd = −1. (2.10)

For initial conditions (2.6)–(2.8) the potential vorticity q is a constant.
Following Gill (1977) it is convenient to write the solution to (2.10) for d, and hence

v through geostrophy, as

d(x, y, t) = q−1 + d̂(y, t)
sinh [q1/2x]

sinh [ 1
2
q1/2w]

+ (d̄(y, t)− q−1)
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2
q1/2w]

, (2.11)
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2
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Here
d̄ ≡ 1

2

(
d(w/2, y, t) + d(−w/2, y, t)) (2.13)

is the average of the sidewall depths and

d̂ ≡ 1
2

(
d(w/2, y, t)− d(−w/2, y, t)) (2.14)

is half the difference in the sidewall depths. The cross-channel velocity u(x, y, t) may
be obtained diagnostically from (2.2) once d and v are known.

For the problem at hand the current may separate from the wall at x = −w/2.
The fluid depth is then non-zero only over w/2− we < x < w/2, where we(y, t) is the
width of the separated flow. The expressions for d and v then become

d(x, y, t) = q−1+d̄(y, t)
sinh [q1/2(x− xc(y, t))]

sinh [ 1
2
q1/2we(y, t)]

+(d̄(y, t)− q−1)
cosh [q1/2(x− xc(y, t))]

cosh ( 1
2
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(2.15)

v(x, y, t) = q1/2d̄(y, t)
cosh [q1/2(x− xc(y, t))]

sinh [ 1
2
q1/2we(y, t)]

+q1/2(d̄(y, t)−q−1)
sinh [q1/2(x− xc(y, t))]

cosh [ 1
2
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(2.16)

where xc = w − we(y, t)/2. The two unknowns are now d̄ and we.

The governing equations for d̄ and d̂ in the case of attached flow are found by
applying (2.2) along the channel walls where u = 0 and substituting in the expressions
(2.11)–(2.12) for d and v. This leads to (Pratt 1983)

q1/2T−1 ∂d̂

∂t
+
∂B̄

∂y
= 0 (2.17)

2q−1/2T
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+
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Here Q = 2d̄d̂ is the volume flow rate, B̄ = 1
2
q[T−2d̂

2
+ T 2(d̄ − q−1)2] + d̄ is the

average of the Bernoulli function on the two sidewalls, and T ≡ tanh (w/2). The



192 K. R. Helfrich, A. C. Kuo and L. J. Pratt

initial conditions for attached flow, from (2.6)–(2.8), are

d̂(y, 0) = 0, (2.19)

d̄(y, 0) =

{
1, y < 0

0, y > 0.
(2.20)

In the case of separated flow (which develops for t > 0 near the leading edge of
the intrusion) the governing equations for d̄ and we are again found by applying (2.2)
along the channel wall at x = w/2 and along the separation streamline at x = xc(y, t)
and using the standard kinematic boundary condition. This yields (Pratt 1983)
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Here Q = 2d̄
2

, B̄ = 1
2
q[T−2

e d̄2 + T 2
e (d̄− q−1)2] + d̄ and Te ≡ tanh (we/2).

3. Solution to the semigeostrophic initial value problem
3.1. Overview

The semigeostrophic solution is constructed using the method of characteristics. This
type of analysis requires anticipation of the general aspects of the flow evolution and
we are guided here by the known solution to the non-rotating version of the dam
break problem (Stoker 1957). When the fluid depth downstream of the barrier (y > 0)
is zero, the destruction of the barrier results in the formation of an intrusion, the
leading edge or ‘nose’ of which moves towards positive y at speed cnose = 2 (or twice
the linear long gravity wave speed based on the initial depth behind the barrier). A
second, backwards travelling propagating wave of depression is also generated and
this wave moves upstream at the linear speed dy/dt = cl (= −1 non-dimensionally).
The paths of these disturbances are shown by the thick lines in the (y, t)-plane of
figure 1(a). As y varies from clt to cnoset, d continuously decreases and thus the
intrusion consists of a spreading (or ‘rarefying’) region. In the case of non-zero initial
depth in y > 0, the upstream portion of the disturbance is qualitatively unchanged
from above, but the leading edge is replaced by a bore moving at positive speed cbore
(figure 1b). The region clt < y < cboret is still one of spreading, though a portion of the
flow just upstream of the bore has uniform d and v. We anticipate that the rotating
versions of these flows will evolve in a similar manner, at least for sufficiently weak
rotation. Verification of this expectation and generalization to strong rotation lies
largely in the calculation of the speeds of the various transients as discussed shortly.

For the case of zero initial depth in y > 0, rotation can be expected to lead to one
unavoidable complication, namely the separation of the flow from one of the sidewalls.
For positive (northern hemisphere) rotation separation can be expected to occur first
along the ‘left’ wall (x = −w/2) near the nose of the intrusion where the fluid depth
is small. The separated region will extend from the nose y = cnoset upstream to a
point y = csept, as suggested in figure 1(a). Within this region, the semigeostrophic

dependent variables are d̄(y, t) and we(y, t). In the region csept > y > clt flow is

attached and the dependent variables are d̄(y, t) and d̂(y, t).
The reader might wonder whether it is possible for the flow to separate in the
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Figure 1. Sketch of characteristics in the (y, t)-plane for (a) zero upstream depth and (b) finite
upstream depth. The thick solid lines indicate those special characteristic curves associated with the
upstream wave (dy/dt = cl), separation point (dy/dt = csep), the intrusion nose (dy/dt = cnose) and
the bore (dy/dt = cbore). The thin solid lines indicate other negative characteristics and the dashed
lines indicate positive characteristics. Below each characteristic sketch is a diagram indicating the
initial depth of the fluid.

interior of the channel and yet remain attached to both sidewalls, which would lead
to other possible regimes than shown in figure 1. In the limit of semigeostrophic
motion, this complication can be ruled out by noting a theorem due to Gill (1977)
which was originally derived for steady flow but is easily extended to our time-
dependent problem. (Suppose that the flow at a given section begins to separate at an
interior point x0, meaning that d is non-zero for all other x at that section. Further
assume that ∂2d/∂x2 exists at x0 so that, clearly, ∂2d/∂x2 > 0 there. Then equation
(2.10) is violated at x0.) When the dynamics are non-semigeostrophic, there is no
guarantee that interior separation will not occur. However, our numerical simulations
will show that this type of separation does not occur in the dam break problem.

3.2. Attached region

The flow in the attached region is found using the method of characteristics to solve

(2.17)–(2.18) with initial conditions (2.19)–(2.20). As long as d̄ > d̂, the attached flow

equations remain valid. When d̄ = d̂, the flow is on the verge of separating and we
must turn to the equations governing separated flow which are discussed in the next
section.
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Equations (2.17)–(2.18) are first put into standard quasi-linear form

ut + Auy = 0 (3.1)

with

u =

(
d̄

d̂

)
and

A =

(
q1/2d̂T−1 q1/2d̄T−1

q1/2T 3(d̄− q−1) + q−1/2T q1/2d̂T−1

)
.

Diagonalization of (3.1) yields the interpretation that on the characteristic curves
(‘characteristics’)

dy

dt
= cattach± ≡ q1/2d̂T−1 ± d̄1/2

[1− (1− qd̄)T 2]1/2 (3.2)

the relationship

dd̂

dd̄
= ∓(qd̄)−1/2T [1− (1− qd̄)T 2]1/2 (3.3)

must hold. This second equation may be integrated to give

R± = q1/2d̂T−1

±
(
d̄

1/2
[1− (1− qd̄)T 2]1/2 +

(1− T 2)

q1/2T
log
[
2(qd̄)

1/2
T + 2[1− (1− qd̄)T 2]1/2

])
(3.4)

where the Riemann invariants R+ and R− are constants of integration. The charac-
teristic curves dy/dt = c± are indicated by the + or − in the (y, t)-planes shown in
figure 1.

The Riemann invariants are conserved along characteristic curves and their values
in the problem at hand are determined by the initial conditions in x < 0. Since
the value of potential vorticity of a fluid column equals its initial reservoir value

q = 1/d(x, y, 0) = 1, we set q = 1 in (3.4). With d̄(x, 0) = 1 and d̂(x, 0) = 0 the
constants R± are now given by

R± = ±
[
1 +

(
1− T 2

T

)
log (2T + 2)

]
. (3.5)

As posed, the solution to the dam break problem is non-unique. Different solutions
can be found depending upon how one deals with the discontinuity in initial depth at
y = 0. A reasonable way of thinking about the problem is to replace the discontinuity
at y = 0 with the smooth, but abrupt, transition over 0 < y < yT as shown
in figure 1(a). The evolution resulting from this modified initial condition can be
evaluated by calculating the Riemann invariants from the initial conditions and
conserving these values along characteristic curves, at least until such time as a
shock forms. Figure 1(a) shows the characteristic curves in the (y, t)-plane over a
short time interval after the initial release. As in the non-rotating version of the
dam break problem (Stoker 1957) analytical evaluation of the solution is greatly
facilitated if one of the Riemann invariants is uniform. Clearly, both R+ and R−
have the uniform values given by (3.5) over all characteristics emanating from the
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constant-depth initial region (y < 0). If we choose R−, say, to have the same uniform
value in the transitional region (0 < y < yT ) then (3.4) can be used to show that the

initial value of d̂ must be less than zero there. Since d̂ is proportional to the average
of the wall values of v (which can be easily be obtained from (2.12)) the tendency
will be for the leading edge of the intrusion to move towards negative y, which is
inconsistent with our physical expectation. If we instead choose R+ to be uniform
over the transitional region then the average v is positive as desired. This choice is
consistent with the solution to the non-rotating dam break problem, and with our
numerical results.†

Once it has been established that R+ is uniform over all parts of the domain (or at
least those parts reached by non-intersecting ‘plus’ characteristic curves) it is easy to

show that the values of the two dependent variables (d̄ and d̂) must be constant along
‘minus’ characteristics. (The uniformity of R+ establishes a fixed relation between

d̄ and d̂ which holds at all points throughout the domain. The conservation of
R− along ‘minus’ characteristics imposes an independent relation along each such

curve. Satisfaction of both constraints is only possible if both d̄ and d̂ remain fixed
along each such curve.) Thus c− must also be conserved along ‘minus’ characteristics,
implying that these curves have constant slope in the characteristic plane. As we will
confirm by direct calculation the values of c− along characteristics emanating from
the forward (smaller depth) portion of the transitional region are larger than those
from the rear, so that the ‘minus’ characteristics fan out as shown in figure 1(a). The

leading ‘minus’ characteristic has d̄ = d̂ = 0 and defines the nose. (This curve is also

a ‘plus’ characteristic.) The separation point (d̄ = d̂ 6= 0) also occurs along a ‘minus’
characteristic. Between these last two lines, the Riemann invariants for separated
flow (§ 3.3) must be used. The leading edge of the signal propagating back into the

stationary fluid has d̂ = 0 and d̄ = 1 and this is a ‘minus’ characteristic as well.
The ‘plus’ characteristics emanating from (y < 0) are straight until they penetrate
the region of fanning ‘minus’ characteristics where they curve and eventually become
tangent to the ‘minus’ characteristic defining the nose.

When the initial depth in y > 0 is non-zero the situation is as shown in figure 1(b).
These fanning characteristics are intersected by straight ‘minus’ characteristics em-
anating from y > 0, creating a shock, or bore. The path of the bore is indicated
by the solid, curved arrow in figure 1(b). The shallow water equations break down
within the bore and additional considerations are required to determine its speed
cbore. In the non-rotating version of this problem, cbore can be determined by imposing
bulk mass and momentum conservation, but rotation leads to additional difficulties
which will be discussed in § 5. For this reason, our solution for this case is entirely
numerical.

† The question of uniqueness in the dam break problem also arises in connection with a
reduced-gravity, coastal version of the dam break problem considered by Stern et al. (1982). They
found a similarity solution for a steepening intrusion (a bore) advancing along a coastline. Their
solution essentially has uniform values of R−, in contrast with our solution. There are several
differences between the two problems which are worth noting. First, their solution was motivated by
results of a laboratory experiment in a two-fluid system in which the advancing intrusion steepens
and forms a blunt nose, which is quite different from the spreading nose which we will demonstrate
in connection with the present single-layer problem. In addition, Stern et al. (1982) do not solve
the complete initial-value problem in the way we do. In fact, a complete solution for the case
simulated in their experiment would be considerably complicated by reflections off the endwalls in
their laboratory tank.
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Returning to the original dam break problem (figure 1a) the values of d̄ and d̂ in
the attached region of the characteristic fan are obtained as follows. The characteristic
speeds (inverse slopes of the characteristics) are given by

y/t = d̂T−1 − d̄1/2
[1− (1− d̄)T 2]1/2. (3.6)

Setting d̂ = 0 and d̄ = 1 in this equation gives the speed y/t = cl = −1. This is
simply the speed of a linear Kelvin wave propagating into the region y < 0. When
the channel is wide w � 1 this wave is trapped at the left (x = −w/2) wall. The other
constraint used in the region of attached flow is the uniformity of R+ which implies

1 +

(
1− T 2

T

)
log(2T + 2) = d̂T−1 + d̄

1/2
[1− (1− d̄)T 2]1/2

+
(1− T 2)

T
log[2d̄

1/2
T + 2[1− (1− d̄)T 2]1/2]. (3.7)

To find y/t = csep set d̂ = d̄ and eliminate d̄ from the above two equations (which

must be done numerically). The solutions for d̄ and csep are discussed § 4. A qualitative
description of their dependence on T can be found by examining the narrow and
wide channel limits. For the narrow channel, setting T = 0 in (3.7) gives d̄sep = 0. In
this limit the two-dimensional nature of the flow caused by rotation is suppressed and
the point of flow separation on the left-hand wall coincides with the intrusive nose
on the right-hand wall. The speed of the separation point csep as a function of T is

found by solving (3.6) with d̄ = d̂ = d̄sep and y/t = csep. This yields the dependence

of csep on d̄sep. In the narrow channel limit, d̄sep = 0, which gives csep = 2. This agrees,
as expected, with the non-rotating solution (Stoker 1957). In the wide channel limit,
T = 1, giving d̄sep = 0.5 from (3.7) and csep = 0 from (3.6). In this case the separation
point remains at the position of the dam and the value of d along the right-hand wall
remains equal to the initial depth, d = 1.

3.3. Solution: separated region

The solution in the separated region is also obtained by the method of characteristics.
As before, (2.21) and (2.22) are cast into standard quasi-linear form

vt + Bvy = 0 (3.8)

where

v =

(
d̄
Te

)
and

B =


3qd̄+ T 2

e + (qd̄− 1)T 4
e

2q1/2Te

(qd̄− 1)2T 4
e − (qd̄)2

2q3/2T 2
e

q1/2(T 2
e − 1)2(qd̄− (1− qd̄)T 2

e

2(qd̄+ (1− qd̄)T 2
e )

(1− T 2
e )(qd̄− (1− qd̄)T 2

e )

2q1/2Te

 .

Multiplication of (3.8) by the left eigenvector matrix S−1 of B yields

S−1vt + ΛS−1vy = 0. (3.9)
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The elements of S−1, ŝij , are

ŝ11 =
1

det S
,

ŝ12 =
1

det S

(
−q2d̄

2
+ (1− 2qd̄+ q2d̄

2
)T 4

e

qTe
(
qd̄+ T 2

e + (qd̄− 1)T 4
e + 2(qd̄)1/2Te[1− (qd̄− 1)T 2

e ]1/2
)) ,

ŝ21 = −ŝ11,

ŝ22 =
1

det S

(
q2d̄

2 − (1− 2qd̄+ q2d̄
2
)T 4

e

qTe
(
qd̄+ T 2

e + (qd̄− 1)T 4
e − 2(qd̄)1/2Te[1− (qd̄− 1)T 2

e ]1/2
)) .

The diagonal matrix Λ is given by

Λ =

(
c
sep
+ 0
0 c

sep
−

)
,

where

c
sep
± = q1/2d̄T−1

e ± d̄1/2
[1− (1− qd̄)T 2

e ]1/2. (3.10)

Note that (3.10) is just (3.2) with d̂ replaced by d̄ and T replaced by Te.

Equation (3.9) implies two differential relationships between d̄ and Te (correspond-
ing to the plus and minus Riemann invariants),

dTe

dd̄
= − ŝ11

ŝ12

=
qTe

(
qd̄+ T 2

e + (qd̄− 1)T 4
e + 2(qd̄)1/2Te[1− (qd̄− 1)T 2

e ]1/2
)

q2d̄
2 − (1− 2qd̄+ q2d̄

2
)T 4

e

, (3.11)

dTe

dd̄
= − ŝ21

ŝ22

=
qTe

(
qd̄+ T 2

e + (qd̄− 1)T 4
e − 2(qd̄)1/2Te[1− (qd̄− 1)T 2

e ]1/2
)

q2d̄
2 − (1− 2qd̄+ q2d̄

2
)T 4

e

, (3.12)

which must hold on the characteristic lines dy/dt = c
sep
± .

Were we able to solve (3.11) and (3.12) analytically, the constants of integration
would yield the two Riemann constants.† Then d̄ and Te could be found by the
simultaneous solution of (3.11), (3.12) and the straight characteristic y/t = c

sep
− .

However, (3.11) and (3.12) must be integrated numerically. The solution for d̄ is
assumed to be continuous across the line y/t = csep shown in figure 1(a). The

integration is started with d̄ = d̄sep and Te = T and stepped backward in d̄ until d̄ is
O(10−6) which is identified at the nose of the intrusion.

Evaluation of Te versus d̄ on the ‘plus’ Riemann invariant (the integral curve of
(3.11)) shows that Te → 0 as d̄ → 0 for all w. The nose of the separated region not
only has zero height, as might be expected, but also has zero width. It can be shown
that near the nose, we ≈ d̄ in the narrow channel limit T → 0, and we ≈ 2d̄ in the
wide channel limit T → 1.

With Te obtained numerically as a function of d̄, it is a simple matter to solve for
those variables separately as functions of the similarity variable y/t on the ‘minus’
characteristic y/t = c

sep
− (d̄, Te).

† We note that figures showing contours of the Riemann invariants appear in Stern et al. (1982)
and Kubokawa & Hanawa (1984a).
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Figure 2. d̄sep versus T = tanh (w/2). The solid line is the semigeostrophic theory. In this and
subsequent figures the symbols indicate results from the numerical model. For reference T = 0.462
for w = 1 and T = 0.96 for w = 4.

4. Semigeostrophic and full numerical solutions
In this section solutions from the semigeostrophic theory are presented and com-

pared with the results from numerical solutions. The numerical model solves the
shallow water equations, (2.1)–(2.3) with δ = 1, in conservative form. The use of the
conservative form of the equations is not required for the pure rarefaction waves that
are discussed in this section, but is necessary if shocks are to be accurately resolved.
This latter situation, discussed in § 5, arises when the fluid downstream of the dam
has a finite initial depth. Details of the numerical model are given in the Appendix.
The model allows nearly zero layer depth (limited to a minimum of 10−10). In what
follows we define the edge of the evolving intrusion in the full numerical solutions
(e.g. nose, separation point) to be where the layer depth equals 10−3. This choice is
arbitrary, but the results are not sensitive to this definition.

Figure 2 shows the value of d̄ at the separation point, d̄sep, as a function of the width
parameter T . In this and subsequent figures in this section the semigeostrophic theory
is indicated by lines and the numerical model results by the symbols, unless otherwise
stated. The data points from the numerical model were obtained by extrapolating the
cell-centred values of d in the two cells adjacent to each channel wall. In the limit
of zero channel width d̄sep → 0 and as T → 1, d̄sep → 0.5, as previously discussed.
The agreement between the numerical model and the semigeostrophic theory is quite
good for all widths. One difference between the theory and the full shallow water
equations not evident in this figure are transverse oscillations. These are illustrated in
figure 7 and discussed later.

The speeds of the separation point csep and nose of the intrusion cnose as functions
of T are shown in figure 3. The upper solid curve is cnose determined from (3.10) and
the Riemann invariant from (3.11) with the nose defined to have a depth d = 10−6.
The three curves below this one are cnose defined with d = 10−5, 10−4 and 10−3. The
speeds converge and support our use of d = 10−6 to define the nose. The lower
solid curve is csep determined from (3.6) and (3.7). The semigeostrophic theory gives
csep = cnose = 2 for T = 0, in agreement with the non-rotating solution. As the channel
width increases cnose (csep) increases (decreases) monotonically. For an infinitely wide
channel cnose = 3.80 and, as already noted, csep = 0.
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Figure 3. The intrusion nose speed cnose and the separation point speed csep as functions of the
width parameter T . The upper solid line is the semigeostrophic solution for cnose defined at a depth
of d = 10−6. The broken lines are cnose defined with d = 10−5 (dashed), 10−4 (dash-dot) and 10−3

(dotted). The lower solid line is csep from the semigeostrophic theory. The circles and squares are
the numerical model results for cnose and csep, respectively.

The numerical model solutions for cnose (defined with d = 10−3) are shown in
figure 3. They are significantly less than the semigeostrophic theory. The agreement
with the theoretical speed for a nose depth of d = 10−3 is not much better. It is difficult
to attribute this discrepancy to a failure of the semigeostrophic theory. Indeed, the
nose region is one of large along-channel length scales where, as discussed earlier,
the semigeostrophic approximation is expected to be valid. The theory predicts an
ever-thinning nose which the numerics can never follow accurately with fixed grid
resolution. We attribute most of the the differences in cnose to the finite resolution of
the numerical grid and lateral viscosity (numerical and explicit), neither of which are
present in the theory.

The numerical model values for csep shown in figure 3 do agree quite well with
the semigeostrophic solution. The separation point does not suffer from the worst
of the numerical resolution issues affecting the intrusion nose. In the model results
the separation point motion is affected by cross-channel oscillations, particularly for
channels with w & 2. The speeds plotted in figure 3 are determined from the mean
motion of the separation positions. The intrusion nose is unaffected.

The semigeostrophic solution for d̄, d̂ and Te is plotted in figure 4 as a function of

the similarity variable y/t for four values of w. At the separation point (d̄ = d̂) ∂d̄/∂y
is discontinuous, indicating that the semigeostrophic approximation is suspect in this
neighbourhood.

Next, we compare the depth field d(x, y, t) from semigeostrophic theory and the
numerical model. Solutions are shown at t = 10 for two channel widths, w = 0.2 in
figure 5 and w = 2.0 in figure 6. The semigeostrophic solution is in panel (a), the
numerical solution is in (b). For w = 0.2, the two solutions agree quite well everywhere
except in the immediate vicinity of the intrusion nose where the numerical model
under-resolution is obvious. When w = 2.0, the overall character of the full solution is
reproduced by the semigeostrophic theory, but there are some areas of disagreement,
particularly in the centre of the channel near the separation point. The differences
in the separation zone are to be expected, since the acceleration of the cross-channel
component of the velocity u, neglected in the semigeostrophic theory, is large.
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Figure 4. Semigeostrophic solutions for (a) w = 0.2, (b) 1, (c) 2 and (d) 4. Each plot shows d̄ (solid

line), d̂ (dashed line) and Te (dash-dot line) as functions of the similarity variable y/t.
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Figure 5. Contours of the depth d field at t = 10 for a channel with w = 0.2. (a) The semigeostrophic
solution. (b) The numerical solution to the full shallow water equations. The contours interval is 0.1.

The breakdown of the semigeostrophic theory for a wide channel is illustrated
in figure 7, which shows the evolution in time of the depth field from a numerical
solution with w = 4. Immediately after the dam is removed (t = 2) a shock-like
feature develops near the right-hand wall at (x, y) = (2, 1). It propagates across the
channel (t = 4 and 6) and is followed by another, weaker, large-gradient region
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Figure 6. Same as figure 5 except w = 2.

slightly downstream (t = 6, 8 and 10). The large gradients in d and associated
large accelerations in u violate the semigeostrophic assumption. The cross-channel
disturbances affect the structure of the intrusive tongue leading to the formation of
bulges which propagate downstream. However the nose of the intrusion is unaffected.
The severity of the cross-channel motion, and consequently the error induced by
using the semigeostrophic approximation, increases with channel width, but becomes
significant only for w & 2.

4.1. Asymptotic flow

Despite the limitations of the semigeostrophic approximation, many aspects of the
flow are captured by the theory (e.g. d̄sep and csep). This is particularly true for long
times as the effects of cross-channel motions decrease and the along-channel scales
become large. Here we examine the long time nature of the flow at any fixed position
y along the channel as t → ∞. Since for all except an infinitely wide channel the
separation point will eventually move downstream of any fixed y location, the flow will
be attached and (3.6) and (3.7) are relevant. Because these equations are functions of
y/t, the steady solution at any position y approaches the solution evaluated at y = 0
at any t > 0. As t → ∞ the flow becomes y-independent and the flow approaches
criticality.

Figure 8 shows the steady solutions for d̄ and d̂ as functions of T which are obtained
from (3.6) and (3.7) with y/t = 0. The results from the numerical model at y = 0 are
also shown. The numerical values are averages over several oscillation periods once
the large initial transients have decayed. The inset shows an example of the temporal

evolution of d̄ and d̂ at y = 0 from the numerical model for w = 2. Widths less that
this exhibited faster convergence to the large-time values. The steady-state values of
d̄ in the limit T → 0 from both the theory and numerical model agrees with the
non-rotating solution d = (2/3)2 ≈ 0.44 (Stoker 1957). The agreement between the
theory and numerical solution is quite good over the full range of T .

The asymptotic mass transport Q = 2d̄d̂ can also be readily calculated and is
shown in figure 9 as a function of w. In the narrow channel limit the rotating
solution should approach the non-rotating solution in which the depth and velocity
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Figure 7. Full numerical solution for d(x, y, t) at several indicated times for a channel of width 4.
The contour interval is 0.1.

are constants independent of x and y. The transport is a linear function of width,
Q = dvw = (2/3)3w. This line is shown in figure 9. Also shown are the average
transport values from the numerical model. Channels with widths smaller than
roughly a deformation radius agree with the non-rotating theory. Beyond about one
deformation radius rotational influences reduce the transport below the non-rotating
value. For very wide channels Q ∼ T/2. In the infinite width limit the only length
scale is the deformation radius. The transport then approaches a constant value of
1/2. Again the theory and the numerical model are in good agreement.

We might also ask whether the transports shown are bounded by the value suggested
by Toulany & Garrett (1994) in their discussion of ‘geostrophic control’. According
to this principle the steady volume transport between two rotating reservoirs cannot
be greater than gD∆z/f, where ∆z is the difference in surface elevation between the
two reservoir interior depths and D is the mean depth of the system. The reservoirs
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Figure 8. Asymptotic steady-state solution for d̄ and d̂ versus T . The solid (dashed) line is d̄ (d̂)
from the semigeostrophic theory and the symbols are results from the numerical model. The inset

shows d̄ (solid) and d̂ (dashed) at y = 0 as a function of t from the numerical solution for w = 2.
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Figure 9. Steady-state transport Q versus w for the dam break problem. The solid line is the
semigeostrophic theory, the dashed line is the non-rotating theory and the symbols are results from
the numerical model.

are much wider than the Rossby radius of deformation, so that the throughflow is
restricted to boundary layers and the surface elevation is uniform in the reservoir
interiors. This linear bound was developed for systems with small elevation changes
(∆z � D) but the generalization for arbitrary depth changes is (g/2f)(d2

u− d2
d), where

du and dd are the upstream and downstream reservoir depths, respectively. (In our
non-dimensionalization it becomes 1

2
(1−d2

0), where d0 is the scaled downstream depth.)
The bound is based on the anticipation that steady flow from the upstream reservoir
will approach the connecting strait in a boundary layer along the left-hand wall,
cross to the right-hand wall within the strait, and continue into the second reservoir
as a boundary current along the right-hand wall. The above bound then follows
from the geostrophic relation and the supposition that the depth difference across the
boundary layer cannot be greater than du − dd. In the dam break problem, we may
regard the regions upstream and downstream as the two reservoirs, provided that the
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channel width is a few deformation radii or more wide. If we then base du and dd on
the asymptotic (t→ ∞) flow, then the bound generally fails. (The asymptotic flow is
uniform in y and therefore du − dd = 0). The lone exception is the wide-channel limit
(T → 1), for which the separation point remains at y = 0 and the asymptotic flow
switches sides as envisioned. The non-dimensional values of du and dd for this case
remain unchanged from their initial values (1 and 0), so that the bound (= 1

2
) exactly

matches the actual transport. Also note that the actual transport for any finite w is
always less than the bound (= 1

2
) obtained by interpreting du and dd as the initial

depths.
The reduction in transport by rotation is a feature anticipated by steady hydraulic

theories such as Whitehead et al. (1974). However, this conclusion is typically reached
by fixing the reservoir state upstream of a strait or sill and calculating the change
in outflow rate as rotation is increased. There is no guarantee, of course, that the
reservoir state should remain fixed as rotation increases. The results of our initial
value problem would seem to avoid these ambiguities.

5. Finite downstream depth
When the initial fluid depth downstream of the dam d0 is finite the rarefying intru-

sion is replaced by a Kelvin wave which proceeds along the right-hand wall. Linear
theory is applicable when the difference in initial depths upstream and downstream
of the dam, 1− d0, is very small. When 1− d0 is large the flow is fully nonlinear and
analytical progress, even in the semigeostrophic limit, is difficult. This is due to the
formation of a bore, or shock, at the leading edge of the disturbance that propagates
downstream into the shallow layer. The non-rotating nonlinear problem can be solved
analytically (Stoker 1957) since the conditions for joining the solution across the shock
(mass and momentum flux conservation) are known. The presence of rotation leads
to uncertainty in determining what conservation constraint, in addition to mass and
momentum fluxes, must be imposed across the shock. In general, potential vorticity
is not conserved across the shock (Pratt 1983; Nof 1986).

In this section we consider finite downstream depth and study the flow evolution
beyond the linear and weakly nonlinear regimes. As in the previous sections we limit
our effort to hydrostatic flow. Because of the complications associated with the full
nonlinearity we approach the problem with a numerical model of the single-layer
shallow water equations described in the Appendix. In addition to determining the
effects of rotation on the overall evolution and bore characteristics we also examine
the Lagrangian advection of fluid particles down the channel.

5.1. General evolution

Examples of the evolution of the depth field d(x, y, t) as a function of w and d0, the
two independent parameters in the problem, are shown in figures 10–15. The initial
conditions for all the results discussed in this section are given by (2.6)–(2.8), but with
d(x, y, 0) = d0 for y > 0. The figures show the contours of the depth field d(x, y, t) at
several times after removal of the dam.

A narrow channel example, w = 0.5, with d0 = 0.5 is shown in figure 10. As expected
the evolution of d is qualitatively the same as the non-rotating case (Stoker 1957).
Immediately after the dam is removed a shock forms and propagates downstream.
Propagating upstream (y < 0) is a rarefying Kelvin wave. Between the shock and the
upstream moving Kelvin wave is an expanding region that is nearly uniform in y. This
region is connected to the shock by a transition layer of several deformation radii
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Figure 10. Numerical solution for d(x, y, t) for finite downstream depth d0 = 0.5 and w = 0.5. The
contour interval is 0.025 with several contours marked. The thick solid line is the c = 0.5 contour
identifying the interface between water originally upstream and downstream of the dam.

in length in which the depth decreases as the shock is approached from behind. The
shock is oriented straight across the channel and propagates at a uniform speed and
with very little change in shape. The very small-scale wiggles in the depth contours
(e.g. d = 0.75 at t = 20) immediately behind the shock are due to numerical errors in
resolving the discontinuity and are indicative of the magnitude of this effect in other
runs. The larger oscillations near the left-hand wall are physical and are discussed
in examples below. The shock amplitude (defined by the jump in height from the
downstream level d0 to the peak of the discontinuity, but not including the transition
region) decreases away from the right-hand wall. Near the left-hand wall the leading
edge of the shock is a thin, high ridge of fluid deeper than the fluid immediately behind
it. The cross-channel component of velocity (not shown) is nearly zero everywhere
except in a boundary layer of about one deformation radius in thickness immediately
behind the shock. Further details of the shock structure are discussed in the following
subsection.

Also shown in the figures (by the thick line) is the interface between fluid originally
upstream of the dam and fluid downstream. This division is determined by numerical
solution for the concentration c of a conservative tracer governed by

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0,

with initial conditions c(x, y, 0) = 1 for y < 0 and c(x, y, 0) = 0 for y > 0. Thus
c serves as a proxy for the potential vorticity q, which would also be a materially
conserved property in the absence of shocks and explicit dissipation. The motion of
the discontinuity in c is analogous to the advection of the discontinuity in q studied
by HRJ. The thick solid lines in figures 10–15 are the c = 0.5 contours which we



206 K. R. Helfrich, A. C. Kuo and L. J. Pratt

identify as the interface. The numerical model does result in some diffusion of the
initially sharp discontunity in c, but the thickness is usually less than one deformation
radius. In figure 10 the interface moves nearly uniformly down the channel.

The evolution in a wider channel, w = 1, is shown for d0 = 0.5, 0.25 and 0.05, in
figures 11, 12 and 13, respectively. The solution for d0 = 0.5 is qualitatively the same
as figure 10 (w = 0.5) except that Poincaré waves are evident in the region between the
shock and the upstream advancing rarefaction wave. The shock is still propagating
steadily, but with a very slight curvature across the channel. Poincaré waves are also
evident immediately behind the shock near the left-hand wall. These features are
physical and not a consequence of dispersive numerical errors. The interface contour
moves slightly faster on the right-hand wall than on the left, but still lags far behind
the leading bore. The interface is also a location of cross-channel geostrophic flow
indicated by the local along-channel gradient in d. This feature was not present in
the narrower, w = 0.5, case in figure 10.

When the initial upstream depth is reduced to d0 = 0.25 (figure 12) the oscillations
immediately behind the shock are enhanced. The wavy region lengthens as the bore
moves down the channel. We interpret this as a finite-amplitude example of resonant
Poincaré wave generation by nonlinear Kelvin waves discussed by Melville et al.
(1989). The apparent radiation of the waves behind the leading shock implicates
the resonant mechanism as their source rather than initial transients. However, in
these strongly nonlinear examples it proved difficult to predict the wavelength of
the resonant Poincaré waves using the weakly nonlinear argument of Melville et al.
(1989). The background state on which the waves propagate has non-uniform depth
and velocity making determination of the dispersion relation non-trivial. Further,
the large amplitude of the waves makes their description through linear dynamics
tenuous. The c = 0.5 interface now defines a tongue of new fluid which advances
preferentially along the right-hand wall, but at a speed still substantially less than the
bore speed.

When the initial upstream depth is further reduced to d0 = 0.05 (figure 13) the shock
attaches only to the right-hand wall. It curves slightly back upstream and decays with
distance from the wall. The Poincaré waves immediately behind the shock are nearly
eliminated. Again propagation is steady once the shock has separated from the initial
transients. The fluid interface moves much faster along the right-hand wall at a speed
just slightly slower than the bore speed.

Two wide channel, w = 4, cases with d0 = 0.5 and 0.1 are shown in figures 14
and 15, respectively. In figure 14 the upstream moving Kelvin wave and downstream
propagating shock are both trapped near their respective right-hand walls with cross-
channel decay scales of about one deformation radius based upon the initial upstream
depth. Fluid crosses the channel near y = 0 in a nearly steady geostrophic current
and advances along the right-hand wall. The c = 0.5 contour is advected slowly
downstream across most of the channel except for a thin ribbon near the right-hand
wall where it advances more rapidly. The interface advances slightly faster along the
left-hand wall than in the centre of the channel. This feature was observed by HRJ
in both contour dynamics calculations and solutions to the shallow water equations.

For d0 = 0.1 (figure 15) the evolution is similar to d0 = 0.5 except that the shock
and its trailing current have further narrowed. The angle that the leading edge of
the bore makes with the x-axis has also increased. At t = 4 a steep cross-channel
propagating feature similar to the d0 = 0 case in figure 7 is evident. The interface
contour moves rapidly just behind the shock along the right-hand wall. However, as
time increases the interface along the left-hand wall moves back upstream to y < 0.
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Figure 11. Same as figure 10 except w = 1 and d0 = 0.5.
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Figure 12. Same as figure 10 except w = 1 and d0 = 0.25.
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Figure 13. Same as figure 10 except w = 1 and d0 = 0.05 and a contour interval of 0.05.
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Figure 14. Same as figure 13 except w = 4 and d0 = 0.5.
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Figure 15. Same as figure 13 except w = 4 and d0 = 0.1.

These figures illustrate most of the features found over the parameter ranges,
0<d0 < 1 and 06w6 4. In all cases the rarefaction wave moves upstream with speed
cl ≈ −1.05 slightly faster the theoretical speed cl = −1. This due to the lateral
diffusion of momentum which tends to smooth the solution near the leading edge of
the rarefaction. With smaller w and larger d0 the shock is nearly straight across the
channel. The y positions of the shock on either wall differ by less than a deformation
radius. For large w or small d0 the shock is attached to only the right-hand wall.
In these cases the shock features agree qualitatively with FM’s solutions for steady
jumps along a coastline. For intermediate cases this distinction is more difficult to
make, in part because of decaying shock amplitude away from the right-hand wall
and the dissipation in the model which easily smooths small discontinuities.

An alternative categorization of the cross-channel structure of the leading jump is
whether the mean depth on the left-hand wall is elevated above d0 after the passage of
the bore. Figure 16 summarizes this characteristic. In the figure we plot the channel
width, normalized by the deformation radius in the shallow region, w/

√
d0 versus

d0. This normalization of the width was chosen since the fluid in and immediately
behind the bore has come from the still fluid ahead of the bore. If potential vorticity
were conserved on passage of fluid parcels through the bore the relevant deformation
radius would be based upon d0. Even though potential vorticity is not conserved
(see below) there is a clear division of behaviour based on the scaling. Cases with
elevation of d on the left-hand wall are indicated by the squares. The left-hand wall
is unaffected for w/

√
d0 & 3 for all d0. Those cases that cause an increase in the

mean depth along the left-hand wall also correspond to bores that clearly intersect
the left-hand wall within one deformation radius in y of the intersection with the
right-hand wall.
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Figure 16. Cross-channel structure of the advancing bore as a function of w/
√
d0 and d0. The

squares are for cases in which the mean depth on the left-hand wall (x = −w/2) immediately after
passage of a bore is elevated above d0. The circles indicate no change in mean elevation of d after
passage of the bore. The dashed line indicates the approximate transition between regimes.

5.2. Shock description

The detailed structure of two bores is examined next. Figure 17 shows a close-up of
d, u, v and q at t = 20 of the bore in figure 12 where w = 1 and d0 = 0.25. The shock
attaches normally to each wall as required by the no-normal-flow condition (Pratt
1983). The amplitude of the jump decreases away from the right-hand wall, except
immediately adjacent to the left-hand wall where it increases again. The cross-channel
velocity u is shown in figure 17(b). A thin boundary layer, extending the full width
of the channel, of large negative u (off-shore sense if the right-hand wall is taken
to be the shore) exists immediately behind the shock. Patches of alternating signs of
u trailing this boundary layer are the Poincaré waves. The boundary layer connects
the shock to the along-channel flow, v, behind the shock shown in figure 17(c) (Pratt
1983; FM). The layer causes a net off-shore transport of fluid. The along-channel
velocity v in figure 17(c) is geostrophic except within the wave field near the left-hand
wall and the layer of strong offshore flow immediately behind the jump.

Even in the inviscid limit potential vorticity q is not necessarily conserved through a
bore because of the energy loss implicit in a jump (Pratt 1983). This non-conservation
of q is illustrated in figure 17(d) which shows large changes of q across the jump.
Near the walls q has decreased, while in the centre of the channel q has increased
slightly from the value ahead of the bore q = 1/d0 = 4. However, the calculation
leading to figure 17(d) included explicit viscous dissipation which also causes changes
in q. Schär & Smith (1993) discuss how in general changes in relative vorticity (and
hence potential vorticity) are related to changes in the Bernoulli function across the
jump. However, because both pseudo-inviscid and viscous process act to change the
Bernoulli function across a jump it is not possible through analysis of the Bernoulli
function alone to assess the relative effects of viscous processes. An estimate of the
separate effects of inviscid energy loss can be made by comparison of the model
results for changes in q with the relation for changes in q in inviscid systems (Pratt
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Figure 17. Close-up of the bore in figure 12, w = 1, d0 = 0.25, at t = 20: (a) depth d, (b) cross-channel
velocity u, (c) along-channel velocity v, (d) potential vorticity q. In (b) the solid, dashed and dotted
lines indicate positive, negative and zero velocities, respectively.

1993)

[q] =
−1

4(u(n) − cbore)d
∂

∂s

(
[d]3

d+d−

)
. (5.1)

Here [z] = z+− z− is the difference between z ahead of (+) and behind (−) the shock
in the direction of the local normal. In the present notation the tangential coordinate
s is aligned with the positive x-axis in the case when the shock is straight across the
channel. The volume flux normal to the jump (u(n) − cbore)d in the frame moving with
the steady jump speed cbore is conserved across the jump.

This comparison is made in figure 18 for the bore in figure 17. The dashed line
is [q] evaluated from (5.1) and the solid line is [q] from figure 17(d), with q− at a
point 0.5 units in y behind where d− is evaluated. Changes in q along streamlines
are shown. The abscissa, x0, is the cross-channel location ahead of the bore of the
streamline on which [q] is evaluated. Lateral dissipation greatly affects the changes in
q even to the point of causing the sign of [q] from the pseudo-inviscid estimate (5.1)
to be incorrect. The slip boundary conditions also contribute to [q] since they permit
the flux of relative vorticity through the boundary. For the conditions in figure 17
relative vorticity is fluxed out through the walls leading to a decrease in potential
vorticity and an increase in [q] over the pseudo-inviscid estimate. Similar differences
occur in other cases. As discussed below, the lateral friction employed in the model
does not greatly affect other properties of the bores.

Figure 19 shows a close-up of the shock in figure 15, w = 4 and d0 = 0.1, at t = 20.
In this example the jump is attached only to the right-hand wall. Note that only half
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Figure 18. Change in potential vorticity [q] across the jump in figure 17. The solid line is [q] from
the numerical model. The dashed line is from the ‘inviscid’ theory (5.1). x0 is the cross-channel
location ahead of the bore of the streamline on which [q] is evaluated.
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Figure 19. Same as figure 17 except the bore is for w = 4 and d0 = 0.1 (figure 15 at t = 20).

of the channel width is shown. The general features, including the boundary layer of
strong off-shore flow and potential vorticity structure, are similar to the example in
figure 17.

Since rotation causes the maximum shock height to be on the right-hand wall
we take the difference in depths immediately upstream and downstream of the
discontinuity on the right-hand wall to define the bore amplitude δdbore = [d]. This
definition does not include the smoother increase in d across the boundary layer
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Figure 20. The bore amplitude δdbore as a function of d0: w = 0 (©), 0.2 (�), 0.5 (♦), 1 (5), 2 (?),
4 (4). The non-rotating (w = 0) theory is the solid line.

behind the bore and is the same definition of jump amplitude used by FM. FM’s
steady, weakly nonlinear theory for bore structure gave a depth increase across the
boundary layer of 1

3
δdbore. We do not find any constant relation between the depth

increase across the trailing boundary layer and δdbore. This is likely to be due to
finite-amplitude effects and unsteadiness of the flow behind the bore.

Because of the lateral friction and possibly due to the radiation of Poincaré waves
the amplitude of the shock decreased slowly with distance. Decay did not occur for the
non-rotating runs and only became apparent for w > 1 and d0 small (3–5% decrease
in δdbore from t = 5 to 20). We use δdbore at t = 10 to define the bore amplitude.
This is after the bore has reached a quasi-steady state and before any significant
dissipation occurs. Figure 20 shows how δdbore depends on d0. Stoker’s non-rotating
solution is plotted as the solid line. The numerical results for no rotation agree quite
well with the theory. Rotation causes the amplitude to increase with w. The shape
of the relation between δdbore and d0 for a given w is similar to the non-rotating
solution. The maximum in δdbore also occurs near the point of maximum amplitude
when there is no rotation.

The bore speed cbore along the right-hand wall (at t = 10) is plotted in figure 21. The
speeds for small d0 with no rotation are slightly less than non-rotating theory predicts.
This is due almost entirely to the lateral dissipation in the model. Reducing dissipation
results in better agreement at the expense of oscillations (dispersive numerical errors)
immediately behind the shock. Rotation causes cbore to increase above the non-rotating
speed, though for w < 1 the effect is very weak. Again the qualitative dependence on
d0 is similar to the non-rotating theory, though for w = 4 there is no minimum in
cbore as d0 decreases.

In a non-rotating system the speed of a shock advancing into resting fluid of depth
d0 is, in dimensional variables, (Stoker 1957)

c2
bore = gd0(1 + A)(1 + 1

2
A), (5.2)
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Figure 21. The bore speed cbore as a function of d0: w = 0 (©), 0.2 (�), 0.5 (♦), 1 (5), 2 (?), 4
(4). The non-rotating (w = 0) theory is the solid line.

where A = δdbore/d0. This relation (with A evaluated on the right-hand wall) was
also obtained by FM for finite-amplitude jumps with rotation in an infinitely wide
channel. In figure 22 we show cbore, normalized by the non-dimensional speed of
linear waves in the resting fluid ahead of the shock

√
d0, as a function of A. The

non-rotating runs agree quite well with (5.2). However, adding rotation results in
lower speeds than predicted from (5.2). For A < 1 (inset) the speeds do approach
(5.2) as w decreases. But for A > 1 this dependence on w is not obvious for the widths
examined. The speeds appear to branch from the non-rotating speed as the channel
width is increased, and the departure is more rapid the larger the bore amplitude.

Some of the difference between the numerical results and (5.2) might be attributed
to numerical errors in the model or lateral dissipation. To test this several runs with a
more accurate numerical model with no explicit lateral dissipation were made using
the fourth-order in space, third-order in time ENO scheme described in Rogerson
(1999). That model, which could not be used in cases that developed layer depths
near zero, gave shock speeds and amplitudes that were slightly larger (3–5% in the
worst cases) than the results from our numerical model. However, the speed versus
amplitude points also fell below (5.2) and were along the trends in figure 22. Other
features of the flow, such as Poincaré wave generation behind the shock, were found
with both numerical methods.

It is worth noting that FM obtain (5.2) from an equation ((7.21) in FM) for
the cross-channel gradient of the along-channel shock position. In our notation this
equation is (

dR

dx

)2

=
c2
bore

gd0(1 + A)(1 + 1
2
A)
− 1,

where R(x) is the along-channel position of the shock and A = A(x) is the local
jump amplitude. Requiring the shock to attach normally to the right-hand wall,



Nonlinear Rossby adjustment in a channel 215

7

6

5

4

3

2

1

0 1 2 3 4 5 6 7 98

0.5 1.00
1.0

1.2

1.4

1.6

A= ddbore/d0

cbore

d0
1/2

Figure 22. cbore/
√
d0 as a function of bore amplitude A = δdbore/d0. The solid line is from (5.2) and

the symbols are the numerical results for w = 0 (©), 0.2 (�), 0.5 (♦), 1 (5), 2 (?), 4 (4). The inset
shows a close-up for A < 1.

Rx|x=w/2 = 0, leads to (5.2). In a finite-width channel the requirement of normal
contact on the left-hand wall also gives (5.2), with A now evaluated on the left-hand
wall. Steady bores which contact both walls must give the same value for cbore and
can only occur if the jump amplitudes on the left- and right-hand walls are equal. Our
calculations do not give equal wall amplitudes, implying that there may be no steady
solutions. This is consistent with radiation of Poincaré waves which continually drain
energy from the bores.

In addition to the Poincaré wave radiation observed for some of the numerical
bores, there are several other possible explanations for the discrepancy with the speeds
predicted by (5.2). Even the bores which exhibited no noticeable radiation did not
propagate in a completely steady manner, though variations in speed amounted to
no more that a few tenths of a percent per rotation period. Also, the numerical bores
in the wider channels were observed to be more dispersive than the fully nonlinear
coastal solutions of FM. Their steady, inviscid solutions exhibit a depth discontinuity
arbitrarily far from the coast whereas this discontinuity disappears a finite distance
from the right-hand wall in our numerical solutions. This is attributable to both the
unsteadiness and dissipation in the present calculations.

Other aspects of FM’s theory agree qualitatively with our numerical results. In
wide channels the angle the shock makes with the x-axis far from the wall increases
with bore amplitude as illustrated in figures 14 and 15. The cross-channel decay of
the shock and trailing geostrophic flow increases with shock speed and scales with
the local deformation radius cbore/f, with cbore from (5.2).

5.3. Advection of new fluid down the channel

The speeds of the intersection of the new fluid interface (c = 0.5 contour) along the
right- and left-hand walls evaluated at t = 20 are shown in figure 23. Figure 23(a)
shows that increasing w while holding d0 fixed, or decreasing d0 while holding w fixed,



216 K. R. Helfrich, A. C. Kuo and L. J. Pratt

3

2

1

0 0.2 0.4 0.6 0.8 1.0

(a)

d0

R
ig

ht
-h

an
d 

w
al

l s
pe

ed 1.0

0.5

0

0 0.2 0.4 0.6 0.8 1.0

(b)

d0

L
ef

t-
ha

nd
 w

al
l s

pe
ed

–0.5

Figure 23. Speed of the c = 0.5 contour on the right (a) and the left-hand wall (b) as a function of
d0. w = 0 (©), 0.2 (�), 0.5 (♦), 1 (5), 2 (?), 4 (4).

results in faster propagation of new fluid along the right-hand wall. The speeds along
the left-hand wall are shown in figure 23(b). Not surprisingly, the interface always
advances fastest along the right-hand wall. For d0 > 0.5 the fluid always advances
downstream along both channel walls and our results agree qualitatively with HRJ.

We see only minor indications of the interface advancing faster along the left-hand
wall than in the middle of the channel (cf. figure 14). This was a common feature of
both HRJ’s quasi-geostrophic contour dynamics and shallow water equation solutions.
HRJ also found cases where the interface along the right-hand wall would pinch off
to form a detached parcel of fluid. We found no evidence of this behaviour. However,
these numerical experiments did not advance very far in the small time scaling used
by HRJ and these features may not have had time to develop. Also significant is
the difference in lateral boundary conditions between these studies. We employ slip
conditions which permit the flux of relative vorticity through the walls, while HRJ’s
shallow water simulations used superslip conditions that allow the flux of momentum,
but not vorticity, through the walls. The superslip conditions are in keeping with their
contour dynamics model which conserves potential vorticity.

One new feature resulting from the finite-amplitude initial conditions is that for
w > 2 the speed of advancement along the left-hand wall decreases as d0 is decreased
below about 0.5, and can even become negative. Also, preferential intrusion of new
fluid along the right-hand wall can be achieved not only by increasing w, but also
by reducing d0 for fixed w, even for relatively narrow channels. This is not surprising
since for d0 → 0 all fluid advancing down the channel was originally behind the dam.

5.4. Mean transport

Before discussing the mean downstream transport Q at y = 0 it is interesting to
consider the transient behaviour. When w > 0.5 the transport undergoes weakly
decaying oscillations. The period, amplitude and decay time scale of the oscillations
increase with increasing w or decreasing d0. These characteristics agree qualitatively
with the linear solution (Gill 1976). The frequency σ of the oscillations, when they
occur, is given to within±20% by the frequency of the linear Poincaré waves (Pedlosky
1987) with lowest cross-channel mode, zero along-channel wavenumber and depth
equal to the average of the initial levels on either side of the dam (1 + d0)/2,

σ2 = 1 +
1 + d0

2

( π
w

)2

.

The agreement with the linear estimate is surprising since the basic state on which
the waves exists has large lateral variations in velocity and depth.
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Figure 24. The mean transport Q as a function of d0 and w. In (a) the solid line is the non-rotating
theory for a channel of unit width and the dashed line is the geostrophic transport Q = (1− d2

0 )/2.
In (b) the transport is normalized by the transport from the semigeostrophic theory for d0 = 0, Q0.
The solid line is again the non-rotating result. In both (a) and (b) w = 0 (©), 0.2 (�), 0.5 (♦), 1
(5), 2 (?), 4 (4).

The mean transport (averaged over several oscillation periods) is shown in figure 24.
Figure 24(a) shows how Q depends on d0 and w. For fixed w the maximum transport
occurs for d0 = 0. The solid curve is the non-rotating result for a channel of unit
width and the circles are the corresponding model result. The dashed curve is the
‘geostrophic control’ bound , Q = (1− d2

0)/2 predicted by Toulany & Garrett (1984).
Note that this bound is slightly exceeded for w = 4 at intermediate values of d0. The Q
versus d0 dependence for any w is similar to the non-rotating theory and the increase
in Q with w for a fixed d0 is similar to the semigeostrophic theory for d0 = 0. This
suggests figure 24(b) where Q(w, d0) is scaled by Q0(w) = Q(w, 0), the transport for
zero upstream depth. The transports now nearly collapse to the scaled non-rotating
curve.

6. Discussion
We have studied the strongly nonlinear and time-dependent regimes of Rossby

adjustment in a channel created when the initial depth difference is large. Using
the semigeostrophic approximation and the method of characteristics semi-analytical
solutions have been obtained in the extreme case when the fluid depth downstream
of the barrier is zero. These solutions were explored and compared to numerical
calculations of the full shallow water equations with generally good agreement. The
numerical solutions highlight the failure of the semigeostrophic approximation in the
limit of wide channels. The failure is related to the occurrence of large cross-channel
velocities and oscillations. Even though the semigeostrophic theory failed to reproduce
some of the complicated time-dependent features for wide channels, the steady-state
flows agree with the numerically computed solutions. This is a reassuring result since
much of our understanding of steady hydraulically controlled flows under the influence
of rotation (e.g. Gill 1977) has been obtained with the powerful simplification of the
semigeostrophic approximation. It does imply, though, that studies of time-dependent
processes may require the full shallow water equations.
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For zero initial downstream depth the fluid intrudes down the channel preferentially
along the right-hand wall at a speed which increases with channel width from
the theoretical non-rotating speed of 2

√
gD to a maximum of 3.80

√
gD. However,

laboratory experiments of the comparable dam break problem in two-layer systems by
Stern et al. (1982), Kubokawa & Hanawa (1984b) and Griffiths & Hopfinger (1983)
give speeds well below these. Stern et al. and Kubokawa & Hanawa find cnose ≈ √g′D
and Griffiths & Hopfinger find cnose ≈ 1.3

√
g′D, where g′ is the reduced gravity. Not

only are the speeds different, the nose is bulbous and turbulent. The differences are
certainly associated with the presence of the second layer. This is not surprising since
even in the non-rotating case the theoretical single-layer nose speed is well above
laboratory observations which show cnose ≈ √g′D (Simpson 1987). Klemp, Rotunno
& Skamarock (1993) discuss the use of Benjamin’s (1968) flow force analysis for
gravity currents to correct the nose speed in the non-rotating dam break problem.
In the rotating experiments some of the same considerations apply as Stern et al.
(1982) and Griffiths & Hopfinger (1983) point out. Other complications arise in the
rotating problem. These include lateral mixing, baroclinic instability and radiation of
inertial waves in the second layer, all of which have been argued to be important in
the dynamics of rotating gravity currents (Griffiths 1986). Thus the semigeostrophic
solutions for the nose speed may have limited application in two-layered systems.
However, other aspects of the solutions well behind the nose are unaffected by the
details of the nose dynamics since the flow is supercritical. We consider the single-
layer zero-downstream-depth case to be a basis for further studies of time-dependent
rotating hydraulic flows. For example, it should be possible to include the Benjamin-
type analysis for the rotating gravity current developed by Stern et al. (1982) in the
semigeostrophic method of characteristic solution as Klemp et al. (1994) did for the
non-rotating problem.

When the downstream depth is finite the rarefying nose is replaced by a shock or
bore. The evolving flow behind the bore departs from the linear and weakly nonlinear
cases. The dynamics of the numerically computed shock solutions were compared
to existing theories of rotating shocks and jumps. Qualitative agreement was found
including the presence of a boundary layer of strong off-shore flow immediately
behind the shock. Still, significant open questions remain. The observed shock speed
dependence on amplitude was not as predicted by FM’s finite-amplitude theory for
infinitely wide channels. We have not been able to resolve this issue but suspect that
the answer resides in both the finite width of the channel and that the integration
of the momentum and continuity equations across the jump must be done over a
region large enough to include the rotationally influenced boundary layer immediately
behind the shock. This is difficult since non-local Coriolis terms must be retained
in the resulting integral conditions. When the upstream flow is not at rest these
boundary layers may exist on both sides of the jump (Pratt 1983). Nof (1986) finds
some jump solutions in narrow channels (w � 1) which do not require boundary
layers. However, these solutions occur only for special combinations of upstream and
downstream geostrophic flows.

Our numerical results confirmed that potential vorticity is not conserved across
the jump. Further, the changes are sensitive to the explicit dissipation in the model.
This is consistent with Schär & Smith (1993) who discussed potential vorticity
production in non-rotating dissipative hydraulic flows. The interesting result from
our modelling is that the sign of the change in potential vorticity can be opposite to
the ‘inviscid’ estimate due to the effects of the explicit dissipative vorticity flux. This
poses a significant problem for efforts to model potential vorticity variations in deep
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hydraulically controlled overflows, for example, since the strength and mechanism of
the dissipation is unknown. We have considered just one form of lateral mixing as a
crude approximation to reality and have not considered vertical mixing and bottom
friction which are known to be important in overflows (Baringer & Price 1997).

Previous tests (Whitehead 1986; Wright 1987) of the transport bound suggested
by the principle of geostrophic control (Toulany & Garrett 1984) have largely been
based on linear or nearly linear systems in which the elevation difference between
reservoirs is relatively small. Our study, which has no such restriction, confirms the
transport bound, (g/2f)(d2

u − d2
d), but only when du and dd are chosen as the initial

depths or when the channel is infinitely wide. In practical applications such as sea
straits, the initial conditions are unknown, the throughflow is often statistically steady,
and one or both of the bounding basins have finite extent. As suggested by Pratt
(1991) the above transport bound may still be valid when applied over finite time
scales. For example the values of du and dd might independently fluctuate due, say,
to tides or atmospheric forcing. An incremental change in elevation difference du− dd
causes the flow to adjust in a manner qualitatively similar to what occurs in the
dam break problem. A new transport is established after a time delay of O(f−1), the
time required for Kelvin waves to form and separate in the strait. If the separation
point (marking the location where the boundary layer crosses the strait) remains in
the strait and is not swept into the downstream basin, then the transport produced
by this delay should be bounded by the value based on the current du and dd. Our
calculations have shown that the downstream movement of the separation point for
channel widths more than a few deformation radii wide is very slow, suggesting that
the bound is valid for similarly wide basins. Of course, if the observer then waits
long enough and if there are no further forced changes in du and dd, the separation
point will drift downstream, the value of du−dd will relax to zero, and the bound will
become invalid. Or one of the Kelvin waves produced by the initial adjustment may
propagate around the edge of one of the basins and return to the strait. In summary,
the geostrophic control bound may be practical over time scales long compared to
f−1 but short compared to both the intrinsic advective time of the separation point
and the travel time of a Kelvin wave around the smallest basin.

This work resulted from the 1997 Woods Hole GFD Summer School where the
third author served as Principal Lecturer. The paper benefited from helpful discussions
with Joseph Keller and George Veronis. This work was funded by the Office of Naval
Research grants N00014-93-1-0263 (K. R. H.) and N00014-95-1-0456 (L. J. P.). This
is Contribution Number 9824 from the Woods Hole Oceanographic Institution.

Appendix. Numerical method
Numerical methods for treating the rapid flow transitions common in hydraulics

problems must allow shocks to form in a numerically stable manner and must enforce
conservation of certain integral quantities (usually volume and momentum flux) across
the shocks. In two-dimensional rotating hydraulics, flow separation from one wall or
the topography (i.e. zero layer depth) is common and must also be accommodated.
There are very accurate methods for shock capturing that take advantage of the
hyperbolic nature of the single-layer shallow water equations (2.1)–(2.3). These include
Godunov’s method (Leveque 1997) and essentially non-oscillatory (ENO) techniques
(Shu & Osher 1988). However, when the layer depth becomes zero, particularly over
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topography, these methods tend to fail. The problem is no longer totally hyperbolic
when the characteristic speeds coalesce at zero depth.

Since shocks and separated flows are integral to this study we have employed a
finite-volume numerical method using the cell-centred flux-corrected transport (FCT)
method that follows closely the method Schär & Smith (1993) used in their study of
shallow, non-rotating flow past topography. The model solves the non-dimensional
single-layer shallow water equations in flux form,

∂

∂t
(ud) +

∂

∂x

(
u2d+ 1

2
d2
)

+
∂

∂y
(uvd)− vd = 0, (A 1)

∂

∂t
(vd) +

∂

∂x
(uvd) +

∂

∂y

(
v2d+ 1

2
d2
)

+ ud = 0, (A 2)

∂d

∂t
+

∂

∂x
(ud) +

∂

∂y
(vd) = 0, (A 3)

and so obeys discrete forms of mass and momentum flux across discontinuities.
The non-dimensionalization is the same as in (2.1)–(2.3) with δ2 = 1. Layer depths
approaching zero (limited to a minimum depth of 10−10 to avoid division by zero)
are allowed. The main difference between our method and the scheme used by Schär
& Smith (1993) is the replacement of the MPDATA algorithm (Smolarkiewicz &
Clark 1986) for computing the advective fluxes with the simpler and more efficient
slope-limited FCT method for advection equations in flux form described in Leveque
(1997). The formulation is second-order accurate in space and time. We also employ
an upwind treatment of the advective form of the momentum equations for the
estimation of the cell-face velocities at the half time-step.

The lateral dissipation terms

Fu = ν∇ · (d∇u), Fv = ν∇ · (d∇v)
are included on the right-hand sides of (A1) and (A2), respectively. Here ν is a constant
friction coefficient. This form of the dissipation was chosen to guarantee that internal
dissipation does not create or destroy momentum and is treated numerically to avoid
dissipative momentum flux to grid cells with nearly zero depth (Schär & Smith 1993).
Friction is included primarily to help control oscillatory behaviour in the immediate
vicinity of a discontinuity. All the results in this paper used ν = 0.005, a value large
enough to eliminate much of the oscillatory behaviour, but not large enough to
significantly affect shock behaviour.

No-flux conditions were imposed on the channel sidewalls (x = ±w/2) and Orlanski
(1976) radiation conditions were used at the ends of the channel. The channel walls
were treated as slip boundaries (∂v/∂x = 0) to keep the calculations close to the
inviscid theories.

The model was tested by comparisons with analytical solutions for shock prop-
agation formation in non-rotating one-dimensional flow. These tests included the
non-rotating dam break problem and the results are discussed in § 4 and § 5. While
spurious oscillations at discontinuities are not completely eliminated, they do not
grow and result in numerical instabilities. The behaviour of a contact line between
wet and dry regions was tested by examining the spreading of a drop of water under
gravity (Schär & Smolarkiewicz 1996) and with the solutions of Carrier & Greenspan
(1958) for run-up of non-rotating nonlinear shallow water waves on a slope, with
very good results in both cases.

For the numerical experiments described in this paper, a uniform cell-centred grid
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was used with grid spacing in y of ∆y = 0.05. The spacing in the cross-channel
direction, ∆x, was a maximum of 0.05, and for the runs with zero upstream depth or
narrow channels it was typically less. The time step ∆t was typically 0.01.
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