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Abstract

Numerical simulations of a jet with large amplitude meanders are used to explore chaotic
advection processes and underlying geometry changes as functions of the ambient potential vor-
ticity gradientβ. Variations inβ in the 2D model qualitatively simulate changes in depth in 3D,
surface-intensified jets such as the Gulf Stream. Asβ is reduced, corresponding to motion on in-
creasingly deep isopycnal surfaces, a number of geometrical transitions take place in the flanges and
across the core of the jet. The most important is a joining (or separatrix reconnection) of heteroclinic
cat’s eyes structures lying to the north and south of the jet core. The jet core acts as a barrier to
transport, but this barrier is breached when the cat’s eyes merge. The subsequent chaotic transport
across the jet is demonstrated by calculations of effective invariant manifolds (EIMs) originating
in hyperbolic regions to the north and south of the core. Destruction of the central barrier occurs
asβ is lowered through a narrow windowW aboutβ = 0 and is marked by transitions form a
meandering jet through a vortex street with no central meandering flow to a vortex street with a
retrograde meander. Such small values ofβ are deemed reasonable in view of measurements of
low potential vorticity gradients in the deep Gulf Stream. The strength of the central barrier for
β outsideW is tested by varyingβ about a mean valueβ0 and detecting the minimum amplitude
of fluctuation necessary for destruction of the barrier. It is found that the barrier is stronger for
β0 > 0, at least by this measure. A striking difference is that, forβ < 0, some disturbances may
destroy the barrier without oscillating acrossW ; whereas forβ > 0, destruction of the barrier may
only occur whenβ passes throughW . Changes in underlying geometry also occur in the flanges
of the jet and these changes alter the locations in which fluid is preferentially stirred and mixed.
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Float trajectories can be regular or irregular depending upon where the instrument is launched and
this is demonstrated by plotting trajectories from inside and outside regions of chaotic advection.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Studies of Lagrangian motion and chaotic advection in meandering jets (Behringer
et al., 1991; Bower, 1991; Lozier and Bercovici, 1992; Samelson, 1992; Dutkiewicz et al.,
1993; del-Castillo-Negrete and Morrison, 1993; Meyers, 1994; Pratt et al., 1995; Duan and
Wiggins, 1996; Miller et al., 1997; Ngan and Shepherd, 1997; Rogerson et al., 1999) have
dealt with model flows that typify the surface structure of ocean currents such as the Gulf
Stream, the Kuroshio, the jets of the Circumpolar Current, and other surface-intensified,
meandering flows. The central region or “core” of the jet in such models usually contains
a strong potential vorticity gradient which acts as a barrier to cross-jet transport of fluid.
Such transport is generally confined to the edges of the jet, near the critical lines of the me-
anders, where the fluid elements undergo the strong stretching and folding associated with
Lagrangian chaos. The result is that passive tracers are preferentially stirred (and eventually
mixed) along the edges, but not across the central core of the flow, a feature that seems to
agree with property distributions in the shallow Gulf Stream (Bower et al., 1985). Shallow
cross-jet transport thus appears to require a catastrophic event such as ring detachment.

The models referenced above say less about the mixing of fluid at depth. In the Gulf
Stream, water mass properties are relatively homogeneous below the 27.0σθ surface (Bower
et al., 1985), which extends about from 200 m depth to the north to 800 m depth to the
south of the Stream. The overall cross-stream potential vorticity gradient below this depth
diminishes (Bower and Lozier, 1994), reaching values that are, at certain depths and time,
not significantly different from zero. Bower et al. (1985) also found that shallow floats tend
to remain trapped in the Gulf Stream whereas deeper floats more frequently crossed the
Stream “as if it was transparent”. In addition, Cronin and Watts (1996) and Savidge and Bane
(1999a,b) show that the deep Gulf Stream is dominated by strongly barotropic eddies that are
spun up by baroclinic instability at shallower depths and which translate at the same speed
as the shallow meanders. In an idealized view, the deep Gulf Stream is therefore thought to
be less “jet-like” and more in the character of a vortex street. All of these observations are
consistent with the presence of transport and mixing across the whole width of the flow.

A scenario describing how cross-jet exchange might take place at depth can be pieced
together using ideas first mentioned by Bower and Rossby (1989) and later refined by Meyers
(1994) and Pratt et al. (1995). First, refer to Fig. 1 showing a well-studied geometry thought
to be typical of the surface structure of a meandering jet under idealized conditions. The jet
flows eastward and contains a monochromatic meander that steadily propagates eastward at
something less than the maximum fluid speed in the jet. In the frame of reference following
the meander (theco-moving frame) the flow is steady; the corresponding streamlines are
what appear in the figure. Fluid in the central core of the jet streams eastward through
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Fig. 1. Schematic of a meandering jet in the co-moving frame. Taken from Rogerson et al. (1999).

the frame while fluid far to the north and south appears to move westward. Between these
streaming regions are lines of recirculations (or cat’s eyes) surrounded by heteroclinic
separatrices linked to hyperbolic stagnation pointsp1, p2, etc. The fluid trajectories in
this flow are confined along streamlines and thus there is no fluid exchange between the
regions of open and closed streamlines. However, the models cited above have established
that small time dependent perturbations to the flow in the form of additional meanders or
weak diffusion can cause the separatrices to break up and allow fluid exchange. It is also
well-known that the fluid involved undergoes violent stretching and folding and that the
corresponding parcel trajectories are chaotic. For weak perturbations the chaotic region
extends around the edges of the former separatrices but does not extend into the core of the
jet nor the centers of the cat’s eyes. del-Castillo-Negrete and Morrison (1993) and Meyers
(1994) show that sufficiently large perturbations can cause penetration into and across the jet
core, but this behavior has only been observed in kinematic models or models using linear
meander perturbations with amplitudes well beyond the range of dynamical consistency.

Next, consider the changes to the Fig. 1 geometry that might occur as one moves deeper
in the water. We imagine the flow to be quasi-2D in the sense that parcel trajectories
remain on isopycnal surfaces, but the flow can change on different isopycnal surfaces.
The meander speedc remains fixed but the jet speedu weakens with increasing depth (or
density) and therefore the hyperbolic stagnation points, which lie whereu(x, y) = c in the
co-moving frame, migrate inwards towards the core of the flow. This suggests that the two
rows of cat’s eyes to the north and south of the core move closer to each other and perhaps
merge, indicating destruction of the central behavior. Such a merger is calledseparatrix
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reconnection, and the aims of this paper are to establish conditions for reconnection in a
dynamically consistent setting, to identify the associated geometrical transformations, and
to explore implications for cross-stream transport and mixing.

A complete investigation of separatrix reconnection with changing depth suggests the
use of a fully 3D model. However, we believe that a good deal of insight into the relevant
issues can be gained through the careful use of a 2D model. This judgment is founded on the
correspondence between moving to deeper levels in a 3D model and decreasing the value ofβ

in a 2Dβ-plane model. This analogy is corroborated by three features. First, decreasingβ in
the 2D models causes the jet meanders to propagate more rapidly to the east. (The meanders
are similar to Rossby waves which attempt to propagate westward but which are advected
to the east by the jet itself. Decreasingβ diminishes the tendency to westward propagation.)
The net effect is that the meanders propagate more rapidly relative to the background flow,
bringing the meander cat’s eyes closer to each other. Secondly, decreasingβ in the 2D
model diminishes the overall potential vorticity change across the jet, the same effect that
is observed at depth in the Gulf Stream. Finally, sufficiently low values ofβ cause the 2D
flow to become increasingly eddy dominated, a situation similar to what is observed.

Though self-consistent, the dynamics of the 2D model is different from the dynamics
governing the quasi-2D flow on an isopycnal surface of a 3D flow. Nevertheless, it is antic-
ipated that the 2D model will provide insight into the geometrical changes that can occur
and the effort needed to break the central barrier to transport. In addition to providing infor-
mation about stirring and mixing processes, the underlying geometry provides a template
for understanding the Lagrangian predictability of the flow. As described above, regions of
strong stretching and folding of fluid elements, leading to complicated and unpredictable
Lagrangian motion, can exist in a field of relatively regular and predictable motion. Recog-
nition of the geometry controlling the location of barriers and of regions of unpredictable
motion can be an important consideration in the design of float and drifter experiments.

2. Model

The velocity fields used correspond to equilibrated, finite-amplitude states resulting from
the instability of a Gaussian zonal jet. IfL∗ andU∗ represent the half width and peak velocity
in the undisturbed jet then length, velocity, and time scales for the problem can be chosen
asL∗, U∗, andL∗/U∗. Using these scales for non-dimensionalization, the formal initial
value problem is

∂q

∂t
+ J (ψ, q) = µ∇4ψ, (2.1a)

q = ∇2ψ + βy, (2.1b)

and

ψ(x, y,0) = Ψ (y)+ εe−y2
sin(kx), (2.2)

whereΨ (y) = −erf(y) + 2y/LD. Note that Eqs. (2.1a) and (2.1b) is the barotropic
potential vorticity equation with small lateral viscous damping andq denotes the barotropic
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potential vorticity. In the analogy with quasi-2D motion on an isopycnal surface, we asso-
ciate Eq. (2.1b) with the more general Ertel potential vorticity, approximated by Bower and
Lozier (1994) as (f0 − ∂u/∂y)/H in their Gulf Stream measurements. In their analysis,
the Coriolis parameterf is approximated by its mean valuef0 (the variation off across
the narrow flow being small compared to remaining terms) and the relative vorticity by the
cross-stream gradient of along-axis velocity−∂u/∂y. The potential vorticity gradient at
deeper levels is dominated by variations in the thicknessH between isopycnal levels. As
depth increases,H becomes more uniform and thus the potential vorticity gradient across
the flow diminishes, in some cases to values that are not significantly different from zero.
It is this effect that we associate with decreasingβ in the simulations described below.

Eq. (2.2) represents the initial zonal jet plus a small, meandering perturbation. Solutions
are obtained numerically in a doubly periodic,LD by LD domain using a pseudospectral
numerical code developed by Flierl et al. (1987) and refined by Rogerson et al. (1999).
The reader is referred to the latter for more details regarding the code itself. The solutions
presented here are obtained usingε = 0.02, µ = 10−3, andLD = 25.6. The most im-
portant adjustable parameters in the problem are dimensionless beta (β = β∗L∗/U∗) and
the dimensionless initial wave numberk = LDk

∗. Flierl et al. (1987) made numerical runs
over a grid of (k, β) values and mapped out the finite-amplitude states that developed after
saturation of the initial instability. Rogerson et al. (1999) further analyzed the subspace in
which the evolution resulted in the formation of a meandering state with nearly steady me-
ander speed and amplitude. The setting (k, β) = (6π/LD,0.103) results in such a meander
and this serves as the starting point for the numerical runs described here. We will discuss
the equilibrated states that result by maintaining thisk and gradually reducing the value of
β. In each case, the initial flow will evolve to an equilibrated state that is dominated by a
meander or vortex street pattern (whose wave number equals the initial wave number) which
persists over many time periods of the dominant pattern before it undergoes a secondary
instability. Our analysis of transport and stirring in the flow is carried out over this finite
period of persistence and nearly constant translation of the finite-amplitude pattern. In the
co-moving frame the time dependence is weak and is dominated by one or two periods.1

3. Separatrix reconnection

Fig. 2(a) shows a snapshot of the co-moving frame stream function for the equilibrated
flow corresponding toβ = 0.103. The central region of eastward streaming flow with vorti-
cal motion to the south of meander crests and to the north of the troughs is suggestive of the
heteroclinic “cat’s eye” geometry discussed above. The meanders propagate eastward at a
nearly steady speedc ≈ 0.115 and persist over the time interval 200< t < 400 with little
change in amplitude. Fig. 3(a) shows the distribution of the potential vorticity contours for
the same time slice of the flow. Notice that the gradient is large in the jet core, suggesting
a barrier. Asβ is decreased,c increases but the central barrier persists. However, further
reduction ofβ to 0.01 leads to a flow field in which the central band of the streaming flow
(or “core”) is absent. As shown in Fig. 2(b), which displays the caseβ = 0, stream function

1 Rogerson et al. (1999) present frequency spectra for some of theβ > 0 case.
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Fig. 2. Snapshot of streamline contours in the co-moving frame. (a)β = 0.103; (b)β = 0; (c) β = −0.05.
The ‘+’ and ‘�’ mark the initial conditions of the trajectories in Fig. 9.

contours bounding the vortical motions now form a braided pattern suggestive of the separa-
trix connection discussed by del-Castillo-Negrete and Morrison (1993). The corresponding
potential vorticity distribution, displayed in Fig. 3(b), shows a vortex street pattern. The
potential vorticity gradient is significant only in the interior of the eddies. This “separatrix
reconnection” pattern in contour plots of stream function and potential vorticity occurs only
for a narrow windowW estimated by−0.01< β < 0.01. Whenβ is further decreased, we
observe a new geometry as shown in Fig. 2(c) forβ = −0.05. In this case, the eddies are iso-
lated from one another by a band of fluid that meanders through them (westward in the co-
moving frame). A homoclinic geometry is suggested by the streamlines separating the
eddies from the meandering band. The potential vorticity distribution (Fig. 3(c)) suggests
a vortex street pattern, now with a potential vorticity gradient between the eddies.
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Fig. 3. The potential vorticity distribution corresponding to Fig. 2. (a)β = 0.103; (b)β = 0; (c)β = −0.05.

Although the band of strong potential vorticity gradient in the core persists asβ is lowered
through positive values, some interesting transitions take place in the jet flanges. These will
be detailed in the next section.

We also investigate the conditions for central barrier destructions for different basic jet
profiles. In particular, for both a symmetrical and asymmetrical Bickley jet, we observe
geometry changes similar to those discussed above. As summarized in Table 1, the window
W in which reconnection occurs is quite narrow and is centered atβ = 0, even in the
asymmetrical case.

{ −erf(2y)/2 + 3y/2LD, if y > 0

−erf(y)+ 3y/2LD, if y ≤ 0
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Table 1
The location of the separatrix window for different initial jet profiles

Jet profile Ψ (y) W

Flierl et al. (1987) −erf(y)+ 2y/LD −0.01< β < 0.01
Bickley − tanh(y)+ 2y/LD −0.005< β < 0.005
Non-symmetric −erf(2y)/2 + 3y/2LD, if y > 0 −0.01< β < 0.01

−erf(y)+ 3y/2LD, if y ≤ 0

An effective method for assessing transport across active flow regions, such as the jets
considered here, can be based on chaotic advection. In this theory, the tangling of stable and
unstable manifolds of certain distinguished stagnation, or periodic, points in the flow field
creates a zone in which parcel motion is chaotic. Another view of this same scenario is that
the stable and unstable manifolds delineate regions of distinguished dynamic fate and their
tangling marks off regions of fluid that switch from one flow regime to another, so-called
fluid exchange. This technique has led to the theory of lobe dynamics and chaotic transport
(Wiggins, 1992).

The use of stable and unstable manifolds as orchestrating fluid exchange, in the way
indicated above, requires the presence of a saddle fixed or periodic point in the flow field.
Under consideration here are flows that exhibit sufficiently complex time dependence in
which such fixed or periodic points cannot be expected to occur. However, the key local
properties of stretching and compressing in complementary directions, called hyperbolicity,
can still be present to an extent that affords an analogous theory. Lobe dynamics was
extended to the aperiodic case (Malhotra and Wiggins, 1998); however, the flow fields
under consideration here persist over only finite spans of time and theories based on the
usual asymptotic conditions are not directly applicable.

The key observation is that, although no distinguished hyperbolic fixed or periodic points
will be present, distinguished invariant manifolds akin to the stable and unstable manifolds
of fixed or periodic points are present in even quite complicated flow fields. This the-
ory was first developed in Miller et al. (1997) and Rogerson et al. (1999) and depends
on isolating localized regions, rather than points, where there is strong hyperbolicity over
the time interval of interest. Based on the dynamics in such a region, effective invariant
manifolds (EIMs) can be generated in a fashion entirely analogous to the case where hy-
perbolic fixed points, or trajectories, are present. EIMs are then time slices of distinguished
material surfaces. They are pinned by the hyperbolic regions and supply transport tem-
plates as in the periodic case. The hyperbolic regions are found near stagnation points of
the frozen-time, Eulerian field, see Haller and Poje (1998). Such a region can be found
in the flows of Fig. 2 near each intersection of stream function contours. Under appro-
priate conditions, the EIMs are then defined to within a certain measurable uncertainty
(Haller and Poje, 1998).

The numerical computation of the EIMs proceeds as follows (see, Miller et al., 1997;
Rogerson et al., 1999 for details). For a fixed time intervalt1 ≤ t ≤ t2, the unstable EIM is
computed by evolving in forward time a segment, which at the initial timet = t1 is located
in the hyperbolic region and aligned approximately along the unstable direction. The stable
EIM is computed similarly, but by evolving in backward time.
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Fig. 4. Time slices of unstable (solid) and stable (dashed) EIMs. For easy visualization of transport, only the
unstable EIMs originated from the north and the stable EIMs originated from the south are shown forβ = 0.
(a)β = 0.103; (b)β = 0; (c)β = −0.05.

For β = 0.103, we plot in Fig. 4(a) a time slice of stable (dashed) and unstable (solid)
EIMs (for 200 ≤ t ≤ 400). As mentioned above, fluid exchange is limited in the thin
regions filled by the tangled EIMs. The lack of penetration of the EIMs into the jet core
indicates that the core acts as a barrier for chaotic transport. In fact, one might define the
barrier as the central region delineated by the inner envelopes of the regions of tangled
EIMs.

At β = 0 (see Fig. 4(b), for 150≤ t ≤ 300), the unstable EIMs (solid curves) to the
north clearly intersect with the stable EIMs (dashed curves) to the south, implying that
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cross-jet transport is achieved. In principle, one could calculate a volume flux associated
with the transport by performing a lobe analysis along the line of Miller et al. (1997) and
Rogerson et al. (1999). The lobes found between the interesting manifolds are quite thin
and filamented, making analysis of the present case quite messy and difficult.

Fig. 4(c) displays the situation forβ = −0.05 (for 100 ≤ t ≤ 300), and indicates
chaotic transport within homoclinic regions of quite large meridional extent. However, the
EIMs to the north do not intersect with those to the south. Again, an impenetrable transport
barrier is formed whose boundary is traced by the EIMs. In summary, cross-jet transport is
observed only in a very narrow range ofβ that approximately coincides with the separatrix
reconnection windowW (estimated by inspecting the co-moving frame stream function
contours).

4. Transitions in the flanges of the jet

The previous discussion emphasized the behavior of heteroclinic structures (cat’s eyes)
associated with the meander crests and troughs of the jet. Destruction of the central barrier
occurs when two rows of cat’s eyes straddling the jet core merge asβ is reduced below a
threshold valueβ ≈ 0.01. Interestingly, a careful examination of the flow field reveals that
the cat’s eyes themselves undergo significant changes just before this threshold is reached.
As β is lowered below the value 0.05 the cat’s eyes merge with a band of secondary vortex
structures (occupying a larger area than the cat’s eyes) that move inwards towards the jet
axis. This merger produces a relatively wide band of active chaotic advection on either side
of the jet. Asβ is lowered further, the motion in these bands reorganizes, producing new
rows of cat’s eyes. It is the reconnection of these new structures that destroys the central
barrier. These transitions have implications for stirring along the flanges of the jet and are
therefore worth detailing.

The above scenario can be followed in Fig. 5(a)–(c) showing potential vorticity fields for
the casesβ = 0.05, 0.04, and 0.02. Forβ = 0.05 the cat’s eyes are indicated by the closed
q contours aligned along|y| ≈ 2.5 in Fig. 5(a). Secondary rows of closedq contours can be
seen about|y| = 7. These vortical structures translate at a nearly steady retrograde speed
c ≈ −0.15. They are touched by yet another row of disturbances centered at slightly larger
|y| and characterized by small fragments of closeq contours. The secondary regions appear
to translate westward at a slightly greater speed than that of the vortical structures. We have
discovered no simple description of these two sets of touching disturbances and will simply
refer to the region occupied by both as thesurf zone, roughly 5< |y| < 10 in Fig. 5(a).
For higherβ, the surf zones are present at about the same location and are associated with
retrograde propagation, but the vortical structures are less discernible.

As β is reduced the surf zones move inward and connect with the primary cat’s eyes
(Fig. 5(b),β = 0.04). Further reductions (Fig. 5(c),β = 0.02) lead to a reorganization
within the connected regions, resulting in the formation of a new set of coherent and nearly
stationary (in the co-moving reference frame) cat’s eyes. Destruction of the central barrier
occurs atβ ≈ 0.01.

In order to better understand the Lagrangian dynamics involved with this transition, we
attempt to compute the EIMs associated with the cat’s eyes and the surf zone. However, this
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Fig. 5. Potential vorticity contours att = 210 of (a)β = 0.05, (b)β = 0.04, (c)β = 0.02 and finite time stable
(dashed) and unstable (solid) material curves for the same cases: (d)β = 0.05, (e)β = 0.04, (f )β = 0.02.

task is more difficult than the previous cases as these regions strongly interact with each
other and form a much wider, unified band and the hyperbolicity in each region is weakened.
Nonetheless, the original cat’s eyes and surf zone structures can be delineated by evolving
carefully chosen material curves. The geometries of these material curves reflect different
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Fig. 6. Thex-averaged zonal velocity〈u〉 for various values ofβ. The initial zonal velocity (see Eq. (2.2)) is also
plotted as a reference.

stages in this transition. These stable (dashed) and unstable (solid) material curves are shown
in Fig. 5(d)–(f ). Forβ = 0.05 (Fig. 5(d)) the cat’s eyes and surf zone appear as distinct
bands with no connecting transport. Forβ = 0.04 (Fig. 5(e)) the material curves from
the two regions intersect, indicating transport within band occupying roughly 1≤ |y| ≤
7. At β = 0.02 (Fig. 5(f )), the material curves delineate well-defined heteroclinic cat’s
eyes.

The transitions described above are important in showing that destruction of the central
jet barrier is associated not with reconnection of the original cat’s eyes, but rather with
reconnection of new cat’s eyes. Although we do not entirely understand the existence of
the surf zone and reasons for their inward motion, we have identified several illuminating
features. For one thing, the surf zones are also bands of significant zonal flow rectification.
As shown in Fig. 6, the mean (x-averaged) zonal velocity〈u〉 of the equilibrated flow
contain side lobes of negative (retrograde) flow centered in the surf zone (e.g. at|y| = 7
for β = 0.05). The existence of the side lobes is consistent with the relation between
the acceleration of the mean flow and the divergence of the Reynolds stress (∂〈u〉/∂t =
−∂〈uv〉/∂y), valid for our barotropic, doubly periodic flow and neglecting dissipation. For
a linear perturbationRe[Aeik(x−ct)] of the initial jet U(y), this relation can be rewritten
(Pedlosky, 1987) as

∂〈u〉
∂t

= −k Im(c)|A|2e2kIm(c)t β − U ′′(y)
|U − c|2 , (4.1)

suggesting that in the early stages of meander growth, the mean flow will experience
deceleration where basic potential vorticity gradientβ−U ′′(y) is positive. The latter occurs
about the jet axis (whereU ′′(y) < 0) and far from the axis (where|U ′′(y)| 
 β). It is in
the latter region that the lobes of negative〈u〉 are found.
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A second feature of importance is the westward propagating Rossby waves which are
observed outside the surf zones for all positiveβ. These waves appear as wiggles in
the q contours near|y| = 11 in Fig. 5(a). The waves cannot be forced directly by the
eastward-propagating meanders of the jet core but could be excited by stochastic
perturbations of the core about the meanders (Hogg, 1988). The jet side lobes are im-
portant in that they provide a setting in which these Rossby waves can have critical lines.
For β = 0.05, the waves propagate at speedc ≈ −0.14 which is within the range of the
mean velocity in the side lobes. Something like critical lines therefore exist in the side lobes
and it is not surprising that a surf zone arises there. As Fig. 6 shows, the side lobes (and
therefore the surf zones) move inwards asβ is decreased below the value 0.05. We are
unable to explain this inward movement.

5. Quantifying the strength of the transport barrier

In reality, an oceanic flow is never freely evolving but constantly disturbed by external
forcings, which originate from various sources. A transport barrier that would have existed
for the unforced flow might be destroyed by these additional disturbances. The sources of
disturbances may have various frequencies, some are more effective than others. Therefore,
it is interesting to test the strength of the central barrier against the disturbances stronger than
those naturally occurring in the unforced flow and discriminate among different frequencies.
Our model is far from being realistic. Nonetheless, we expect to discover some basic patterns
that are similar to realistic situations.

First consider the situation where these disturbances are caused by forcing of a simplest
form: the value ofβ (in Eq. (2.1b)) is varied sinusoidally in time:

β(t) = β0 + δ sinωt. (5.1)

To quantify the strength of the transport barriers, we fixω whereas increasing|δ| gradually
from zero until it reaches the threshold|δc| at which the stable EIMs to the south intersect
with the unstable EIMs to the north, thus affording cross-jet transport. We thus view|δc| as
a measure of the strength of the transport barrier.

To test how|δc| varies with the oscillation frequencyω, we consider the two cases
β0 = −0.05 (vortex street) andβ0 = 0.05 (meander). Table 2 summarizes the results
for ω = 0.04π , 0.06π , 0.08π , and 0.10π . Despite some uncertainty in the results for
β0 = 0.05, it is clear that|δc| increases with increasingω in each case. At the sameω, the
values of|δ| required to destroy theβ0 = 0.05 barrier far exceed those forβ0 = −0.05.

Table 2
Estimated|δc| for differentω

|δc| ω

0.04π 0.06π 0.08π 0.10π

β0 = −0.05 0.03 0.05 0.06 0.13
β0 = 0.05 0.08± 0.02 0.15± 0.04 >0.30 >0.30
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Fig. 7. The solid curve represents the estimated threshold amplitude of disturbance|δc| vs.β0. Values marked with
‘�’ are obtained through computations. The dashed curve is a plotted as a reference indicating the value of|δ| for
β(t) to marginally touchW . (b) Similar to (a) forσc vs.β0.

Within the above tested frequencies,ω = 0.04π is optimal for destruction of the transport
barrier. It is possible that slower frequencies may lead to even smaller|δc|. However, since
only finite time (typically 200 time units) velocity fields are available for analysis,ω =
0.04π is close to the slowest frequency that can be analyzed reliably. This choice allows
β(t) to oscillate about four cycles. Fig. 7(a) shows a plot of|δc| versusβ0 (the solid curve).
It is obvious that|δc| increases asβ0 moves away fromW (−0.01 ≤ β ≤ 0.01). The dashed
curve is plotted as reference and indicates the value of|δ| for β(t) to marginally touchW .
Forβ0 > 0, |δc| is above the reference curve, indicating cross-jet transport can be achieved
only if the disturbances are large enough to pass throughW . On the other hand, forβ0 < 0,
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|δc| is below the reference curve, indicating cross-jet transport can be achieved without
reaching the windowW .

The above results suggest a striking difference between positive and negativeβ. In
Section 3, we have shown that, for the unforced flow, transport can be achieved only in
the separatrix reconnection windowW . Thus it is unexpected that, forβ < 0, some distur-
bances (ω = 0.04π ) may destroy the barrier without oscillating acrossW . This suggests that
transport is enhanced by these disturbances in a non-trivial way. Although these “effective”
disturbances are observed at special frequencies, these frequencies are likely to be contained
in a broadband spectrum that the total disturbances may have. In contrast, such interest-
ing enhancement does not occur forβ > 0, in which case, the barrier may be destroyed
only whenβ passes throughW . These results suggest that small amplitude, broadband
disturbances will likely cause transport forβ < 0 but not forβ > 0.

To further test the robustness of the above results, we replace Eq. (5.1) by

β(t) = β0 + ση(t) (5.2)

whereση(t) is a Gaussian white noise with standard deviationσ . Like in the previous cases,
we increaseσ gradually from zero until it reaches the thresholdσc at which the transport
barrier is destroyed. In Fig. 7(b), we plotσc versusβ0. Again, we find it easier to destroy the
transport barrier forβ0 < 0 than forβ0 > 0. Compare Fig. 7(a) with (b), we findσc > |δc|
for all β0. This is in agreement with the earlier result that the frequencyω = 0.04π is nearly
optimal for creating cross-jet transport.

Finally it is worthwhile to point out thatσc defined above is a random number and
fluctuates around its expected value. This is because each realization ofη(t) yields a new
sequence ofβ(t) (Eq. (5.2)), and thus a new velocity field, even whenβ0 andσ are both
fixed. This randomness adds to the uncertainty of determiningσc.

6. Lagrangian unpredictability

Chaos is generally associated with initial condition sensitivity caused by exponential
divergence with time of nearby trajectories. Although the limitation of finite time in the
present model does not allow chaos to be identified formally, we expect that certain regions
of the flow field will exhibit very irregular Lagrangian motion and initial condition
sensitivity.

An efficient technique for quantifying initial condition sensitivity is thepatchiness plot
first introduced by Malhotra et al. (1998) then developed by Poje et al. (1999). In essence,
one computes the average of certain physical quantityQ along the parcel trajectory start-
ing from an initial condition(x, y). Denote this average bȳQ(x, y). This computation is
done for every point (xi , yj ) from a rectangular grid. If two trajectories remain close for
most of the time, then the averages corresponding to these trajectories are almost iden-
tical. On the other hand, if for two nearby initial conditions (xi , yj ) and (xi′ , yj ′ ), the
difference|Q̄(xi , yj ) − Q̄(xi′ , yj ′)| is large, then the two trajectories must diverge from
each other. The patchiness plot is the plot of the fieldQ̄ versus the initial conditions(xi ,
yj ), and it serves as an aid for identifying regions with initial condition sensitivity, char-
acterized by large magnitude of|∇Q̄|. In Fig. 8(a)–(f ), we show the patchiness plots for
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Fig. 8. The patchiness plots (see Section 6 for detail). (a)β = 0.103; (b)β = 0.05; (c)β = 0.04; (d)β = 0.02;
(e)β = 0; (f) β = −0.05.

β = 0.103, 0.05, 0.04, 0.02, 0, and−0.05. We choose the quantityQnaturally to be the zonal
velocity, thusQ̄ is equal to the zonal distance travelled by each fluid parcel divided by the
length of the time interval. It can be seen that the regions of “Lagrangian unpredictability”
are occupied by trajectories that pass through areas of strong hyperbolicity and roughly
correspond to the areas mapped out by the tangled EIMs in Figs. 4 and 5. Other regions



G.-C. Yuan et al. / Dynamics of Atmospheres and Oceans 35 (2002) 41–61 57

such as the jet core, the interiors of the vortex street eddies, and the Rossby wave dominated
far fields show up with relative initial condition insensitivity.2

Advanced knowledge of the geometry and distribution of both regular and irregular
regions is helpful in formulating strategies for launching Lagrangian instruments. If the
intension is that the instrument remains in a certain feature, such as the jet core or an eddy,
then the launch site should lie well in the interior of such features and away from the tangled
manifolds. On the other hand, studies of mixing may benefit from launch sites located in
the irregular regions.

Our study suggests that significant changes in the distribution and geometry of irregular
regions may occur with depth. Near the surface of our model flow, irregular regions occur
around the edges of the cat’s eyes associated with the eastward-propagating meanders, as
shown in part (a) of Figs. 4 and 8. Asβ is reduced (depth increases) secondary regions of
irregularity may emerge, one example being the “surf zone” (β = 0.05) shown in Figs. 5(a)
and (d), and 8(b). For this flow, an observer moving northward or southward from the jet
core will encounter a regular region (the core), an irregular region in which regular pools
are embedded (the cat’s eyes), the regular band lying between the surf zone and the cat’s
eyes, the irregular surf zone itself, and finally the regular Rossby wave far field. Further
reductions inβ lead to mergers of the cat’s eyes and surf zones (β = 0.04, Figs. 5(b) and
(e), and 8(c)) resulting in the formation of a new set of cat’s eyes (β = 0.02, Figs. 5(c) and
(f), and 8(d)). To this point, the irregular Lagrangian motion has been confined to the edges
of the jet and has not penetrated the central core itself. However, reduction toβ ≈ 0.01
leads to destruction of the central barrier and formation of a vortex street across which the
irregular motion can occur. The irregular region now has a braided geometry while regular
regions consist of the vortices within the braids and the far field Figs. 4(b) and 8(e). A
further slight reduction inβ leads to reformation of the central barrier and confinement of
the irregular motion to homoclinic loops on either side of this barrier (Figs. 4(c) and 8(f )).

Characteristic regular and irregular motion in some of the regions just mentioned is shown
in Fig. 9, which contains examples of parcel trajectories for flows withβ = 0.103, 0,−0.05.
The initial positions of trajectories in irregular regions are marked ‘+’, while those in regular
regions are marked ‘�’. The initial positions are also marked in the corresponding Fig. 2
stream function maps. Trajectories originating at a ‘+’ do indeed appear more irregular that
those originating at a ‘�’, the latter being nearly periodic. In some cases, pairs of trajectories
have been initialized close together in order to observe initial condition sensitivity. The pair
beginning near the ‘+’ in Fig. 9(b), stays together for a brief period but rapidly diverge
thereafter. Note that the northern member of the pair crosses the vortex street and remains
on the north side of the street, a good example of cross-street transport. The two ‘�’ pairs
originating in the same figure remain together.

Ocean floats and drifters are not ordinarily launched in pairs, making it difficult to evaluate
separation rates. However, promising directions have recently been suggested in Lacasce

2 The spirals inside the eddies are rather curious. Similar patterns also appear in Poje et al. (1999) for barotropic
turbulence, but the authors did not discuss the origin of this pattern. We find the underlying mechanism accounting
for the robustness of this spiral pattern is the combination of two factors. First, parcels inside the eddies rotate
around the eddy centers. Secondly, the locations of the eddies are not fixed but translated in time (in our case, we
mean in the co-moving reference frame).
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Fig. 9. Sample Lagrangian trajectories (in the stationary frame) for (a)β = 0.103; (b)β = 0; (c) β = −0.05.
The initial positions are marked with ‘+’ or ‘ �’.

et al. (2000). In particular, they have calculated the separation rates for a collection of
instruments that have been launched in pairs or have passed close to one another, in several
sections of the North Atlantic. They find that the mean square separations of most pairs
initially grows non-linearly. This may be explained by the initial velocities of the instruments
differing by a small constant, but an alternative explanation is that different pairs have
different separation rates, and that certain pairs separate exponentially, as discussed in the
above. In fact, Lacasce et al. (2000) do find that certain pairs separate much faster than
others. Unfortunately, their analysis is limited by the facts that the time series are very short
and that the data are contaminated by large noise. Therefore, they are not able to conclude
whether there are pairs having exponential separation rates. They are currently working on
data collected from the Gulf of Mexico, which have better quality. It is expected that more
conclusive results will be obtained.
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7. Conclusions and discussions

By decreasing the value ofβ in a model of a barotropic jet we have simulated the qua-
litative changes expected to occur with increasing depth (or density) in certain surface-
intensified, ocean jets. These changes include increased eastward meander propagation
speed relative to the background eastward fluid velocity, decreased potential vorticity dif-
ference across the jet, and emergence of a flow with strong eddy motions and a weaker jet
character. We decreaseβ down to slightly negative values, deeming the latter consistent
with observed values near zero in the Gulf Stream. Within this range, destruction of the
central potential vorticity barrier and consequent cross-flow transport is observed only in
the narrow windowW corresponding approximately to−0.01< β < 0.01. Similar win-
dows are found for jets of different shapes. WithinW , the stream function contours in the
co-moving reference frame take on a braided pattern that suggests separatrix reconnection.
The corresponding flow has the character of a vortex street and transport across the street is
demonstrated by the intersecting unstable and stable EIMs associated with the hyperbolic
regions lying to the north and south of the street.

Motivated by the fact that an oceanic flow is disturbed by many external forcings, we
test the strength of a transport barrier by introducing disturbances in our model. Although
transport is not observed for the casesβ > 0.01 (a meandering jet with a high potential
vorticity gradient core) andβ < −0.01 (a vortex street with a continuous band of high
potential vorticity gradient meandering between the vortices), transport can be forced in
these cases by varying the value ofβ. However, the effect of this forcing is asymmetric with
respect toβ. Forβ-values of equal magnitude but opposite sign, the fluctuation required to
destroy the transport barrier is larger for the positiveβ than for the negative one. Within
the fluctuation frequencies tested, the lowest of which permits four cycles over the finite
duration of the solution, the barrier is most easily penetrated at low frequency. It is striking
that, forβ < 0, some disturbances may destroy the barrier without oscillating acrossW ;
whereas forβ > 0, destruction of the barrier may only occur whenβ passes throughW .
We also test the forcing due to a white noise disturbance ofβ. Again it is easier to destroy
the transport barrier for negativeβ than for positiveβ.

The central question to be addressed next concerns the depth (or density) range that the
windowW corresponds to. Bower and Lozier (1994) estimations of monthly mean Gulf
Stream potential vorticity gradient exhibit a good deal of temporal variability. For example,
the potential vorticity gradient in a layer lying between 14.5 and 17.0 ◦C is significantly
different from zero for all but several months of the 20 month period of observations.
Note that this layer lies between 500± 100 m depth at the south edge of the Gulf Stream
and between 100± 30 m at the north edge. For the 7.0–9.5◦C layer, which extends from
800 ± 50 m on the south side to 350± 50 m on the north side, the potential vorticity
gradient is significantly different from zero for only a few of the 20 months. One might
choose this and lower layers as candidates for separatrix reconnection and barrier destruc-
tion. However the full baroclinic model is clearly required to explore this issue in more
depth.

It is not known whether the “homoclinic” vortex street found forβ < 0.01 is relevant to
the deep Gulf Stream. It is certainly possible to find potential vorticity profiles that exhibit
negative gradient across in the whole flow in the measurements of Bower and Lozier (1994).
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Quoted error bars for these cases indicate that the apparently negative gradients are not
significantly different from zero.

Although our model suggests a mechanism for fluid exchange across a jet, it does not
explain how fluid from afar can participate in this exchange. One must appeal to some large
scale process such as the “cooling spiral” (Spall, 1992) to bring fluid into contact with the
region of chaotic advection. In Spall’s model, surface fluid in the North Atlantic subtropical
gyre circulates anticyclonically in a downwards spiral. The sinking is caused by cooling in
the western boundary layer and its extension. Due to dynamics analogous to theβ spiral,
trajectories in the sinking region are forced to cross shallower trajectories from south to
north. The net effect is that deep fluid is increasingly directed northwards, towards the axis
of the jet separating the subtropical and subpolar gyres.

An incidental result of this investigation has been the observation of transitions in the
flange region of the jet asβ approachesW from above. Just beforeW is reached, the
(prograde) cat’s eyes associated with primary meander at highβ combine with a (retrograde)
“surf zone” to form a new set of cat’s eyes. This merger creates relatively wide bands of
chaotic stirring in the flanges. Asβ entersW the new cat’s eyes merge and the central
barrier is broken in what we call separatrix reconnection. Although the particulars of the
flange transitions are likely model dependent, the existence and importance of secondary
modes (here the retrograde of Rossby waves) implies that the process leading to barrier
destruction at depth may not be as simple as previously thought. For example, Pratt et al.
(1995) suggested a picture in which the jet is dominated in all depths by a normal mode
meander. At the surface, a central barrier exists and chaotic stirring is confined to cat’s eyes
centered around the critical latitudes of the meander, much as in part (a) of Figs. 2–4. As
one descends to deeper levels (or denser isopycnals) the critical latitudes move inwards and
eventually merge, causing the central barrier to be broached. Our findings should serve as a
reminder that other disturbances, for example those associated with Rossby wave radiation,
may emerge at deeper levels and may alter the chain of events.

Hyperbolic regions and their EIMs give an underlying geometry that provides tem-
plates for chaotic stirring and transport of fluid in the jet. This study has identified a
range of underlying geometries that could arise as depth is varied. Such changes would
be important in the design of float and drifter experiments. If the intent is for the in-
strument to remain in certain regions, such as the jet core or a vortex structure, then
advance knowledge of the locations of barriers and regions of enhanced stirring would be
valuable.
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