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Abstract 

A simple point vortex model is formulated to investigate the deformation and translation 
of lens-like oceanic eddies, such as Mediterranean Salt Lenses, in large-scale shear. The 
idealized eddy is represented by a pair of quasigeostrophic 'point potential vortices' at 
different depths in a uniformly stratified fluid. The point vortices are assumed to be 
embedded in a flow with uniform vertical and horizontal shear, and they are advected by the 
background flow as they interact with one another. The model successfully reproduces many 
aspects of the behaviour of low-mode disturbances found in models with continuous 
(non-singular) representations. Depending upon the strengths of the vortices, their initial 
separation, and the intensity of the background shear, the vortex pair is either torn apart by 
the shear, or else remains coupled for all time, in which case the vortices execute a periodic 
motion while propagating with respect to the ambient fluid. Solutions representing steadily 
translating point vortex configurations are obtained for certain values of the model parame- 
ters. For a given vertical separation between the vortices and a specified background shear, 
there can exist up to three steadily translating solutions, each with a different horizontal 
separation between the vortices, and each aligned perpendicular to the background flow 
direction. The translation speed of these pairs is directly proportional to the difference in 
the strengths o f the  vortices. A detailed analysis of the character of the steadily translating 
solutions is made, and the linear stability properties of the solutions are investigated. 

1. Introduction 

In  recent  years, interest  in the behaviour  of  oceanic mesoscale lenses and their 
role in the general  circulation has grown dramatically. Perhaps  the best  docu- 
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mented of these are the Mediterranean Salt Lenses or Mediterranean Water 
Eddies ('Meddies'). Meddies are large lenses of warm and salty Mediterranean 
water, typically 800 m thick and 80-100 km in diameter, with strong anticyclonic 
internal circulations (Armi et al., 1989; Richardson et al., 1989). Long-term 
observations have been made of Meddies, giving a first look at the life cycles of 
these eddies. Armi et al. (1989) have documented the evolution of a Meddy over a 
2 year period, during which time it drifted over 1000 km southward at an average 
speed of 1.8 cm s- 1. Richardson et al. (1989) have examined the evolution of three 
different Meddies which were seeded with SOund Fixing And Ranging (SOFAR) 
floats and tracked for up to 2 years as they drifted through the Canary Basin. 
Richardson et al. (1991) have re-examined historical data sets in an attempt to 
identify possible Meddy sightings, and report numerous anomalous T-S  measure- 
ments which they attributed to Meddies. Given the large number of Meddies that 
have been found in the eastern North Atlantic and the large distance they are 
known to travel from their probable formation site near Cape St. Vincent 
(Richardson et al., 1991), it is likely that they are an important mechanism of 
along-isopycnal heat and salt transport at mid-depths in the region, and they may 
play a significant role in determining the large-scale structure of the Mediter- 
ranean Salt Tongue. 

Richardson et al. (1989) reported that SOFAR floats in Meddies moved at 
roughly 1.4 cm s-1 in a south or southwestward direction relative to nearby floats 
outside Meddies, implying that Meddies in fact 'propagated' through the surround- 
ing waters. The observed propagation of Meddies has not been definitively tied to 
a particular physical mechanism, although a number of plausible hypotheses have 
been put forward to explain their motion. Typically these hypotheses employ either 
E-plane dynamics or interactions with external flows to explain the observed 
translation. The results of a numerical simulation by Beckmann and K~ise (1989) 
indicate that a predominantly southward drift at speeds of roughly 1 cm s-1 is 
possible on a/3-plane. More recently, Colin de Verdiere (1992) has suggested that 
the lateral erosion of the cores of Meddies by thermohaline intrusions (e.g. 
Ruddick and Hebert, 1988) and the subsequent geostrophic adjustment and 
flattening of the core must be balanced by southward motion on a spherical Earth. 
Both Beckmann and K~ise (1989) and Colin de Verdiere (1992) investigated 
mechanisms by which Meddies may translate in the absence of any background 
flow. However, the general agreement between Meddy trajectories and near-surface 
currents led Richardson et al. (1989) to hypothesize that the Meddies were being 
'advected' by large-scale currents near the surface. This suggested that the large- 
scale baroclinic shear in which Meddies are embedded may play an important role 
in their translation. To explore a possible mechanism behind the proposed advec- 
tion by near-surface currents, Hogg and Stommel (1990) (hereafter HS) formulated 
an idealized point vortex model which demonstrated how Meddies could be 
advected by currents at shallower depths if the potential vorticity associated with 
the Meddy were nonuniformly distributed in depth. For the vortex induction 
propagation mechanism they described to be effective, Hogg and Stommel's model 
requires that a Meddy be 'tilted' by the external shear. 
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Hogg and Stommel's prediction that Meddies may be tilted by external shear 
was confirmed by Walsh (1992), who used data from neutrally buoyant SOFAR 
floats at different depths within two different Meddies to show that there is indeed 
a measurable tilt to the rotation axis of the two Meddies. Walsh et al. (1995) have 
shown that the size of the observed Meddy tilts is consistent with the predictions of 
a simple analytical model which represents a Meddy as a 'patch' with anomalous 
potential vorticity in a stratified fluid, based upon their best estimates of the 
large-scale shear in the region. K~ise and Zenk (1987) and Prater and Sanford 
(1994) have reported Meddies which have multiple velocity maxima at different 
depths in the water column, which is consistent with the vertically inhomogeneous 
potential vorticity field assumed in Hogg and Stommel's model formulation. Walsh 
et al. (1995) discussed similar results obtained from float data which suggest that 
rotation rates within the warm and salty cores of Meddies may vary substantially 
with depth in some cases. 

In this work we investigate the interaction of an eddy with an external shear 
using a very simple point vortex analogue, which is an extension of that of HS to 
include continuously stratified dynamics. The application of the point vortex ansatz 
in the study of oceanic eddies can be traced to the two-layer model of Hogg and 
Stommel (1985); the use of point vortices to study stratified quasigeostrophic (QG) 
flow was suggested in a review paper by Flierl (1987). Hogg and Stommel coined 
the term 'heton' to describe a certain configuration of baroclinic, geostrophic point 
vortices which were effective in transporting heat, and proposed the heton as a 
novel means of releasing available potential energy in geostrophic systems. Since 
then other workers (e.g. Legg and Marshall, 1993) have employed layered point 
vortex models to investigate other geophysical phenomena. In a study reminiscent 
of HS's model of Meddy translation, Wu and Emmanuel (1993) have investigated 
the effect of vertical shear on hurricane movement using a two-layer QG model 
with a point cyclone in the lower layer and a finite patch of zero potential vorticity 
air containing a point source of mass in the upper layer. Their numerical experi- 
ments indicate that a vertical shear tilts the vortex pair in the downstream 
direction, and the resulting interaction between the vortices induces a cross-stream 
velocity component to the trajectory of a hurricane. 

2. The model 

The model flow field consists of a pair of three-dimensional 'point potential 
vortices' with strengths Q1 and Q2 in a flow with constant horizontal and vertical 
shear. The two vortices are advected by the background flow as they interact with 
each other (see Fig. 1). Following HS, it will be convenient to look upon the vortex 
pair as a crude representation of a continuous vortex. The separation of the point 
vortices represents the size and deformation of the analogous continuous vortex, 
and their strengths represent the integrated potential vorticities in the upper and 
lower halves, respectively. In their Meddy study, HS used a three-layer point vortex 
model which incorporated point vortices in the upper two layers, with a uniform 
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Fig. 1. Schematic diagram of two-point potential vortices of strengths Qx and Q2 in a background flow 
with uniform shear. 

flow in the uppermost layer to mimic the effect of large-scale vertical shear on 
Meddies. This upper layer flow introduced a thickness gradient or 'equivalent /3' 
which they neglected in their analysis. We shall see that no such approximation is 
necessary within the continuously stratified model framework. 

Like HS, we will examine the influence of vertical shear on the translating 
vortex pairs. However, we will also examine the effect of horizontal shear on the 
vortex pairs, and will discuss the stability of the steadily translating configurations, 
neither of which was considered by HS. The model we will use is sufficiently 
simple that exact nonlinear solutions can be obtained. Solutions representing 
steadily translating point vortex pairs are found, and in many cases multiple 
equilibrium solutions exist. It is well known that in the absence of an external flow, 
purely antisymmetric vortex pairs (i.e. two vortices with equal and opposite 
potential vorticities) will translate steadily, carrying a region of trapped fluid with 
them as they move. What is not so well known is that in the presence of external 
shear, asymmetric propagating solutions can also be found. It will be shown that 
for a given vertical separation and background shear, there can exist up to three 
steadily translating solutions, each with a different horizontal separation between 
the vortices, and each aligned perpendicular to the background flow direction. For 
each of these solutions, the sum (Qt + Q2) of the vortex strengths is required to 
have a certain value, but the individual strengths of the vortices may vary. The 
translation speed of the pair varies linearly with (Q1 - Q2). 
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Let us consider a pair of point vortices located at r 1 = (x~, Yl, Z1) and r 2 = 
(X2, Y2, Z2) in a background flow with constant potential vorticity q = qb" T h e  
expression relating the geostrophic streamfunction $ to the potential vorticity q is 
(see, e.g. Pedlosky, 1987) 

~b x x + ~b y y + ~b z z = q (1) 

~0 --, ~0b ( r - ~  ~)  

where by assumption the potential vorticity field is of the form 

q = qb + 47rQ16(r  - r l )  + 4~'Q26(r - r2) (2) 

It is assumed that the Brunt-V~iis~il~i frequency N is constant, and the z-coordi- 
nate has been scaled such that z -~ ( f L ) / ( N D ) z ,  giving the Poisson equation (1). 
It may be readily verified that a solution to the set (1), (2) is 

Q1 Q2 (3) 
~t=l~b I r _ r l  I I t - - r 2 1  

qb 2 
~b b = - - a y z  + --~y 

The velocities (u, v) are related to the streamfunction in the usual fashion: 

0q, 
u = - - -  (4) 0y 

/g = q - - -  
0x 

and it follows from the form of ~0 b that the background flow has uniform 
horizontal and vertical shear: 

Ub = OtZ -- qb Y (5)  

Of course, (3b) is not the most general form for ~bb, but it will be sufficient for our 
purposes, as it allows an examination of the effect of both horizontal and vertical 
shear on the point vortex pairs. 

The influence of rotation in the point vortex fields, which is hidden in the 
present scaling, can be clarified by writing down the velocity for a single point 
vortex centred at x = y  = z = 0. In dimensional (starred) coordinates it can be 
shown that the velocity, which is completely azimuthal, varies in proportion to 
r . / ( r 2 .  + z 2 , N E / f 2 )  3/2, where r ,  is the horizontal radial distance from the 
z,-axis.  For strong rotation ( N / f  << 1) the velocity field is columnar, with weak 
decay in the vertical; for weak rotation ( N / f  >> 1) the velocity field is pancake-like, 
with relatively strong vertical decay. A typical value of N / f  in the Canary Basin 
(where Mediterranean Salt Lenses are most often found) is 25. In the Appendix 
the wavenumber dependence of the point vortex streamfunction is investigated, 
and it will be shown that for large vertical wavenumbers ( k  > > f r / N )  the stream- 
function has an exponential character, whereas for small vertical wavenumbers it 
behaves logarithmically. 
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Expressed in Lagrangian terms, the statement of potential vorticity conservation 
takes the form 

dq 
- -  = 0 ( 6 )  
dt 

d x  n 

dt =u( rn)  

dYn 
dt = v(rn) 

d z  n 

dt 

where n = 1, 2. Taking the horizontal derivatives of (3), using (6), and evaluating 
the resulting expressions at (Xl, Yl, Zl) and (x 2, Y2, z2) gives a set of autonomous, 
nonlinear equations governing the motions of the vortices: 

dx1 -Q2(Yl  -Y2) 
d--']-- = I rl - r213 + Ub,1 (7) 

dx2 - Q I ( y 2 - y l )  

d--~- = I r 1 - r213 + ub'2 

dYl Q2(xl -x2) 

dt [r 1 - r213 

dYE Ql(x2 -x l )  
d t  I r 1 -- r213 

dz I dz 2 
0 

dt dt 

These expressions show that the velocity of each vortex is equal to the sum of the 
velocity resulting from advection by the other vortex and that owing to advection 
by the background flow. In Fig. 2 the velocity field for a single point vortex is 
contoured. Velocities decay monotonically in all directions from the vortex centre, 
where they are infinite. It should be noted, however, that for any z ~ 0, the 
velocity is maximum some distance away from the vertical axis, as shown by the 
diagonal dashed lines. 

Figs. 3(a)-3(i) show the trajectories (viewed from above) of two point vortices 
with strengths Q1 = 3/2,  Q2 = 1/2, for various initial configurations. These were 
obtained by integrating the Eqs. (7) numerically. In each case the trajectory of the 
stronger vortex is shown by a continuous line, that of the weaker vortex by a 
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Fig. 2. Contour plot of velocity field for a single point vortex. Velocities are infinite at the origin, and 
decay monotonically to zero in all directions. The dashed lines connect the points at which the velocity 
is maximum as a function of perpendicular distance from the z-axis. 

dashed line, and that of their centre of potential vorticity (Qlr l  + Q2r2) / (Q1 + Q2) 
by a dotted line. The vortices are initially at x 1 = x  2 = 0, z 1 = 1 ,  Z 2 = - - 1 ,  and 
Yl = --Y2, as shown b y  the small circles in the plots. Positioning the vortices in this 
fashion ensures that Uba ---- --Ub2 at t = 0, so there is no net advection of the pair 
by the background flow. Fig. 3(a) shows that in the absence of external shear 
(Or = qb = 0 )  the vortices describe circular orbits about their common centre of 
vorticity. The remaining plots show translating vortex pairs in shear. In Fig. 3(b) a 
very small external vertical shear (a  = 0.01) is introduced, with the result that the 
orbits no longer close on themselves, and there is a slow drift to the right. Figs. 
3(c)-3(e)  show the vortices in horizontal shear (a  = 0.0, qb = --  0 . 0 5 ) ;  Figs. 3(f)-3(i)  
show them in vertical shear (a  = 0.05, qb = 0 . 0 ) .  In each of these sequences, the 
external shear is held fixed and the initial y separation of the vortices is varied. In 
Fig. 3(c) the initial y separation Y 2 -  Yl is - - 2 . 7 8 ,  in Fig. 3(d) the separation is 
- 2.0, in Fig. 3(e) it is - 1.0, in Fig. 3(0  it is - 3.70, in Fig. 3(g) it is - 0.448, in Fig. 
3(h) it is 0.0, and in Fig. 3(i) the initial separation is + 1.0. 

The mechanism behind the propagation of the vortex pairs is simple, and can be 
seen in its purest form in the propagation of a purely antisymmetric pair (Q1 = 
1, Q2 = - 1) in a quiescent fluid. This situation is shown schematically in Fig. 4(a). 
For such a pair, the circulations of the vortices have opposite signs, so the 
advection of the second vortex by the first is in the same direction (and of the same 
magnitude) as the advection of the first vortex by the second - -  this leads to a net 
translation of the pair. The propagation mechanism is similar when the vortex pair 
is not purely antisymmetric, but in this case an external shear is needed to 
counterbalance the influence of the symmetric component of the potential vorticity 
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field, giving the vortices a preferred orientation (in a time-average sense) with 
respect to the external flow. For example, let us consider a vortex pair in a 
vertically sheared background flow, positioned such that x I =x2 ,  y~ = -Y2, and 
z~ = - z  2, as shown in Fig. 4(b). The vortices are both cyclonic, but the shallower 
one is stronger. The velocity of each vortex is equal to the sum of the background 
velocity (which is equal and opposite for the two vortices) and the velocity induced 
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Fig. 3. Point  vor tex  trajector ies  o b t a i n e d  by integrat ing  (7) in t ime.  T h e  vort ices  are  o f  d i f ferent  
s trengths  (Q1 = 3 / 2 ,  Q2 = 1 / 2 ) ,  and  are  init ial ly s i tuated  such  that  x 1 = x 2 = 0, Yl = - Y2 and  z I = - z 2. 
Plot  (a)  shows  two point  vort ices  c ircl ing o n e  a n o t h e r  in a qu iescent  fluid; (b) d e m o n s t r a t e s  the  e f fect  o f  
add ing  a w e a k  externa l  vert ical  shear  ( a  = 0.01).  Plots  ( c ) - ( e )  show the  two vort ices  in hor izonta l  shear  
( a  = 0.0, qb = - -0 .05) ,  for var ious  initial  y separat ions ,  and  ( f ) - ( i )  s h o w  their  trajectories  in a vert ical ly  

s h e a r e d  f low ( a  = 0.05, qb = 0.0). 
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Fig. 3 (continued). 

(d) 

10 14 

by the other vortex. The mutually induced velocities are also of opposite sign for 
the two vortices, but have different magnitudes. This situation is shown schemati- 
cally in Fig. 4(b). If the total vorticity of the pair is sufficiently large, then it is 
possible for the sum of the background and induced velocity to be the same for 
each of the vortices, leading to a uniform translation of the pair. 
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3. Translation of a vortex pair 

In examining the translation of the vortex pairs, it will be convenient to define a 
'centre of potential vorticity': 

Qlxl + Q2x2 
= ( 8 )  

Q1 + Qz 
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Q l y l  + Q2Y2 y= 
Q1 + Q2 

Qlzl + Q2z2 ~= 
Ol + 02 

Using (7) and (8), one readily obtains evolution equations for $, ~, and ~: 

d~ QlUb,l q- Q2Ub,2 
-'~-" Ub 

dt Q1 + Q2 
(9) 
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- - = 0  
dt 

d~ 
- - = 0  
dt 

After making use of the definition Ub, the right-hand side of (9a) can be written in 
the form 

1 
fib = ~ a a ( z l - z 2 )  --qb; (10) 

where the notation 

Q1 - Q2 
A - - -  (11) 

Q1 + Q2 

has been introduced. The parameter  A measures the relative magnitudes of the 
antisymmetric component (QI - Q2) /2  and the symmetric component (Q1 + Q2) /2  
of the potential vorticity field. Now, it follows from (6d) that both z 1 and z 2 are 
constant, and (9b) shows that 37 is also constant. Therefore  t~ b is constant, and the 
centre of vorticity of the pair moves at the constant rate 

1 
U 0 ~ a b = -~Aog(  Z 1 --  Z2) -- qbfJ ( 1 2 )  

It should be noted that this result is true for all solutions - -  even if the vortices go 
around one another in a complicated t ime-dependent fashion, their centre of 
potential vorticity moves in a straight line with constant speed. This can be clearly 
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Fig. 4. The mechanism by which oppositely signed point vortices propagate is shown in (a). Vortex 1 is 
advected by the anticyclonic flow field of  Vortex 2, causing it to move to the right. At  the same time, 
Vortex 2 is advected to the right by Vortex 1, causing the pair as a whole to move to the right. (b) shows 
the situation for two vortices of  the same sign in a background shear. Steady translation can occur when 
the sum of the velocity owing to the background flow and the velocity induced by the other  vortex are 
equal for the  two vortices. 

seen in Fig. 3, where the dotted line shows the path of the centre of potential 
vorticity. The behaviour of the centre of potential vorticity is generally far simpler 
than that of the geometric centre of the pair, as the centre of potential vorticity 
moves at a constant rate even when the motion is unsteady. The velocity of the 
geometric centre is, in general, unsteady. Finally, using the definitions of ~ and 
it is a simple matter to show that 

u o =Ub(~, ~) (13) 
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which demonstrates that the speed of the pair is given by the speed of the external 
flow at the centre of potential vorticity. This result is a direct consequence of the 
linear form of the background flow field. 

4. Relative motions of the vortices 

To examine the relative motions of the two vortices it is convenient to cast the 
set (7) in a new form, which explicitly decouples the translation of the vortices 
from their relative motions. For convenience, the notation X(t)=--x  1 - x 2 ,  Y ( t ) =  

Yl - Y2, Z =- z I - z 2, R ( t )  =- (X 2 + y2 + Z2)1/2 is introduced, after which subtract- 
ing (7b) from (7a), and (7d) from (7c) gives 

dX (Q1 + Q2) Y 
+ a z  - qbY 

dt  R 3 

d Y  ( Q I  + Q 2 ) X  
- - =  + R3 (14) dt 

dZ 
= 0  

dt 

These equations describe the evolution of the components of the displacement 
vector between the vortices. It should be noted that only the symmetric component 
of q appears in (14); the antisymmetric component (Q1-  Q2)/2 is important in 
determining the bulk translation of the pair, but does not affect their relative 
motions. 

Before considering time-dependent solutions to (14), it is instructive to examine 
the possible steady solutions. Setting d X / d t  = d Y / d t  = 0 gives 

X s = 0 (15) 

which shows that all steady configurations are perpendicular to the external flow 
direction, and 

a l  + 02 
Z ? ) 3 / 2  Ys = OlZs -- qbY~ (16) (y2 + 

where the subscript s is used to denote a steady solution to (14). Eq. (16) is simply 
the mathematical statement of the fact that for a steady solution to exist, the 
tendency of the background flow to separate the vortices must be exactly counter- 
balanced by the mutual advection of the vortices. It should be noted that the 
solutions to (16) do not uniquely specify a point vortex configuration. As an 
example, let us suppose that for given values of a, qb, (Q1 + Q2), and Z~ some Y~ 
is found which satisfies (16). It is easy to see that there are in fact an infinity of 
such solutions, each with the same total vorticity (Q1 + Q2)- However, each of 
these solutions translates at a different rate, as the individual strengths of the 
vortices may vary. 
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Before discussing the steady solutions in their most general form, it is important 
to mention the special case Q1 + Q2 = 0, in which it is easily verified that the 
steady solution to (16) is given by Y~ = a Z s / q  b. However, when weakly perturbed, 
any such solutions will be pulled apart at a linear rate by the external shear (there 
is no 'restoring force'). This suggests that pure dipoles are not robust structures, as 
a non-zero symmetric potential vorticity component is required to keep them 
together in shear - -  even when the shear is extremely small. As a result of this, it 
will be assumed that (Q1 + Q2) is nonzero in the discussion that follows. 

The steady balance (16) can be conveniently expressed in terms of the tilt angle 
O, defined by 

® = t an -  l ( Y J Z s )  (17) 

which is a measure of the angle that a line connecting the vortices makes with 
respect to the vertical. Assuming that Z s is nonzero, then O = 0 if the vortices are 
vertically aligned, whereas if O = +_ r r /2  the separation distance Ys is infinite. In 
the special case in which Z~ = 0 it can be shown (Walsh, 1992) that all steadily 
translating solutions are linearly unstable, and therefore we will assume from now 
on that Z s is nonzero. In terms of ®, (16) takes the form 

sin 0 cos 2 0 = & -  qb tan 0 (18) 

where 6 and qo are defined by 

a Z  3 
c~ (19) 

Q1 + Q2 

qb Z3 
3b 

Ol + 02 

The roots of (18) characterize the possible steady solutions as functions of the 
parameters ~ and 36- Depending on the values of ~ and qo, (18) may have no 
roots, or as many as three. 

Owing to the relative complexity of Eq. (18), solutions were obtained numeri- 
cally. Fig. 5(a) shows the roots as a function of the horizontal shear qb for various 
values of 6. A dashed line denotes an unstable solution, whereas a continuous line 
represents a stable root. The details of the stability calculation will be discussed 
shortly. First, let us consider the case in which k is zero (i.e. no external vertical 
shear). In this case, as long as qb is less than - 1 there is just one (unstable) root at 
O = 0, representing a vertically aligned pair. As qb increases through - 1  a 
'pitchfork' bifurcation occurs, in which the unstable root gives rise to a stable root 
plus two unstable roots, which represent tilted configurations. When qb becomes 
positive the two unstable roots disappear, leaving one stable root at 19 = 0. The 
second curve shows the case in which & = - 0.25. We see that the introduction of a 
small vertical shear has destroyed the symmetry that is evident when k = 0.0. 

In Fig. 5(b) the roots of Eq. (18) are plotted as functions of the vertical shear t~ 
for selected values of qb" First, let us consider the case qb = 0, which is shown by 
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Fig. 5. Roots of Eq. (18), representing steady solutions in external shear. (a) shows the roots as a 
function of the horizontal shear qb for various values of G; (b) shows the dependence on the vertical 
shear 6 for various values of qb- Continuous lines represent stable solutions; unstable solutions are 
shown by dashed lines. 

the middle curve. If I &l is not too large there are in general two solutions, whereas 
if ]t~l exceeds a critical value there are no solutions, as the shear is too large for 
the vortices to remain coupled. In the vertical shear case, the possibility of  more 
than one  equilibrium solution is a direct consequence of  the non-monotonic  
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character of the point vortex flow field: the velocity reaches a maximum at a finite 
distance from the centre on any horizontal plane above or below the vortex. Next, 
let us consider the situation in which qb is nonzero and positive (qb = 0.1). It 
should be noted that for ~ = t~ b = 0 there are roots at O = + ~'/2.  However, the 
addition of a very small external horizontal shear shifts these roots to c~ ~ + 0% 
implying that these roots are not structurally stable. The cause of this behaviour is 
simple: the roots at O = + r r /2  represent configurations in which the separation Ys 

is infinite, so that the vortices cannot interact. Thus, the addition of even a very 
small horizontal shear can only be balanced by the addition of a compensating 
vertical shear. 

5. Stability analysis 

The linear stability properties of the steady solutions will now be investigated. 
This is done by superimposing small perturbations on the solutions, and then 
deducing whether the perturbations grow by solving linearized stability equations. 
Putting X = X s + X ' ,  Y = Y~ + Y ' ,  Z = Z s + Z '  in (14), using the steady-state rela- 
tion (16), and assuming that the perturbation quantities are small (i.e. X '2 + y,2 + 
Z t2 <~ X 2 ÷ Ys 2 ÷ 2 2) gives linearized evolution equations for X '  and Y': 

d2X ' 
dt---- T- +/x2X ' = 0 (20) 

d2y  , 
dt--- f- + i.tZY ' = KZ' 

where 

iz2= (Q, + Q2)Z ( ~ ) 
R 6 sin O cos 2 • 3 sin 2 O (21) 

(Q1 +Q2)2 ( ~ ) 
K -  - -  + 3 sin O cos O 

R 6 cos 3 ® 

and Eqs. (17) and (18) were used to write/~2 and K in terms of the angle O. The 
forcing term KZ' gives rise to a t ime-independent correction Y' = K Z ' / ~  2, which 
can be ignored for the purposes of this stability analysis. We therefore set Z'  = 0 
with no loss of generality. From the definition of ~z, we see that the steady-state 
solutions are linearly stable if the quantity 

" ~ - - s i n O c o s  2 0  3s in  2 0  (22) 

is greater than zero, as is clear from the form of (20) that X '  and Y' will be 
oscillatory if .~ > 0, and will grow exponentially in time if .~ < 0. The stability of 
the steady roots shown in Fig. 5 was determined by computing the value of ~ for 
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each point in the plot. When k = 0, so that the background flow has only 
horizontal shear, (22) shows that all tilted vortex configurations are unstable, which 
is consistent with the results shown in Fig. 5(a). 

The instability mechanism can be understood more clearly by rewriting /x 2 in 
terms of the basic-state flow field. This can be accomplished using (14a): 

d X  
dt = U( X,  r ,  Z)  (23) 

(QI +Q2) Y 
u(  x ,  r ,  z )  - R 3 + Ub 

Differentiating with respect to time gives 

d2X 8U d X  8U dY 
+ (24) 

dt 2 ~X dt  8Y dt 

We now linearize about the steady state by putting U -  U s + U', X = X  s + X', 
Y = Y~ + Y', Z = Z s + Z' ,  where U s is defined by 

(Q1 + Qz) r 
Us = - ( y 2  + z2)3/2 + Ub (25) 

and it follows that the linearized form of (24) is 

dzX ' OU s dY' 
d t ------T- = ~--f d--T- (26) 

Using the linearized form of (14b) it follows that 

d2X' Q1 + Q2 aUs x ,  
(27) 

dt  2 R 3 OY 

where 8Us~bY is to be evaluated at the point (Y~, Zs), where Us = 0. Comparing 
this with (20a) shows tha t / z  2 can be written in the form 

Q1 + Q2 /~2 = (28) 
Rs 3 OY 

and it follows that for fixed Q1 and Q2, the sign of OUs/aY determines the stability 
of the solutions. It is easy to show that (28), together with the steady-state 
condition U s = 0 leads to the expression for iz 2 found in Eq. (21). 

The above discussion indicates that the stability properties of the steady 
solutions may be determined graphically. The graphical solution to (16) is shown in 
Fig. 6. The tendency of mutual interactions of the vortices to produce relative 
motions is shown by the continuous line labelled Uv(U v - - (Q1 + Q2)YJR3s); the 
differential advection by the background flow (U b - a Z -  qbY) is represented by 
the dashed line. Steady solutions lie at the intersections between the two curves. 
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Yc (a) 

/ . vb (b) 

~ " - .  (e) 

Y 

Fig. 6. Graphical solution of (16) for various combinations of qb and & The roots are represented by 
the intersections of the curves marked U v and U b. The stability of these roots depends upon the relative 
slopes of these curves near the intersection points (see text). 

The stability of  these solutions is determined by the relative slopes of the curves Uv 
and U b near  the intersection points. In particular, the solutions are unstable if 

- - >  - - -  (29) 
aY ~Y 

where the derivatives are evaluated at the fixed point. Three  cases have been 
illustrated: the first is the case in which qb = 0 (pure vertical shear), the second is 
that in which ~ = 0 (pure horizontal shear), and in the third case ~ is negative and 
qb is positive. The stability of the solutions can be inferred directly: if the slope of 
Uv is greater  (more positive) than that of Ub, the solution is linearly stable; 
otherwise, it is unstable. The small circles represent  the points where the slopes 
are equal. In Fig. 6(a), the inequality in (29) is satisfied everywhere to the right of 
the point Yc indicating that  the right-most equilibrium point is unstable. In Fig. 
6(b) two roots are shown: the one at Y =  0 is stable, whereas the second is 
unstable, according to (29). In this case there is an additional unstable root, which 
is the mirror  image of the first unstable root. Fig. 6(c) shows the situation in which 
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there is both horizontal and vertical shear. It is clear that in this case there are 
three roots, and the inequality (29) shows that only the middle root is unstable. 

Using the ideas discussed in the last two paragraphs, the instability mechanism 
can be illustrated in simple physical terms. If we begin with a particular steady 
solution and separate the vortices slightly, the vortices will advect each other at a 
slightly different rate, and will also experience a different differential advection by 
the background flow (denoted by lib). If U b increases more rapidly than the 
mutual advection, the pair will be rotated in the direction of the external shear. 
This partial alignment with the background shear will lead to a further separation 
of the vortices. This scenario therefore represents the unstable case. Conversely, if 
U b increases less rapidly than the mutual advection, the perturbed pair will rotate 
into the external shear. The external flow will then tend to push the vortices back 
together - -  this scenario represents the stable case. 

6. Phase plane description 

The set (14) represents a nondivergent flow in (X, Y, Z) space. The character 
of the flow can be understood by plotting solution trajectories. As a result of the 
simple form of the third equation, the flow is two dimensional, and has only a 
parametric dependence upon Z. It is therefore sufficient to consider trajectories in 
the (X, Y) plane. Fixed points in (X, Y) space represent steadily translating 
configurations, whereas closed trajectories represent solutions which are periodic 
in a translating reference frame. Saddle points represent unstable steady solutions; 
centres represent stable steady solutions. We shall find that all solutions are 
periodic if the external shear is not too large, and are aperiodic otherwise. 

Let us consider first background flows with purely horizontal shear. Fig. 7(a) 
shows the phase plane trajectories for the case in which Zl = 1, z 2 = -1 ,  and 
Q~ + Q2 = 2, consistent with the point vortex trajectories shown in Fig. 3. The 
qualitative behaviour of the solutions depends on the sign of qb. When qb is 
negative (qb = --0.05) there are three fixed points in the (X, Y) plane. The first is 
a centre at X = Y--- 0, corresponding to a stable solution. The closed trajectories 
surrounding the elliptic point representing periodic steady-state solutions. In 
addition, there are two hyperbolic points located on the Y-axis, representing 
unstable solutions. Both of these solutions represent configurations in which the 
vortices are displaced at right angles to the external flow. The symbols in the plots 
represent the initial configurations for the numerical runs shown in Fig. 3. The 'O '  
located near the saddle point in Fig. 7(a) represents the initial condition for the 
run in Fig. 3(c), and it shows that the run was very close to an unstable steady 
solution. The ' + '  symbol represents the run shown in Fig. 3(d), and ' x '  marks the 
starting point for the run in Fig. 3(e). 

When qb is positive (qb = 0.05) there is just one fixed point (as shown in Fig. 
7(b)) - -  the same stable fixed point at the origin discussed above. In this case, 
however, there are no other fixed points, as the background shear is of the wrong 
sense to balance the motions of the vortices. It is worth noting that in this case all 
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Fig. 7. Phase plane behaviour of point vortex pairs in the (X, Y) plane. (a) shows the case in which the 
vortices are in horizontal shear (qb = --0.05); in (b) the vortices are again in horizontal shear, but with 
qb > 0 (qb = 0.05), whereas in (c) they are in vertical shear (a = 0.05). The fixed points represent 
steadily translating point vortex configurations. The 'O '  in (a) marks the initial condition for the run in 
Fig. 3(c), the ' + '  represents the run in 3(d), and the ' × '  represents the run shown in 3(e). The ' × '  in 
(c) shows the initial condition for the trajectory in Fig. 3(f), ' +  ', 'O' ,  and '* '  represent the trajectories 
shown in Figs. 3(g), 3(h), and 3(i), respectively. 

t r a j ec to r i e s  a re  c losed,  so t h e  vor t ices  c a n n o t  be  ca r r i ed  a rb i t r a r i ly  far  apa r t  by  the  

flow, a n d  t h e r e f o r e  t hey  r e m a i n  at  leas t  weak ly  c o u p l e d  for  all  t ime.  Th i s  impl i e s  
t h a t  any  c o u p l e d  vor t ex  c o n f i g u r a t i o n  of  this  k i n d  (no t  necessa r i ly  s teady)  is m o r e  
r o b u s t  w h e n  qb > 0 t h a n  w h e n  qb < O. 
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Fig. 7 (continued). 

If the background flow is vertically sheared (a  = 0.05) the situation is different, 
as shown in Fig. 7(c) (again with z I = 1, z 2 = - 1, and Q1 + Q2 = 2). In this case 
there are two fixed points - -  one stable, one unstable. Both represent pairs which 
are 'tilted' by the background flow. There are no solutions representing vertically 
aligned vortex pairs, as were found in the horizontally sheared case. The saddle 
point near the bottom of the figure represents a strongly tilted unstable configura- 
tion; the centre near the middle of the plot represents a weakly tilted stable 
configuration. The ' + '  represents the initial condition for the run in Fig. 3(g), 
which was clearly close to the stable fixed point. The ' × '  represents the run in Fig. 
3(f) which was near the unstable fixed point. The '© '  and the '* '  show the initial 
conditions for the runs in Figs. 3(h) and 3(i), respectively. As t~ decreases, the 
region of closed trajectories surrounding the stable fixed point becomes smaller 
until eventually no bound-states are possible. 

7. Discussion 

A variety of solutions representing pairs of QG point potential vortices in 
uniform shear have been discussed. These translating point vortex solutions are the 
three-dimensional generalizations of the layered solutions of HS. Unlike HS, we 
have also considered the influence of horizontal shear, and a linear stability 
analysis of the family of steady solutions is presented. The mutual interactions 
between the vortices, together with the influence of the background flow on the 
pair, allow for a wide variety of possible behaviours. As expected, modon-like 
propagation can occur when the vortices have opposite signs. However, the vortex 



D. Walsh, L.J. Pratt/Dynamics of Atmospheres and Oceans 22 (1995) 135-160 157 

pairs may also translate with respect to the ambient fluid when the vortices have 
the same sign, provided that there is a background shear, and the vortices have 
different strengths. The propagation mechanism is the same in either case - -  the 
antisymmetric component of the potential vorticity field causes the pair to propa- 
gate. The role of the background shear in the propagation is to give the pair an 
average transverse tilt, and the vortex induction mechanism then causes them to 
propagate in a direction parallel to that of the external flow. 

Solutions periodic in a translating frame of reference were found for back- 
ground flows with vertical and/or  horizontal shear. Stable, steadily translating 
solutions exist in vertically sheared background flows, analogous to those discussed 
by HS. In horizontally sheared flows, all steadily propagating point vortex configu- 
rations were found to be unstable. The only possible stable equilibrium in this case 
was found to occur when the vortices are vertically aligned, so that the pair does 
not translate. For a given vertical separation between the vortices, and specified 
vertical and horizontal shear, there can be up to three steadily translating point 
vortex configurations, each with a different horizontal separation between the 
vortices, and each aligned perpendicular to the background flow. These solutions 
translate at a rate proportional to (Q1 - Q2), which measures the asymmetry of the 
potential vorticity field. Changing (Q1- Q2) alters the translation speed of the 
vortex pair, but does not otherwise affect their behaviour as seen from a reference 
frame translating with speed u 0. The difference between propagation of point 
vortex pairs in a quiescent fluid and in shear is that, in the latter case, a certain 
minimum symmetric potential vorticity component is needed to keep the vortices 
aligned with respect to the external flow. Pure dipoles are not viable in shear, as 
they cannot resist the tendency of the shear to tear them apart. 

It is worth noting that there is no inherent limit on the asymmetry A (and hence 
on the speed) of the pair. This is different from the result reported by Flierl (1988), 
who noted that a class of solutions representing weakly perturbed columnar 
geostrophic vortices broke down if the depth variation of potential vorticity within 
the vortex core became too large. Flied speculated that highly baroclinic solutions 
may have a more complicated structure involving patches of anomalous vorticity 
which close off in the vertical. Walsh (1992, 1995) observed a similar solution 
breakdown in a model of a lens-shaped geostrophic eddy in large-scale shear. If 
Flierl's speculation is correct, then highly baroclinic lenses may necessarily have a 
multiple-core structure similar to that of the 'double Meddy' documented by 
Prater and Sanford (1994) (and reminiscent of the point vortex representation we 
employ here). 

Despite the inevitable differences between the point vortex and continuous 
representations, it is felt that these point vortex results provide considerable 
insight into the behaviour of oceanic lenses in large-scale shear. In particular, the 
solutions qualitatively capture the transverse deflection of the rotation axis of 
Mediterranean Salt Lenses which has been measured by Walsh (1992) and Walsh 
et al. (1995), using data from neutrally buoyant SOFAR floats deployed in Salt 
Lenses. The present model also reproduces the vortex-induction mechanism origi- 
nally put forth by HS as a possible explanation for the observed translation of 
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Meddies. Walsh (1992, 1995) has shown that this mechanism is readily generalized 
to more realistic models of lens-like eddies which employ continuous representa- 
tions of the potential vorticity field. It is very encouraging that this simple point 
vortex representation can reproduce many of the important physical mechanisms 
inherent in more sophisticated models. 
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Appendix: Wavenumber dependence of point vortex fields 

In this Appendix the character of the short- and long-range influences in the 
continuously stratified point vortex model will be examined. Let us consider an 
impulsive potential vorticity distribution of the form 

Oxx + Oyy + -~Oz  = 8 ( X - X o ,  Y-Yo, Z-Zo)  (A1) 
Z 

~b~0, as r ~ o o  

If we assume for simplicity that N 2 is constant, then Fourier transforming (A1) in 
z gives 

~xx + q~yy - k2 f 2 'F' = 6( x - x o, -Y0) exp( ikzo) ( A2) N2"v Y 

where we use the standard notation 

= f_~be ikz dz 

The solution to (A2) is 

exp(ikZ°)z~r Ko I[ fkr)N ' (A3) i =  r-- [(x-x0) 2 + ( y  - y 0 ) 2 ]  ' ' 2  

where K 0 is a modified Bessel function. We see that the streamfunction associated 
with a given vertical wavenumber has the same functional form as the baroclinic 
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modes in layer models (e.g. Hogg and Stommel, 1990). The modified Bessel 
function K 0 has the following asymptotic behaviour (e.g. Arfken, 1966): 

g0(qb ) --- e - ° ,  . - - .  +oo (A4) 

K o ( *  ) = - In (q ) ) ,  ¢P ---* 0 + 

Thus ~ has the asymptotic behaviour 

1/2 N 
= e-fkr/N, r >> - -  (AS) 

fk 

exp( ikz o) 

exp(ikzo) N 
= In ( f k r / N ) ,  r << - -  

2~- fk 

For small vertical wavenumbers ( f k r /N  -o 0), the streamfunction is approximately 
logarithmic, whereas high vertical wavenumbers decay exponentially in the far-field. 
Thus for a disturbance with vertical wavenumber k, there is a 'short-range' 
influence which is logarithmic in character (which obtains when the range r is 
much less than the baroclinic deformation radius k - i N / f ) ,  and a 'long-range' 
influence which decreases exponentially with distance (which applies when r is 
much greater than k - i N / f ) .  By inverse Fourier transforming (A3), one obtains 
the following expression for the streamfunction $: 

0 (x -Xo) 2 + (y -yo) 2 + -~-(z -Zo) 2 (A6) 

Thus, although the pressure field for a mode with a vertical wavenumber k varies 
as Ko(fkr/N),  superposing all vertical wavenumbers gives a field with an algebraic 
dependence on x, y, and z, as in (A6). 
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