

Hybrid Arctic Float System HAFOS

Floats in Polar Oceans: Strategy

- Development of a system for bipolar use in the Antarctic because of easier conditions: 80% of ice melts in summer
 - 1. priority: measurements of water mass properties by profiling floats
- Floats are part of a comprehensive system of observations which can be realised stepwise. On each level useful data can be obtained
- A higher horizontal resolution (more floats) has priority to sophisticated sensors
- Prototype system will be available during IPY 2007/2008

Causes for float destruction :

Floats are likely to be damaged when surfacing within <u>partially</u> ice-covered region (during the <u>onset of winter</u>).

It is not sufficient to <u>detect</u> ice on top of float when surfacing

Local statement – neglects ice drift during time at surface (ARGOS transmissions)

Energy budget and costs limit potential sensors for ice detection

Temperature algorithm

Temperature [°C]

Conclusion: Successful and future steps towards HAFOS

- Determination of the range of the SOFAR under ice MARE: Maude Rise Pilot Experiment studies SOFAR/RAFOS ranges with and without sea ice coverage at Maude Rise, Weddell Sea during Jan 2003 to Feb 2004.
 - Ranges of 600 700 km were found in the Weddell Sea.
- Floats detect and avoid ice APEX & NEMO: ARGO type profiling floats modified to estimate likeliness of sea ice and to abort surfacing.
 - 80% of floats survived the first winter.
- Combine systems of floats, ice drifters and moorings.
- Transmit data by acoustics.

Components of HAFOS

 75 profiling floats (15 deployments per year) Depth range: 25 m to 1000 m Acoustically tracked and transmission of reduced data set: 10 inflection points In open water full data transmission by satellite link
5 to 10 sea ice drifters (2 redeployments per year) with bi-directional acoustic and satellite communication shallow CT sensors
5 to 10 moored bases (5 redeployments every second year) with

bi-directional acoustic and satellite communication deep profiling CTD shallow profiling CTD

Present status

Ice sensing algorithm (ISA)	RAFOS	Interim storage
Checks temperature in upper 50m, ascent aborted if near freezing	Provides subsurface profile position when surfacing impossible	Provides delayed mode profile when surfacing impossible
Tested successfully in 2002/3 with 3 and 2003/4 with 13 APEX floats, about 80% survival rate.	Tested in 2003/4 with 5 RAFOS floats: tracking range at least 600 km throughout season. 5 APEX currently on deployment	- no tests yet –
Now standard for all AWI float orders (APEX and NEMO)	To be ordered for 2004/5 season: 15 (ger. ARGO) & 5 (MERSEA) APEX.	Ordered for 8 NEMO

Further progress

Extent algorithm

- Evaluate Arctic conditions
- Consider coupled abort conditions:
 - T, S, t, position
- Float technology
 - Build NEMO (Navigating European Marine Observer)
 - Add GPS receiver and use "missing downlink condition" to abort surfacing attempts
 - Save all profiles for delayed download
 - Increase data transmission speed
 - Use acoustic navigation
- Install acoustic data transmission

The HAFOS concept

- How to extend ARGO into predominantly ice covered oceans?
 - Use SOFAR floats in the Arctic Ocean,
 - tracked by autonomous listening stations (ALS),
 - Add T/S profiling capability to floats,
 - which transmit profiles' EOF parameters acoustically,
 - using time delay method.
 - Sporadic high resolution direct data dump (DDD) when surfacing is possible.

AWI_040

Float AWI 040

AWI_047

Float AWI 047

