Old carbon in the modern marine environment

Possible origin(s) of non-zero “C ages for OC carbon in marine surface
sediments:

» 1. Delivery of “pre-aged” terrestrial OC of vascular plant origin
» 2. Relict OC (“kerogen”) inputs from erosion of sedimentary rocks
» 3. Sediment redistribution processes

- Bioturbation

- Lateral advection

* 4. Black Carbon
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TOC and foraminiferal A'#C in Santa Monica Basin sediments

Benthic forams

14C contents of algal sterols in CBB sediments
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Ross Sea, Antarctica

Surface Sedimentary OC composition

Site Water | TOC | §'3C 14c
Depth | (%) age
(m)
Fairy 671 0.24 | -25.65 | 9990
Gentoo 623 0.34 | -27.42 | 4070
Emperor 670 0.49 | -26.35 | 6500

Chinstrap 827 1.05 | -24.04 | 2760
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Data source:
Ohkouchi et al. (2003)
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Coupled molecular and microfossil *C measurements

Premise:

* Marine algal biomarker compounds (e.g., alkenones) and planktonic forams both
encode surface ocean-derived signatures (incl. "C content of DIC).

» Age discrepancies must therefore indicate different subsequent fates.

* Marine organic matter is predominantly associated with the fine fraction of sediments
— prone to resuspension and redistribution.

» Foraminiferal tests are coarse, sand-sized particles — less susceptible to redistribution
by bottom currents.

Approach:

« Use "C relationships between planktonic foraminifera, algal biomarkers (e.g.,
alkenones), and bulk OC isolated from the same sediment intervals as a tool to
examine sedimentological processes (lateral transport, bioturbation).
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Sedimentological Controls on Geochemical Records from the Bermuda Rise

Age difference (vs planktonic forams)

%CaCO3 Uy alkenones TOC FFIC
10 20 30 06 08 0 5000 0 5000 0 5000
0
L [ ° (9] [¢]
° ° L] (&) [¢]
° [ ° [¢] o
L] ) (&) [¢]
500 . ° ° oo
®
©
[
> o L] [ ] o [e]
-
®©
2 1000
2
©
e
()
<
1500 ® ® ® @ o]
2000

Ohkouchi et al. 2002




Bermuda Rise
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satellite image of E. huxleyi
bloom off Newfoundland in the western
Atlantic on 21st July, 1999.




Long-range transport
of organic matter
(and alkenones)
from the Scotian
Margin to the
Bermuda Rise?

Lateral transport of organic matter to the Bermuda Rise
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Lateral transport of organic matter to the Bermuda Rise

Sources and Transport of Alkenones and Forams to the Bermuda Rise
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Science goes in circles!

A New Kind of Storm Beneath the Sea

Marine geologists and physical oceanographers are each sorting out their own
types of evidence for surprisingly swift currents across the bottom of the deep sea
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Benthic Storms: Temporal Variability in a
i Deep-Ocean Nepheloid Layer
Abstract. Time series measurements of light scaifering were made for 2% months

at 20 meters above the bottom in the western North Arlantic, The highesr values

The HEBBLE study area in which high-speed currents over the deep sea floor were detected. recorded with the nephelometer exceeded all previows measurements worldwide,

The area includes the continental thelf in itz northwestern corner, the steep conrinental slope Rapid changes indicated a high degree of activity near the sea floor, and tome
Below the shelf (reglon of closely spaced contour lines), the genily sloping consinental rive, and imcreases may have been related 1o atmospheric storms.

the flat abyssal plain in its sousheast cormer. The HEBBLE instrument array generally extended

alomg a rorth heast line in the south- I portion af the bax. The New England e oL 1 v

Seamounts run across the southwestern corner of the box.

Namibian margin (Benguela Upwelling region)
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14C ages of Namibian margin sedimentary components (core 226660-5)
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Accumulation maximum (depocenter) on upper continental slope
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Southern Chile
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14C age discrepancies between organic matter and calcareous microfossils
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Estimates of advective alkenone contributions

Assumptions:
A'C of indigenous alkenones = A™C of forams
A'C of advected alkenones = -1000 permil (infinite '“C age)
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Comparison of alkenone and TOC 14C ages
in surficial (< 3 cm) marine sediments
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Additional evidence for advective OC supply
to the sea floor

(i) Increased material fluxes in deep, relative to shallow, sediment traps deployed near
continental slopes (Honjo et al., 1982; Biscaye et al., 1988; Thomsen & van Weering,
1998).

(i) High suspended particle concentrations near the seafloor (bottom nepheloid layer;
McCave, 1983; Gardner & Sullivan, 1981) or associated with the detachment of
intermediate nepheloid layers from the upper slope (INLs; Biscaye et al., 1988;
Pickart, 2000).

(iii) Carbon and oxygen imbalances in the deep ocean (Jahnke et al., 1996).
(iv) Old 'C ages of OC on suspended particles in slope waters (Bauer et al., 2001).

(v) 4C age of particles on slope waters intercepted by sediment traps (Anderson et al.,
1994; Hwang et al., 2004).

(vi) The isotopic and molecular composition of deep sea sediments (Freudenthal et al.,
2001; Benthien & Miiller, 2000).

Advection of POC in the Panama Basin
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Lateral transport of alkenones to the Argentine Basin

a7

Benthien & Muller, 2000

Vertical Transport of Organic Matter to the Sea Floor
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Lateral Transport of Organic Matter to the Sea Floor
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particle layer
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Burial Abyss
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Calculation of % terrestrial, marine and fossil OC

Dual isotopic mass balance approach:

14 = *

A CTOC - fmarine Amarine
E = xS

0 CTOC - fmarme Omarine +

fmarine +

Variable Measurement/assumption:
A"%Croc measure directly (AMS)
3"3Croc measure directly (irMS)

A"Carine measure phytoplankton sterol (PCGC/AMS)

813C marine measure phytoplankton sterol (irm-GC-MS)
- assume offset between biomarker and bulk OC

Dual Isotope Mass Balance

<109 -251 -160 -108 -468 -600 -194 -136 -570 -876 -300 -395 -555 -712 AJ';CTOC
-21.7 -20.7 -23.0 -24.2 -25.36 -22.68 -25.29 -25.24 -21.7 -28.26 -24.04 -27.42 -26.35 -25.65 & C TOC

I marine
[ vascular plant




Black Carbon (BC)

Suggested Reading:

* Gustafsson O. and Gschwend P.M. (1998) The flux of black carbon to surface
sediments on the New England continental shelf. Geochim. Cosmochim. Acta 18,
805-829.

* Masiello C.A. and Druffel E.R.M. (1998) Black Carbon in Deep-Sea Sediments.
Science 280, 1911-1913.

»  Schmidt M.W.Il. and Noack a.g. (2000) Black carbon in soils and sediments: Analysis,
distribution, implications and current challenges. GBC 14, 777-793.

* Masiello C.A. (2004) New directions in black carbon organic geochemistry. Mar.
Chem. 92, 201-213.
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Black Carbon (BC)

Some Notes:
» Estimates of modern BC production
» Biomass burning: 50-260 Tg C/year

* Fossil fuel combustion: 12-24 Tg Clyear

» Atmospheric lifetime of BC aerosols: 40 hours to 1 month

+ Mass of organic carbon stored globally in ocean sediments: 160 Tg/year
+ BC estimated to make up ca. 6% of sedimentary OC globally.

* Locally (on margins) BC may comprise up to 50% of TOC.

Other particulate BC
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Public Health

Increased respiratory problems
associated with elevated particulate
matter concentrations

Black Carbon — A moving Target!
(The Combustion Continuum)
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What is Black Carbon?

How can we analyze BC?

charcoal
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Fig. 3. The black carbon methods continuum. Regions of the
combustion continuum detected by each technique are estimated
based on published results with a variety of standards and sample
types. BPCA abbreviates benzene polycarboxylic acids (Glaser et
al., 1998).




BC isolation/measurement methods

3 main types of method:
» optical

» chemical oxidation

» thermal oxidation

NB: In almost all cases, BC is operationally defined.
— Leads to very different estimates of quantity and flux of BC.

Carbon isotopic Glass
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Supply of BC to marine sediments
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Fig. 2. Percent sedi y organic carbon posed of black carbon in the world's oceans, measured by various techniques.




14C age of Black Carbon in marine sediments
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BC in Santa Clara River
suspended sediments

Figare 1. Map of the Saata Clars River drainage basin.
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g & & 8

§

) Figure 4. A*C of BC vs A“C of POC in the Santa Clara during
Masiello and Druffel, 2001, GBC high flow events.




Figure 1. (a) OC per dry sediment. (b) BC/OC ratio.

SOCm% measurements were made on a Carlo-Erba
NA1500. Repmdumb:l:ty oi‘ % SOC..,,. is better than 5%.
BC was cal using an age Pacific
BC half-life with respect to dichromate oxidation of 474
75 (10) hours [Masiello et al., 2002]. All data have been
salt-corrected.

Masiello and Druffel 2003 GRL

BC in Santa Monica Basin
sediments

35 45 34D D .S 22150 000 4000 6000 B0 1M0*
L MCage

Figure 2. (a) §'*C of Santa Monica SOC and BC. Error is
+0, l%o (b) “C ages of Santa Monica SOC and BC. Errors
for '“C ages are less than the size of the points. We extracted
CO? for "*C measurement as described by Druffel et al.
[1992] and prepared graphite as described by Fogel et al.
[1987]. Radiocarbon measurements were made at LLNL
Center for AMS. For discussion of uncertainties associated
with BC measurement, see Schmidt and Noack [2000];
Schmidt et al. ‘[2001] and Masiello et al. [2002]. For
discussion of '“C terminology, see Stuiver and Polach
[1977].
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Graphitic Black Carbon (GBC) in
(pre-anthropogenic) Washington Margin sediments
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Carbon isotopic composition of dustfall sample off NW Africa

Concn. 813C AC 14C age
Fractions (gdw basis) (%0) (%) (yr BP)
Total Organic Carbon 1.02 % -18.93 -149.6 1260 + 40
Black Carbon 0.24 % -15.13 -231.7 (, 2070 + 35 >
\
Plant wax alcohols 12 pg -27.9 -80.8 649 + 143

=l

Eglinton et al., G?, 2002

Molecular Proxies for BC
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Historical records of combustion inputs to the environment
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Pettaquamscutt River Basin
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Assessment of Pyrogenic vs Petrogenic PAH inputs
based on molecular parameters
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Historical variations in PAH 14C
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14C contents of individual PAH in environmental samples
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