Segmentation of transform systems on the East Pacific Rise: Implications for earthquake processes at fast-slipping oceanic transform faults

Patricia M. Gregg Massachusetts Institute of Technology/WHOI Joint Program in Oceanography, Woods Hole, Massachusetts 02543, USA
Jian Lin Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
Deborah K. Smith Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

ABSTRACT
Seven of the eight transform systems along the equatorial East Pacific Rise from 12°N to 15°S have undergone extension due to reorientation of plate motions and have been segmented into two or more strike-slip fault strands offset by intratransform spreading centers (ITSCs). Earthquakes recorded along these transform systems both teleseismically and hydroacoustically suggest that segmentation geometry plays an important role in how slip is accommodated at oceanic transforms. Results of thermal calculations suggest that the thickness of the brittle layer of a segmented transform fault could be significantly reduced by the thermal effect of ITSCs. Consequently, the potential rupture area, and thus maximum seismic moment, is decreased. Using Coulomb static stress models, we illustrate that long ITSCs will prohibit static stress interaction between transform segments and limit the maximum possible magnitude of earthquakes on a given transform system. Furthermore, transform earthquakes may have the potential to trigger seismicity on normal faults flanking ITSCs.

Keywords: seismology, earthquake stress triggering, Siqueiros transform fault, transform faults, East Pacific Rise, Clipperton transform fault.

INTRODUCTION
Segmented transform systems are composed of several fault strands offset by short ridges or rifts referred to as intratransform spreading centers (ITSCs) (Menard and Atwater, 1969; Searle, 1983; Pockalny et al., 1997), where active seafloor spreading and crustal accretion are occurring (Fornari et al., 1989; Hekinian et al., 1992; Perfit et al., 1996). Along the equatorial East Pacific Rise between 15°S and 12°N (Fig. 1), the Siqueiros, Quebrada, Discovery, Gofar, Yaquina, Wilkes, and Garrett transform systems have all undergone transtension due to changes in plate motions, and each of these transforms is segmented by at least one ITSC (Searle, 1983; Fornari et al., 1989; Lonsdale, 1989; Goff et al., 1993; Pockalny et al., 1997). The Clipperton transform system has undergone several periods of transpression (Pockalny, 1997), and is the only unsegmented transform system along the equatorial East Pacific Rise.

The global deficiency of seismic moment release on oceanic transform systems has led researchers to hypothesize that a significant portion of oceanic transform slip is accommodated aseismically (e.g., Boettcher and Jordan, 2004). However, global seismicity studies have yet to consider the prevalence of transform fault segmentation. Dziak et al. (1991) observed that earthquake sizes generally correlate with the lengths of individual fault segments at the Blanco transform fault. Our observations of earthquakes recorded on East Pacific Rise transform faults indicate that segmentation is an important factor influencing rupture of large earthquakes at oceanic transforms. While it has been shown that segmentation and fault steps play an important role in controlling the earthquake behavior of continental strike-slip faults (e.g., Harris and Day, 1993), the influence of segmentation and ITSCs on earthquake processes at an oceanic transform system has not been studied in detail.

In this paper, we use teleseismically and hydroacoustically recorded seismicity data from the equatorial East Pacific Rise and Coulomb static stress models to explore the effect of ITSCs on static stress interaction between transform fault segments. We investigate whether adjacent fault segments can behave independently of one another, and how the interaction between segments depends on their offset distance.

TRANSFORM SEGMENTATION
Segmentation of the transtensional transform systems at the equatorial East Pacific Rise has resulted in individual strike-slip fault strands with lengths of 18–89 km, with an average of ~37 km. The ITSCs separating the fault strands have lengths of 5–20 km, with an average length of ~11 km. Fresh lavas collected from the ITSCs within the Siqueiros and Garrett transforms (Hekinian et al., 1992; Perfit et al., 1996) indicate that ITSCs are magmatically active, implying that the regions beneath them are hotter, and thus the lithospheric plate is thinner than the surrounding domains. To explore the effect of segmentation on the transform fault thermal structure, we use a half-space steady-state lithospheric cooling model (McKenzie, 1969; Abercrombie and Ekstrom, 2001). The temperature within the crust and mantle, T, is defined as

\[T = T_{\text{core}} \exp \left\{ -\frac{y}{k} \right\} \]

where \(y = \frac{2m}{k} \), \(m \) is the mantle thickness, \(k \) is the thermal diffusivity, and \(T_{\text{core}} \) is the core temperature.

Figure 1. Regional map of the equatorial East Pacific Rise showing large transform and nontransform offsets. Segmentation geometry is included based on previous geological mapping of the transform systems (e.g., Fornari et al., 1989; Lonsdale, 1989). Inset: Regional map showing location of the full array of NOAA Pacific Marine Environmental Laboratory hydrophones.

© 2006 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org.

Geology; April 2006; v. 34; no. 4; p. 289–292; doi: 10.1130/G22212.1; 7 figures. 289
Figure 2. Comparison of estimated areas of brittle lithosphere using a one-dimensional, steady-state lithosphere cooling model (McKenzie, 1989) for the Clipperton (B) and Siqueiros (C) transforms. A: The 90 km Clipperton transform system (X–X’) and the 150 km Siqueiros transform system (Y–Y’), which is broken into five major segments S1, S2, S3, S4, and S5 separated by four ITSCs SA, SB, SC, and SD (Fornari et al., 1989). B: Calculated area of brittle lithosphere for temperatures <600 °C (shaded region) for the Clipperton transform. C: Comparison of the calculated areas of brittle lithosphere for the Siqueiros transform for a model of unsegmented geometry (area above the dotted line) versus a model consisting of five individual segments offset by steady-state ITSCs (shaded area).

Figure 2 compares the calculated areas of brittle deformation, defined as regions with calculated temperatures <600 °C, for the geometries of the Clipperton and Siqueiros transform systems. The calculated area under the 600 °C isotherm for the Clipperton transform fault is 326 km², compared to 710 km² for a model of a single unsegmented fault with the cumulative length of the Siqueiros transform system. When the actual segmentation geometry of the Siqueiros transform system is considered, however, the integrated area of the calculated brittle deformation region is decreased by ~60% to 277 km².

Seismic moment (Mₚ), which reflects the energy released by an earthquake, is a function of the rupture area of the fault. Specifically, Mₚ = G × D × S, where G is the shear modulus, estimated to be 27 GPa from seismic velocities (Canales et al., 2003), D is the average slip, and S is the estimated brittle area. The resulting moment magnitude is Mₚ = (2/3) × log(Mₚ) − 10.73. For a model of constant stress drop during pure strike-slip earthquakes, Mₚ = (π/2) × Δσ × w × S, where Δσ is the earthquake stress drop, and w is the fault width, estimated from S divided by fault length (Stein and Wyssession, 2003).

Curves in Figure 3 show the predicted earthquake magnitudes for a given fault area, assuming models of constant fault slip (Fig. 3A) or constant stress drop (Fig. 3B) during earthquakes. Earthquakes recorded teleseismically as listed in the Harvard Centroid-Moment Tensor (CMT) catalog were relocated to a specific transform segment using hydroacoustically recorded earthquakes, which have smaller location errors (<6 km) (Fox et al., 2001). The maximum earthquake magnitudes observed on each of the transform fault segments at the equatorial East Pacific Rise from 1996 to 2001 are plotted in Figure 3. Assuming the complete rupture of a given individual fault segment, we can estimate the amount of slip or the stress drop for a given earthquake. For example, the largest earthquake observed on the Clipperton transform has a Mₚ of 6.6 (Fig. 3). If the entire brittle area of Clipperton (326 km²) was ruptured during this earthquake, the estimated average slip is 1 m, or the estimated average stress drop is 53 bar or 5.3 MPa.

COULOMB STRESS CALCULATIONS

Evidence for potential earthquake interactions along oceanic transform faults has been noted in several investigations (e.g., Toda and Stein, 2000; Bohnenstiehl et al., 2002, 2004; McGuire et al., 2002; Forsyth et al., 2003). We utilize the methods of King et al. (1994) and Toda et al. (1998) to calculate how static stress from a moderate-sized earthquake is transferred to adjacent faults, and assess the likelihood of rupturing multiple transform segments during a single earthquake. According to Coulomb failure criteria, when an earthquake occurs on a source fault, changes in Coulomb failure stress (Δσf) on a receiver fault are expressed as Δσf = Δτ + μ′ × Δτn, where Δτ and Δτn are changes in shear and normal stresses, on the receiver fault, and μ′ is the apparent friction coefficient adjusted for the pore pressure effect (King et al., 1994).

We consider a simple geometry in which two adjacent transform segments are offset by an ITSC of variable length, L, for two scenarios assuming the receiver faults are either strike-slip events along the adjacent transform segment (Fig. 4A) or normal-faulting events located along the ITSC (Fig. 4B). The rupture size for the source earthquake in both cases is varied to reflect typical earthquake magnitudes observed along the segmented transforms of the equatorial East Pacific Rise.

For the first scenario, the calculated maximum change in static stress, |Δσf|, transferred to the receiver fault is plotted versus L for Mₚ = 5.0, 5.5, and 6.0 (Fig. 5). As the separation distance between the two transform segments increases, the predicted maximum induced Coulomb stress change on the receiver fault decreases. For example, if Mₚ = 6.0, Δf = 0 km, and L is increased from 5 to 15 km, the calculated |Δσf| decreases from 1.35 bar to 0.25 bar (Fig. 5A). The proximity of the earthquake to the ITSC-transform intersection (ITI) is also very important: the closer the source earthquake is located to the ITI (i.e., smaller...
strike-slip earthquakes and areas of calculated stress changes >0.2–1.0 bar (Toda et al., 1998).

In the second scenario (Fig. 6), for $M_w \geq 5.0$, a source earthquake with relatively small d is calculated to cause significant Coulomb static stress increases on ITSC-parallel secondary normal faults. Such Coulomb stress changes correspond to a decrease in normal confining pressure across the ITSC axis, which may result in triggering of normal-faulting earthquakes or magmatic diking events along the ITSCs. The predicted Coulomb stress changes correspond to the occurrence of Coulomb stress for normal receiver faults, $\Delta \sigma_z$ decreases from 2.5 bar to 0.5 bar.

Figure 6. Calculated maximum Coulomb stress changes on a secondary normal receiver fault along the ITSC caused by a strike-slip source earthquake on the adjacent transform segment with geometry shown in Figure 4B. The maximum change in Coulomb stress is taken from the point on the ITSC where Coulomb stress reaches a maximum value. The results shown are for calculations assuming a tapered slip distribution along the source earthquake.

Figure 5. Calculated maximum Coulomb stress changes on a secondary strike-slip receiver fault caused by a strike-slip source earthquake (geometry shown in Fig. 4A) for source earthquake $M_w = 6.0, 5.5, 5.0$. Note that the vertical scale is different for each panel. All stress calculations were carried out using a three-dimensional boundary-element model, Coulomb 2.6 (Toda et al., 1998), assuming that both the source and receiver faults extend to a depth of 5 km. For each Coulomb calculation, we used a Young’s modulus of 62.5 GPa, a Poisson’s ratio of 0.25, an apparent friction coefficient, μ', of 0.4 (e.g., King et al., 1994), and a tapered slip distribution. Stresses are sampled on a horizontal plane at a depth of 2 km. The maximum change in Coulomb stress is taken directly from the point on the receiver fault where Coulomb stress reaches a maximum value. Calculations were carried out for $L = 1$ to 20 km and $d = 0, 2.5, 5, 10$ km. ITSC—intratransform spreading center.

$M_w = 6.0$
- $d = 0$ km
- $d = 2.5$ km
- $d = 5$ km
- $d = 10$ km

$M_w = 5.5$
- $d = 0$ km
- $d = 2.5$ km
- $d = 5$ km
- $d = 10$ km

$M_w = 5.0$
- $d = 0$ km
- $d = 2.5$ km
- $d = 5$ km
- $d = 10$ km

CONCLUSIONS
Detailed analysis of earthquakes on transform systems at the East Pacific Rise suggests that segmentation geometry plays an important role in how slip is accommodated at fast-slipping oceanic transforms. Results of Coulomb stress models suggest that the length of the ITSC that offsets two transform fault strands will determine whether the adjacent fault segments will interact by static stress transfer. If the ITSC is sufficiently long, the adjacent segments will be decoupled and behave independently of each other. This is particularly important in studies of earthquakes at oceanic transforms, since a long oceanic transform system could be composed of several decoupled fault segments. Moreover, we illustrate that the thermal effect of ITSCs may reduce the thickness of the brittle layer, thus decreasing the potential rupture area and the maximum seismic moment of an oceanic transform fault system. Finally, we suggest that transform earthquakes may have the po-
Figure 7. Coulomb stress models for a teleseismically recorded earthquake (Mw = 5.7, 26 April 2001) on the Siqueiros transform system. Earthquake location is shown by white star on each panel. A: Location map shows the segmentation geometry of Siqueiros. Outlined region indicates area investigated in B, C, and D. B: Bathymetric map overlain by the geologic interpretations (thin white lines) of Fornari et al. (1989). White circles indicate the locations of the 170 aftershocks. C: Calculated Coulomb static stress changes on secondary strike-slip receiver faults with the same dip, strike, and rake as the source earthquake. Source fault parameters from Harvard CMT focal mechanism: strike = 265°, dip = 81°, and scalar moment = 4.49 × 10^{34} dyne·cm. We assume rupture length = 5 km, width = 5 km, and slip = 0.36 m. We used a tapered slip distribution, and stresses were sampled on a horizontal plane at a depth of 2 km. Fox et al. (2001) estimate a lower threshold for earthquakes recorded within the hydrophone array of Mw = 1.0–1.8. The first 45 aftershocks (shown as white circles) occurred within ten hours of the main shock and fall along fault segment S3. The 0.15 bar and 0.05 bar contours are shown as solid black lines. We observe that ~31% of the first 45 aftershocks occurred in regions with stress increases >0.15 bar, and ~56% in areas with stress increases >0.05 bar. D: Calculated Coulomb static stress changes on secondary normal faults dipping 60° and parallel to the ITSC SB. The last 125 aftershocks (shown as white circles) correspond well with predictions of increased normal stress, thus suggesting that they might be associated with normal receiver faults. We observe that ~63% of the latter 125 aftershocks occurred in regions with stress increases >0.15 bar, and ~90% occurred in areas with stress increases >0.05 bar.

ACKNOWLEDGMENTS

This work was supported by an NSF (National Science Foundation) Graduate Research Fellowship (Gregg), NSF grant OCE-0221386 (Smith and Lin), and the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute (Lin). We are grateful for helpful discussions with C. Williams, M. Behn, M. Boettcher, J. Cann, D. Fornari, D. Forsyth, J. McGuire, H. Schouten, and the WHOI geophysics group, and to D. Bohnenstiehl, E.A. Okal, and S. Toda for constructive and insightful reviews.

REFERENCES CITED

Manuscript received 26 August 2005

Revised manuscript received 21 November 2005

Manuscript accepted 22 November 2005

Printed in USA

GEOLOGY, April 2006