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ABSTRACT

Low-order primitive equation and balanced models are compared by evaluating the correlation dimension
of each over a range of Rossby numbers. The models are the nine-component primitive equation model of
Lorenz and the corresponding three-component balance model. Both models display behavior ranging from
stable fixed points and limit cycles to chaotic dynamics. At low Rossby number, the correlation dimensions of
the models are (to the accuracy of the calculation) very similar, even in the presence of strange attractors. At
higher Rossby number, the behavior differs: in some regions where the balance model goes into a limit cycle
the primitive equation model displays chaotic behavior, with a correlation dimension greater than three. This
appears to be caused by the (somewhat intermittent) appearance of gravity waves. Since here the calculated
correlation dimension is higher than the number of slow modes, the gravity waves cannot be slaved to the slower

geostrophic activity.

1. Introduction

The dynamics of the midlatitude troposphere are
characterized by a low Rossby number and by stable
stratification. These features naturally invite attempts
to construct models that a priori incorporate such
structure and are in some sense simpler than the prim-
itive equations. Such models, normally (but not al-
ways) constructed by asymptotic methods, include
quasigeostrophy, semigeostrophy, and various flavors
of “balanced models.” These normally filter gravity
waves and are analytically as well as computationally
more tractable than primitive equation models and,
therefore, allow a great deal more insight into the dy-
namics than is possible using primitive models. Indeed
this, rather than the computational advantages, is per-
haps why they are so attractive. For although semi-
implicit methods for the primitive equations can be
computationally very efficient, clearly much of the de-
velopment of the theory of baroclinic instability would
have been impossible without simpler models.

Nevertheless, the accuracy of such models is of ob-
vious importance, since a simple but incorrect model
is of no use. Indeed, various studies have from time to
time been done to investigate primitive equation mod-
els (PE) and a variety of intermediate models (e.g.,
Gent and McWilliams 1982; Curry and Winsand 1986;
Allen et al. 1990). In these studies various comparisons
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were made between primitive equation (typically shal-
low water) models and the corresponding intermediate
models. A common conclusion is that the balanced
equation (BE) model performs as well as any of the
other intermediate models examined and, over a broad
range of conditions at low to medium Rossby number,
is quantitatively similar to the corresponding PE model.

“Accuracy” should, of course, not only entail how
well a model reproduces various known steady or exact
solutions to the equations, but whether the model can
qualitatively reproduce the behavior of primitive
equation models under a wide range of conditions, in-
cluding unsteady and highly nonlinear flow. The ac-
curate reproduction of the nonlinear transport of heat
and momentum through the growth and equilibration
of a baroclinic eddy would be one such test. When a
fluid is undergoing turbulent, or at least chaotic, mo-
tion, however, it can be rather difficult to compare two
models. Certainly they cannot be quantitatively similar
in detail, for the lack of predictability will soon destroy
that. Rather, one may at the very least require that the
shape of their strange attractors be similar, and a nec-
essary condition for that is that their fractal dimensions
be similar.

To this end, we compare the correlation dimensions
of the attractors of a primitive equation model and a
corresponding balanced model. The models used are
the low-order shallow water model of Lorenz (1980)
(his nine-component model) and the corresponding
balanced model, first derived by Gent and McWilliams
(1982, henceforth GM). [ See also Vautard and Legras
(1986) for a preliminary investigation of fractal di-
mension of the Lorenz (1980) model.] Very long in-
tegrations of both may be performed, enabling rather
robust dimension calculations. The calculation of di-
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mension in a higher-order model would naturally be
of interest. However, since the purpose of this study is
to ascertain whether independent degrees of freedom
corresponding to gravity wave activity exist, it was
deemed appropriate to use the simplest models avail-
able, not only enabling the highest accuracy to be
achieved in the calculations but enabling the results to
be interpreted unambiguously. For example, in a pair
of high-order primitive and balanced models, even if
independent gravity wave modes are excited in the
primitive equation model, the dimension of its attractor
may still be less than the possible number of degrees
of freedom of the balanced model, and hence a di-
mension calculation could not definitively reveal the
presence of independent fast modes.

In this note, we describe the integrations of both
models and the results of a calculation of their corre-
lation dimension over a range of forcing strengths. In
section 2, we describe the models and in section 3 the
algorithms used to calculate dimension. In section 4,
the results are given, and section 5 concludes.

2. The dynamical models
a. The continuous models

The PE model is based on the shallow-water equa-
tions over topography. The governing equations are

A\
%—t—=—(V-V)V——fk><V—sz+vV2V, (2.1)
174
e (V-V)(z—-h)
—(H+z—h)V-V+«V%z+ F, (2.2)

where fis a constant Coriolis parameter, V and z
are the velocity and height fields, H is the average
depth, and 4 is bottom topography. Both velocity and
height fields are damped diffusively with coeflicients v
and «, and the system is forced by a mass source and
sink F(r).

Introducing a velocity potential X and a stream-
function y, the horizontal velocity can be expressed as
V = VX + k X V. The divergence VX and vorticity
V2 equations can then be found along with the cor-
responding height equation to make up the continuous
PE model (see Lorenz 1980). The BE model is ob-
tained by eliminating all terms containing X in the di-
vergence equation, giving

V-(VVY) ~ 3 V(TP VY) + VY = gV, (2.3)
The vorticity and height equations are unaltered.

b. Low-order models

The low-order models consist of spectral represen-
tations of the continuous PE and BE models truncated
to a single triad of wavevectors. Denoting its members
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with the indices (i, j, k), the truncated nondimensional
primitive equations are then given by the nine ODEs
(Lorenz 1980):

a; dx;
—'d—' = a;bi x;x, — c(a; — k)XY«
.r
+ cla; — @)yyxi — 27y
—watxi + a;yi — aiz;, (2.4)
a;d /]
—‘d‘y“ = ~akbix;yx ~ a;b;y;xi
a
+ c(ax — a))y;yx — aixi — voaiyi, (2.5)
dZ,‘
= “he(a = ) = bz — k)it eyizie— hu)

—c(zj — h)yi + goai Xi — xkoa;izi + Fi. (2.6)

The indices (i, j, k) cyclically take the values (1, 2, 3).
The nondimensional parameters appearing here are

t=f"'s )

X=2L%fZx;¢;

Y =2LfZy¢

z=2Lf%g""Zh;¢; [ (2.7)
F=2L%f¢"'2F¢,

vo=L72fy
ko=L%f'

8o = HL_zf_zg y

where all summations run from 1 to 3.

The low-order BE model is obtained in a similar
manner as the PE but using the new divergence equa-
tion (2.3). The result is the diagnostic equation

ayi — 26'2)’ij = a;z;, (2.8)

along with equations (2.5)-(2.6). [Equation (2.8) can
be obtained directly from (2.4) by eliminating all terms
involving x;.]

3. The correlation dimension

Generally speaking, the fractal dimension provides
a measure of the number of independent modes excited
by the system, that is, it gives the minimum number
of coupled nonlinear ODEs necessary to describe the
system (e.g., Mayer-Kress 1987). Typically, the fractal
dimension, d, satisfies a relation of the form

N(r) ~r? as (3.1)

where r is the edge length of an n-dimensional cube,
and N(r) counts the number of points on the attractor
that are inside a given sized cube. For different fractal
dimensions, the exact form of N(r) (that is, the method
of box counting) varies.

r—>20,
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FiG. 1. Plot of log,C(r) vs logyr for the PE model for ¥, = 0.08
using Ny = 150 and Ny, = 15 000. Note that for lower values of
r, external noise and the finite resolution of sampled points can cause
inaccuracies in the slope of the curve (although such affects are not
apparent in this figure), while for higher r, the curve levels off due
to geometrical effects (see text).

In the case of the correlation dimension, », (3.1)
becomes

C(ry~r a r—>0. (3.2)

Here C(r), known as the correlation integral, is given
by

C(r)=

N
N z= or— X — X)), (3.3)

where 6(x) is the Heaviside function defined as
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and N denotes the total number of points X; (i = {1,
2,3, -+, N})in n-dimensional phase space used to
represent the attractor (e.g., Lauterborn and Holzfuss
1986). It can be shown that the correlation dimension
serves as a lower bound for the Hausdorff dimension
(Grassberger and Procaccia 1983).

An efficient algorithm for calculating » is described
by Grassberger and Procaccia (1983). The method ap-
proximates C(r) [see (3.3)] as

Nrer

lim >

Naaa™ o0 Nref j=1

C(r) =

1 Ndata . -
><( Zﬂ(r—iX,-—le)), (3.5)

N data ;-

where Nyar, is the number of data vectors X, i, and Nier
is the number of reference vectors X; (see also Mayer-
Kress 1987). Equation (3.5) differs from (3.3) in that
the double summation has been separated into indi-
vidual summations over the reference vectors and data
vectors. The algorithm uses the fast convergence of the
limit as Nr = oo to justify a finite summation over
N in the calculation of C(r). Typically, Nys < Nyata-

Once C(r) has been calculated for a number of dif-
ferent 7, » is found with the help of (3.2) by plotting
log,r versus log,C(r). Figure 1 shows an example of
such a plot for the PE model, where F, = 0.08 using

Nier = 150 and Ny, = 15 000. For higher values of r,
C(r) levels off due to geometrical effects; that is, r is
so large that the distance calculations in (3.5) exceed
the boundaries of the attractor. Also, for lower values
of r, external noise and the finite resolution of sampled
points cause inaccuracies in C(r) (e.g., Holzfuss and
Mayer-Kress 1986). It is thus preferable, for any given
dataset, to use intermediate values of r when calculat-
ing ».

4. Model comparisons

a. Numerical methods of solution

1 for positive x
8(x) = ’ (3.4) All parameter values were held fixed throughout our
0 otherwise, analysis with the exception of the forcing parameter
\\\\\ B
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FIG. 2. Type of attractors found at different forcing values in the PE and
BE models for initial conditions close to the Hadley solution,
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F,, which had values chosen along the interval [0.01,
0.50]. Strictly, simply taking F; — 0 does not produce
the quasigeostrophic limit. This is achieved by taking
v, the topography, and the Rossby number, and hence
the forcing, to zero simultaneously. A bifurcation se-
quence produced this way could be different from sim-
ply varying the forcing parameter F;. However, for
simplicity we prefer the latter course. Apart from F,,
the parameters were given the values chosen by Lorenz
(1980), namely,

f'=3h, g=10ms™% H=8km,
L = 1080 km, |h| =2 km,
y=k=225X10m?s"".

(4.1)

These imply a 6-day diffusive damping time for 1 and
2 subscripted variables and a 2-day damping time for
subscript 3 variables. The resulting nondimensional
parameters are then

1 3
g0=8> VO_K0_4—8—5
a=a,=1, az=a=23, L (42)
a’> 3
Cz=a‘—7=z, h1=—1,
h2=h3=0, F2=F3:0. y

Numerical integration of both models was done us-
ing a fourth-order Runge-Kutta stepping method and
double-precision arithmetic. We used Ar = 1/13, that
is, 15 min, which is small enough to ensure compu-
tational stability and give an accurate picture of the
attractors (Lorenz 1980). Independent integrations
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were typically run for 2 X 10%, 3.5 X 109, and 5.5
X 10°¢ jterations for each parameter value. After dis-
carding the first 500 000 iterations, data points were
sampled every 100 time steps giving, respectively,
15 000, 30 000, and 50 000 points on the attractors.
Note that the sampling frequency should be chosen
long enough to produce “independent” points and that
a long interval does not in any way preclude the de-
tection of dimensions associated with motion of a
higher frequency. The dimension calculation is sensi-
tive to the space-filling properties of the motion, not
its temporal frequency per se.

For the PE model, numerical integration is straight-
forward; all variables may simply be stepped forward
in time. For the BE, integration is slightly more com-
plicated due to the lack of a differential expression for
X;. Instead, (2.8), (2.9), and (2.11) may be manipu-
lated to obtain a diagnostic expression for x; (see GM ).
Solutions of the BE model are thus found by integrating
y; starting from some initial conditions and then com-
puting x; and z; directly from y;.

b. Model solutions

Models were first run starting from an initial con-
dition chosen very close to the theoretical fixed point
known as the Hadley solution, which lies on the at-
tractor (Lorenz 1980). The Hadley fixed point is found
for the PE model by setting

X1 = — Va1 )1,
i =Fi/aw(1 + a8 + via?), (4.3)
7, = (1 +viatn, T
X2=X3 =) =y3=21=12,=0,
.8 . T , —r—r ———————————
5 (v) Fi=.12 4
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FIG. 3. Projections onto the y,y; plane of points on (a) a “typical” stable limit cycle and (b) a strange attractor for the PE model.
Each graph is made up of 15 000 points representing 2 X 10¢ iterations.
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while for the BE model it is found by setting
n = Fi/awo(1 + a.go),]

(4.4)
n=y=0

(see GM). We perturb this slightly by setting y, = —z,
= —107° for the PE model and y, = —10~° for the BE
model. Phase space trajectories of both systems were
examined as F,; was varied between 0.01 and 0.47.
Model behavior for F; in this range is displayed in Fig.
2, following the format of similar results of GM. For
low values of F, on the interval [0.01, 0.05], solutions
of both models converge to stable fixed points. As F;
is increased from 0.06 to 0.12, this changes to an in-
terleaving between stable limit cycles of various periods
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and strange attractors. Figures 3a and 3b show projec-
tions onto the y»y; plane of points on a stable limit
cycle and strange attractor that are “typical” of both
the PE and BE models for this intermediate forcing
range. As F) is increased further, BE model solutions
tend primarily toward stable limit cycles. These un-
dergo a qualitative change in shape as solutions en-
counter a strange attractor at F, = 0.23 (Figs. 4a,b,c).
Meanwhile, the PE model, after briefly settling down
to stable limit cycles, also finds strange attractors that
persist above F; = 0.24. Curry and Winsand (1986)
suggest that this reappearance of strange attractors in
both the PE and BE models at high F| is the result of
the same bifurcation phenomenon in each model. A
visual inspection of the new PE model attractors ( Fig.

1.6 L SN S S S S S B R E S S S S S S S E N S N S B B R S R B B S S
L (b) F,=.23
1.2

1.0
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) ENLIAON S O D N S B B N S N B N NN B S N B N NN S S B MRS M B St

1 U [N TN SN T T TN VU UUY TR S N T

1 1 1 1 |
? @ % 8§ ° aq v e ® @ 84 ¢ @
I ] ) 1 yz - - - -

-1.8

-14 -
-1.2
-1.0

FIG. 4. Projections onto the y,y; plane of points on attractors of
the BE model for (a) F, = 0.22, (b) F, = 0.23, and (c) F, = 0.24.
Initial conditions are chosen a small distance from the theoretical
Hadley fixed point. Each graph is made up of 15 000 points repre-
senting 2 X 108 iterations.
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5a) additionally shows that the qualitative shape of
these strange attractors is unlike that which is typi-
cally found for lower F; (see Fig. 3b). Specifically,
PE model solutions for high F; undergo intermittent
large-scale oscillations, as well as small-scale “fast”
ones. An example of these can be seen in Fig. 5b, which
shows a time series diagram of y; when F = 0.25. The
obvious persistence of this ““fast” motion even after
large time indicates that gravity wave oscillations in
the PE, at least for high Rossby number, are not a
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transitory phenomenon (see also Warn and Menard
1986). Finally, when forcing is increased even higher,
solutions of the PE and BE models for these initial
conditions blow up at F, = 0.40 and F;, = 0.47, re-
spectively. This property may be related to the fact that
neither of the models conserve energy in inviscid adi-
abatic flow (e.g., GM).

Another initial condition used was such that all
variables were set equal to 0.1. Model behavior for F;
between 0.01 and 0.50 for this initial condition is sum-
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FIG. 5. Projection onto the y,y; plane of points on a strange attractor (a) and a time series
diagram of y, (b), which are characteristic of the PE model at high F, values. Here F; = 0.25
and initial conditions are chosen a small distance from the theoretical Hadley fixed point.
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FIG. 6. Types of attractors found at different forcing values in the PE and BE models
for the initial condition where all variables are set equal to 0.1.

marized in Fig. 6. Solutions behave almost identically
to corresponding solutions for the previous initial con-
dition, with a few exceptions. For low: F;, although
solutions still converge to stable fixed points, another
fixed point in the BE model was occasionally found.
Also, while in the PE model the transition back to
strange attractors at high F) is the same for both initial
conditions, this time stable limit cycles in the BE model
experience their change in shape on the interval 0.24
< F, < 0.25 rather than the interval 0.22 < F; < 0.24.
Finally, neither model blows up for values of F as high
as 0.50.

¢. The correlation dimension

The correlation dimension, », was calculated as in
section 3. Specifically; we used the algorithms of Lau-
terborn and Holzfuss (1986 ) and Holzfuss and Mayer-
Kress (1986), which implement the method described
by Grassberger and Procaccia (1983) for calculating
C(r). After plotting log,r versus log,C(r), a least
squares method was used to fit values of log,C(r) to a
straight line, the slope of which equals ».

For each model, C(r) was computed using 150 ref-
erence vectors ( N,¢) with 15 000, 30 000, and 50 000
data vectors (Ngaa) from initial conditions with all
variables equal to 0.1. The resulting values of » for F,
between 0.01 and 0.50 for the PE and BE models are
graphed in Figs. 7 and 8. The fact that the calculated
value of v did not significantly depend on the number
of data vectors used suggests that the number of points
used to represent the attractors was sufficient. Tests
using 300 and 500 reference vectors also suggested the
same for the number of reference vectors used.

Comparing Figs. 7 and 8, one clearly. sees the sim-
ilarities in the behavior of the attractors of both systems
for F, on the interval [0.01, 0.24]. As F; increases
above 0.25, however, the change in the behavior in the
PE model is also quite apparent. In particular, the
presence of small-scale gravity waves in the PE model
results in a significantly higher value of the correlation
dimension. The fact that for high F, the correlation
dimension for the PE model is consistently greater than

three implies that for higher values of forcing, the
number of independent modes excited in the PE system
is greater than three. For the BE model, however, v,
and thus the number of'excited modes, is, and by virtue
of the model must always be, less than three. More
generally, our comparison shows that for F; < 0.24
the BE model is in close agreement with the PE model,
while for F, = 0.25 it is in disagreement.

5. Discussion

The question at hand was whether the PE model
contained unexcited degrees of freedom and could
therefore be approximated by a smaller number of
ODEs, in particular the BE model. The results of our
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FiG. 7. Correlation dimension as a function of forcing intensity,
F,, for attractors of the PE model with C(r) computed using Ner
= 150 and Ng,. = 15 000, 30 000, and 50 000. Initial conditions are
such that all variables are set equal to 0.1. Note that although points
are connected in our graph, this does not imply that the values of
the correlation dimension change in a continuous manner, and F,
values that are not explicitly plotted here cannot necessarily be in-
terpolated from values that are.
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F1G. 8. As in Fig. 7 for BE model.

analysis can be interpreted as follows: for low to inter-
mediate forcing (0.01 < F; < 0.24) the BE model seems
to be an excellent approximation of the PE model. Not
only do both models possess the same types of attractors
for like values of F;, but the shapes and the correlation
dimensions, v, of these attractors closely correspond.
For higher forcing (F,; = 0.25), however, there are sub-
stantial differences between the behavior of the PE and
BE models (Fig. 9). Namely, the PE model possesses
strange attractors with » > 3, while BE solutions tend
to stable limit cycles with » = 1. The high dimension
of the PE attractors is evidently due to intermittent
bursts of small-scale gravity wave oscillations, which
raise the number of excited degrees of freedom in the
system. These small-scale oscillations are detected only
as transient phenomena for lower F, in the PE model
and are always nonexistent in the BE model, thus re-
sulting in lower dimension attractors in both cases.
For F; = 0.25, the BE model is evidently not a good
approximation of the PE model because it is limited
to possessing attractors for which » < 3, whereas the
PE model possesses attractors for which » > 3 (whether
the PE can be approximated by some other low-order
system possessing less than nine degrees of freedom
remains open). The onset of gravity wave activity in
this model is rather sudden; it would be of interest to
determine whether this feature also occurs in high-order
PE models or if this behavior is an artifact of the low-
order truncation. Note, however, that this activity
points to a difference between a PE model and any
balance model. Even a higher-order balance model, if
indeed balanced, would be unable to capture such phe-
nomena and display a correlation dimension higher
than the number of slow modes (three in this case).

For small forcing (and therefore small Rossby num-
ber), the BE model is clearly a good approximation.
Care should be taken, however, in interpreting our re-
sults as implying the existence of a true slow manifold.
Warn and Menard (1986) found that even at small
values of Rossby number gravity waves existed. Al-
though these were of exceedingly small amplitude,
sometimes up to 10'3 times smaller than the slow mo-
tion, if they are truly independent of the slow motion,
then as real degrees of freedom they would still add to
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the dimension of the attractor. This would appear in
the calculations as a second scaling range at small values
of r in plots such as Fig. 1. To actually include these
effects in an accurate computation of the dimension
of the attractor would, however, require extremely high
precision and an extremely long integration and is un-
fortunately not feasible nor even approachable. Our
calculations will detect fast motion of amplitudes down
three or four orders of magnitude smaller than the slow
motion, so they cannot resolve the small amplitudes
detected by Warn and Menard. It may be possible to
improve accuracy more efficiently than simply count-
ing more points on the attractor by first subtracting
the balanced signal from the total signal and then com-
puting the dimensionality of the remainder, in a similar
manner to the way Warn and Menard first deduced
the presence of small-amplitude gravity waves. It is not
clear, however, whether such a procedure would yield
accurate estimates of the total dimensionality since
once the balanced signal has been subtracted off, it is
not obvious how the independence of any remaining
fast motion could be ascertained.

Finally, our integrations unambiguously do not find
a slow manifold at higher Rossby numbers. Although
it remains a possibility that one exists in the close
neighborhood of the actual system trajectory, it seems
unlikely that it is an attracting manifold since there is
no evidence that the gravity wave oscillations become
weaker over time.

Acknowledgments. This work was funded by the NSF
(ATM 8914004) and the ONR (N00014-90-J-1618).

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 50, No. 15

We are grateful to Peter Gent and, especially, Tom
Warn for their comments and to G. Mayer-Kress for
some dimensionality codes.

REFERENCES

Allen, J. S., J. Barth, and P. Newberger, 1990: On intermediate models
for barotropic continental shelf and slope flow fields. Part It
Formulation and comparison of exact solutions. J. Phys.
Oceanogr., 20, 1017-1042.

Curry, J. H,, and D. Winsand, 1986: Low-order intermediate models:
Bifurcation, recurrence, and solvability. J. Atmos. Sci., 43, 2360~
2373.

Gent, P. R,, and J. C. McWilliams, 1982: Intermediate model so-
lutions to the Lorenz equations: Strange attractors and other
phenomena. J. Atmos. Sci., 39, 3~13.

Grassberger, P., and I. Procaccia, 1983: Characterization of strange
attractors. Phys. Rev. Lett., 50, 346-349.

Holzfuss, J., and G. Mayer-Kress, 1986: An approach to error-esti-
mation in the application of dimension algorithms. Dimensions
and Entropies in Chaotic System—Quantification of Complex
Behaviour, G. Mayer-Kress, Ed., Springer-Verlag, 114-122.

Lauterborn, W., and J. Holzfuss, 1986: Evidence for a low-dimen-
sional strange attractor in acoustic turbulence. Phys. Lett. A,
115, 369-372.

Lorenz, E. N., 1980: Attractor sets and quasigeostrophic equilibrium,
J. Atmos. Sci., 37, 1685-1699.

Mayer-Kress, G., 1987: Application of dimension algorithms to ex-
perimental chaos. Directions in Chaos, Hao Bai-lin, Ed., World
Scientific, 122-147.

Vautard, R., and B. Legras, 1986: Invariant manifolds, quasi-geos-
trophy, and initialization. J. Atmos. Sci., 43, 565-584.

Warn, T., and R. Menard, 1986: Nonlinear balance and gravity-
inertial wave saturation in a simple atmospheric model. Tellus,
38A, 285-294.



