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Abstract. In this second of two companion papers we examined numerical sim-
ulations of lateral dispersion by small-scale geostrophic motions, or vortical modes,
generated by the adjustment of mixed patches following diapycnal mixing events. A
three-dimensional model was used to solve the Navier-Stokes equations and an advec-
tion/diffusion equation for a passive tracer. Model results were compared with theoret-
ical predictions for vortical mode stirring by Sundermeyer et al. (in press), and with
results from dye release experiments conducted over the New England continental shelf
by Sundermeyer and Ledwell (2001) and Ledwell et al. (2004). For “weakly nonlinear”
cases in which adjustment events were isolated in space and time, lateral dispersion
in the model was consistent to within a constant scale factor with the parameter de-
pendence κH ∝
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predicted by Sundermeyer et al. (in press),
where h and L, respectively, are the vertical and horizontal scales of the mixed patches,
∆N2 is the change in stratification associated with the mixed patches, f is the Coriolis
parameter, φ is the frequency of diapycnal mixing events, and νB is the background
viscosity. For mixed patches with horizontal scales of order the deformation radius, the
associated scale factor, which Sundermeyer et al. (in press) assumed to be of order 1,
had an actual value of about 7. A second more energetic parameter regime was also
identified in which vortical mode stirring became strongly nonlinear, and the effective
lateral dispersion was larger. Estimates of the relevant parameters over the New England
shelf suggest that this strongly nonlinear regime is more relevant to the real ocean than
the weakly nonlinear regime, at least under late summer conditions. This suggests that
stirring by small-scale geostrophic motions may, under certain conditions, contirbute
significantly to lateral dispersion on scales of 1–10 km in the ocean.

1. Introduction

Analysis by Sundermeyer (1998) and Sundermeyer and Ledwell
(2001) of a series of tracer-release experiments conducted during
late summer stratification over the New England continental shelf
has shown that isopycnal dispersion on scales of 1–10 km and pe-
riods of 1–5 days cannot be explained by existing models of lateral
dispersion, namely shear dispersion and dispersion by interleaving
watermasses. A similar result was found by Ledwell et al. (1998)
and Sundermeyer and Price (1998) in relation to the North Atlantic
Tracer Release Experiment in the pycnocline of the open ocean; in
that case, internal wave shear dispersion could not account for dis-
persion on scales of a few tens of kilometers and periods of a few
weeks. One explanation for this discrepancy, proposed by Sunder-
meyer (1998) and Sundermeyer et al. (in press) in relation to dye
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release experiments performed over the New England shelf, and by
Polzin and Ferrari (2004) in relation to the open ocean, is that the
observed lateral dispersion on scales of 1–10 km may be explained
by the presence of sub-mesoscale geostrophic motions, or vortical
modes, generated by the adjustment of mixed patches following di-
apycnal mixing events (e.g., Kunze, 2001). In the coastal ocean,
Sundermeyer et al. (in press) hypothesized that a random field of
vortical modes could cause sufficient stirring on these scales to ef-
ficiently disperse a dye patch. In the open ocean it is possible that
vertical shear dispersion associated with the vertical structure of the
vortical modes may also be important, although Sundermeyer et al.
(in press) suggest this is unlikely.

In the present study, we use a numerical model to simulate the
adjustment of mixed patches of fluid following diapycnal mixing
events, and test the hypothesis that lateral dispersion caused by the
resulting small-scale geostrophic motions, or vortical modes, may
lead to significant dispersion on scales of 1–10 km in the ocean. In
particular, we focus on testing the parameter dependence proposed
by Sundermeyer et al. (in press) for scales relevant to the coastal
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Figure 1. Schematic of the adjustment of diapycnal mixing events
and the formation of small-scale geostrophic motions, or vortical
modes. Horizontal lines represent isopycnals, with lenses of well-
mixed fluid superimposed. Lower panels (b & c) show a single
mixing event and the ensuing lateral spreading during the adjust-
ment.

ocean. A companion paper by Lelong and Sundermeyer (this is-
sue; henceforth LS) examines the relaxation of a single diapycnal
mixing event and its effect on lateral dispersion.

a. Overview of Vortical Mode Stirring

The process of lateral dispersion by small-scale vortices caused
by patchy mixing relies on the fact that diapycnal mixing in the
ocean is not uniform in space and time. Rather, it is episodic, con-
sisting of isolated events which are the result of breaking internal
waves (e.g., Phillips, 1966; Garrett and Munk, 1972). The result
of episodic mixing is that localized regions of weak stratification
are generated preferentially in regions of intense mixing. These
low stratification regions result in local horizontal pressure gradi-
ents which cause the well-mixed fluid to adjust laterally, forming
“blini,” or “pancakes” (Figure 1; Phillips, 1966). The process of
adjustment may lead to two types of motions: a slumping velocity
which is directed radially outward, and in the case of geostrophic
adjustment, an azimuthal velocity which is geostrophically bal-
anced. For both types of motions, the net effect of the adjustment
is the same; fluid will be displaced laterally. However, of particular
interest here are the geostrophically balanced motions, since those
can persist for much longer times. For a single event, the lateral
displacement is appropriately described as an advective process.
However, for a large number of events, the sum of the displace-
ments can be thought of as a random walk with rms step size equal
to the rms horizontal displacement averaged over the events, i.e, an
effective lateral diffusivity.

The hypothesis that vortical mode stirring may be important in
the coastal ocean is based on results from dye-release experiments
and microstructure observations made during the Coastal Mixing
and Optics Experiment (CMO; Sundermeyer and Ledwell, 2001;
Ledwell et al. 2004; Oakey and Greenan, 2004). Analysis by Sun-
dermeyer and Ledwell (2001) of the lateral dispersion during these
experiments showed that the observed dispersion could not be ex-
plained by shear dispersion or lateral intrusions. In addition, in all
of the experiments they observed patchiness in the dye distribu-
tions 6–12 hours after injection. Horizontal and vertical transects
through the dye suggest that the patchiness occurred on scales of
0.5–10 m vertically and a few hundred meters to a few kilometers
horizontally. This combined with the short time it took the dye to
evolve from a single coherent streak to a more convoluted/patchy

distribution suggest the presence of some stirring mechanism at
these scales.

In addition to the dye observations, concurrent temperature and
velocity microstructure observations during CMO also showed sig-
nificant patchiness (Oakey and Greenan, 2004; Sundermeyer et al.,
in press). Specifically, microstructure transects showed localized
regions of intense mixing superimposed on a relatively quiescent
background of low diapycnal diffusivities. These regions of high
mixing, which were ubiquitous throughout the data, had vertical
scales ranging from 2–10 m, and horizontal scales ranging from a
few hundred meters to a few kilometers. Furthermore, as shown by
Sundermeyer et al. (in press), at least some of the microstructure
patches were strong enough and long-lived enough to induce order
1 changes in stratification. Both the dye and microstructure obser-
vations were thus consistent with the hypothesis that the observed
stirring of the tracer patch may have been caused by small-scale
motions following diapycnal mixing events.

b. Scope and Outline

While the adjustment of mixed patches may not be the only
source of vortical mode energy in the ocean, in the present study,
we focus on this mechanism as a pathway to lateral stirring. The
scaling results of Sundermeyer (1998) and Sundermeyer et al. (in
press) provide order-of-magnitude estimates of the effectiveness of
stirring by this process. However, the these scaling have not yet
been quantitatively tested; a more precise prediction which includes
a fuller description of the physics is needed. The present study at-
tempts to provide such a description by examining numerically the
effects of vortical mode stirring on a passive tracer.

We concentrate here on scales relevant to the coastal ocean,
specifically those relevant to the CMO study site. For reasons
that will soon become apparent, however, we limit our analysis to
cases in which diapycnal mixing events are relatively infrequent,
and hence the vortical mode field is, as we shall argue, consider-
ably less energetic than in the real ocean. In addition, to balance
the trade-off between numerical tractability and geophysical real-
ism, we employ two numerical techniques to simplify our compu-
tations. First, we artificially increase the Coriolis frequency in our
model by an order of magnitude so as to reduce the ratio of the
buoyancy frequency to the Coriolis frequency, N/f . This allows
us to resolve internal wave motions while still integrating over the
many hundreds of inertial periods required for model spinup. Sec-
ond, we use both Newtonian and hyper-viscosities in our model.
The former provides a tunable viscosity parameter, while the lat-
ter ensures computational stability. With these modifications, (see
Sections 3 and 4 for more details), our goal is to provide a first look
at how the adjustment of mixed patches affects lateral dispersion in
the ocean, and how this dispersion depends on external parameters.
We then relate our findings back to realistic ocean parameter space,
and comment on the implications of our results to the coastal ocean.

The remainder of this paper is organized as follows. In Section 2
we review the geostrophic / random walk scaling of Sundermeyer
(1998) and Sundermeyer et al. (in press). Section 3 describes the
numerical model. In Section 4 we describe the parameters used in
a base case model run. Also in Section 4, we investigate the de-
pendence of κH on relevant model parameters. In Section 5, we
discuss the implications of our results. Section 6 provides a brief
summary and concludes.

2. Theoretical Background

a. Momentum Balance
As a first test to determine whether small-scale vortices caused

by patchy mixing could explain lateral diffusivities observed dur-
ing CMO, Sundermeyer (1998) and Sundermeyer et al. (in press)
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used scale analysis applied to the horizontal momentum equations
combined with a simple random walk formulation to obtain order-
of-magnitude estimates of the effective lateral dispersion due to the
adjustment of mixed patches following diapycnal mixing events.
Specifically, they considered term balances in the x component of
the horizontal momentum equation,

∂u

∂t
+ u · ∇u − fv = −

1

ρ

∂P

∂x
+ νB

∂2u

∂z2
, (1)

where all variables have their traditional meanings, and νB rep-
resents some ambient background viscosity, which may be either
molecular or eddy viscosity representing processes outside the mix-
ing events themselves. Scaling this equation, it follows that,
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where U , and L, represent horizontal velocity and length scales,
respectively, T is a characteristic time scale, h is the vertical scale
of the mixing events, ∆N2 is the change in stratification associ-
ated with the events, and the scaling for the pressure gradient term
has been obtained from the hydrostatic equation. The latter derives
from taking ∂

∂z
of the hydrostatic equation,

∂

∂z

∂P

∂z
= −g

∂ρ

∂z
= N2ρo (3)

and noting that P scales as N2h2ρo. Plugging this into the x-
momentum equation, and further noting that N2 = N2

background +
∆N2, it follows that the horizontal pressure gradient term in (2)
scales as ∆N2h2/L. (Note that ∂P

∂x
gives ∆N2 rather than total

N2 since the background stratification is assumed to be constant
over the scale of the mixed patch.) Finally, dividing (2) through by
fU gives the equivalent non-dimensional form,
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where the Burger number, Bu = h2
∆N2

f2L2 , the Rossby number,
Ro = U

fL
, and the Ekman number, Ek = νB

h2f
.

The above expressions represent the basic momentum balance
associated with the relaxation and adjustment following diapycnal
mixing events. Assuming patches of mixed fluid adjust geostroph-
ically, which based on the relevant time and space scales estimated
by Sundermeyer et al. (in press) appeared to have been the case
during CMO, we envision a classic Rossby adjustment problem.
The buoyancy anomaly induced by diapycnal mixing results in a
horizontal pressure gradient as represented by the first term on the
rhs of (1). If the anomaly is rotationally symmetric in the hori-
zontal, and if the influence of friction is small, this pressure gra-
dient leads to an initial radial spreading of the well-mixed fluid of
order the deformation radius. As this initial adjustment occurs, a
geostrophic flow is established in the azimuthal direction such that
the mixed region rotates anti-cyclonically. Geostrophic adjustment
is not the only possible scenario; ageostrophic adjustment may also
occur (Sundermeyer et al., in press). However, here we focus on
the geostrophic adjustment regime.

b. Geostrophic / Random Walk Scaling

The theoretical scaling of Sundermeyer et al. (in press) pro-
vides a first estimate of how the effective diffusivity by small-scale
vortices caused by patchy mixing might vary with key parame-
ters. They showed that for a series of mixing events, and for a

given vertical diffusivity, there exists an optimal scale of mixing
events for which a maximum effective horizontal diffusivity results.
This maximum diffusivity is predicted to occur when the horizontal
scales of mixing events are comparable to the internal deformation
radius, R = h∆N

f
, and the vertical scales are large enough that

events adjust geostrophically. In that case, the horizontal velocity,
U , associated with the adjustment of the well-mixed fluid scales as

U ≈
h2∆N2

Lf
, (5)

where L is the horizontal scale of the mixing event. Assuming the
displacement associated with this adjustment represents a step in a
horizontal random walk, and that the step size, S, is given by the
geostrophic velocity times the adjustment time scale, T = 1

f
, they

proposed that the step size can be expressed as

S = UT ≈
h2∆N2

Lf2
=

R2

L
. (6)

Writing the effective horizontal diffusivity as the step size squared
times the frequency of events, φ, (i.e., the frequency of taking a
step), it follows that the effective horizontal diffusivity scales as

κH ≈
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Finally, assuming that the buoyancy flux associated with an ensem-
ble of mixing events can be expressed in terms of a diapycnal dif-
fusivity, κz (e.g., Garrett and Munk, 1972),

κz =
1

3

∆N2

N2
h2φ, (8)

and substituting for ∆N2h2 in terms of κz , and for the deforma-
tion radius, R = ∆Nh/f , they showed that the effective horizontal
diffusivity in (7) can be equivalently expressed as

κH ≈
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As discussed by Sundermeyer et al. (in press), the above ex-
pression for κH represents a lower-bound estimate of the effective
lateral dispersion by small-scale vortices, or vortical modes, caused
by patchy mixing. One reason for this is that the above scaling uses
an inertial time scale, T = 1

f
, to estimate the displacement asso-

ciated with an individual event. However, it is likely that longer
lived vortices will continue to displace fluid and contribute to stir-
ring for many inertial periods, until they are eventually dissipated
away (see also LS). Although the stirring efficiency of any individ-
ual vortex likely diminishes after many eddy rotation periods (as
nearby fluid becomes mixed), for Ekman numbers of order 10 or
less, Sundermeyer et al. (in press) argued that the contribution of
a given vortex to lateral stirring should still scale as the diffusion
time scale divided by the inertial period, ( h2

νB
/ 1

f
); hence (7) and

(9) become
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and
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If the diffusion time scale is equal to one inertial period, then
( h2

νB
/ 1

f
) = 1, and (10) and (11) revert to (7) and (9). However, if

( h2

νB
/ 1

f
) > 1, then κH will increase proportionally, as each addi-

tional inertial period that a given anomaly contributes to stirring is
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akin to taking an additional step. While successive “steps” due to a
given anomaly may become progressively less effective compared
to the initial displacements (since no new fluid is being advected),
as we shall show in our numerical simulations, this effect is limited,
at least for Ekman number of order 10 or less.

A second reason that the above expressions for κH may repre-
sent lower bounds is that they do not explicitly account for non-
linear interactions between vortices; rather, they assume that each
step occurs in isolation. The above formulation therefore does not
account for strongly nonlinear interactions between vortices or for
vortex merging, both of which can can have significant effects on
the energy containing scales, and hence can alter the effective hor-
izontal diffusivity, κH . Neither is this effect accounted for by the
addition of the diffusive time scale, ( h2

νB
/ 1

f
), although the latter at

least takes into account the lifetime of individual vortices.

3. Model Description

The major goal of this paper is to test the above theoretical ideas
for vortical mode stirring as they may apply to the ocean. To this
end, we have incorporated into a numerical model the relevant dy-
namics of the adjustment of mixed patches following diapycnal
mixing events, and the resulting lateral dispersion.

a. Governing Equations

We used a fully optimized and parallelized code developed
by Winters et al. (2003) to solve the three-dimensional f -plane
Boussinesq equations and an advection/diffusion equation for a
passive tracer, whose concentration is denoted by C. The model
equations were solved spectrally on a triply periodic domain:

D~u

Dt
+ f î3 × ~u = −

1

ρo
∇P − î3

g

ρo
ρ + ν2∇

2~u + ν6∇
6~u, (12)

∇ · ~u = 0, (13)
Dρ

Dt
= κ2∇

2ρ + κ6∇
6ρ, (14)

DC

Dt
= κ2∇

2C + κ6∇
6C, (15)

where all variables have their traditional meanings. Noteworthy
in our implementation of the model, however, is our use of both
Newtonian viscosity and diffusivity, represented respectively by ν2

and κ2, and hyper-viscosity and hyper-diffusion, represented by
ν6 and κ6. While the former are physically motivated, the lat-
ter are strictly numerical inasmuch as they were designed to af-
fect the smallest scales in both horizontal and vertical directions
in a manner that is independent of grid resolution. The latter is
achieved by normalizing the hyperviscosity by the maximum non-
dimensional wavenumber in the relevant coordinate direction, i.e.,
ν6 = ν′

6/k6
max, where ν′

6 is the more familiar hyperviscosity. (For
grid resolutions of nx = nz = 64, for example, the horizontal
and vertical normalization factors are k6

max = 208 and 5.4 × 1013 ,
respectively. This approach, combined with the wavenumber trun-
cation method of Patterson and Orszag (1971), is used dissipate en-
ergy and tracer variance at the smallest scales. In practice, we use
the ∇6 viscosity and diffusion to ensure computational stability,
while the ∇

2 terms represent background viscosity and diffusivity,
νB and κB (e.g., see equation 1), respectively, which are adjusted
based on dynamical considerations. Note that for most of the runs
reported here, the Newtonian viscous time scale is much shorter
in the vertical than in the horizontal due to the small aspect ratio
of the model domain. Furthermore, hyperviscosity is important at
only the very smallest scales in both the vertical and horizontal.

b. Model Setup

Except where otherwise noted, the simulations described here
used 64 grid points in the vertical, and either (64 × 64) or
(128 × 128) grid points in the horizontal. A number of higher
resolution runs were also conducted using (128 × 128 × 128)

and (256 × 256 × 128) grid points. Typical horizontal and ver-
tical domain sizes were Lx = Ly = 500 m (equivalently Lx =

Ly = 5000 m after N/f scaling; see below and also LS), and
Lz = 12.5 m, respectively. These scales were chosen based on ob-
servational results, as well as considerations of computational sta-
bility and tractability. Specifically, Sundermeyer et al. (in press) es-
timated the deformation radius associated with mixed patches over
the New England shelf to be approximately R = 325 m. A hori-
zontal domain of 5000 m thus can accommodate multiple anoma-
lies across the domain, while avoiding self-interaction of individual
anomalies across the model’s periodic boundaries. The latter con-
ditions are necessary so that multiple anomalies within the model
domain behave as a (quasi) random field of eddies rather than as an
array of regularly spaced eddies across the models periodic bound-
ary conditions. Meanwhile, in the vertical, Sundermeyer et al. (in
press) estimated that the scales of mixing events ranged from about
1–10 m. In most of our simulations we thus used mixing events
of vertical scale h = 1.25 m, since larger vertical scales would
have necessitated even shorter integration time steps. Analogous
to the horizontal, this also allowed multiple anomalies in the ver-
tical, without self-interaction across the model’s periodic vertical
boundaries.

c. Initial Conditions and Forcing

To simulate lateral stirring by vortical motions, the model was
spun up from a state of rest and uniform stratification by injecting
potential energy (PE) in the form of randomly placed Gaussian-
shaped stratification anomalies. This was done by periodically im-
posing a short-lived Gaussian diffusivity profile of the form

κz(x, y, z, t) =
1

∆t

∆N2

N2
z2

oe
−

x2

2σ2
x

−
y2

2σ2
y

−
z2

2σ2
z , (16)

at random locations in the model in the manner described by LS.
Here we choose the variances, σx, σy, and σz to be at least 1/20 of
the overall model domain, so that, for example, in a 64 gridpoint
domain, a Gaussian anomaly profile of width 4σ would be repre-
sented by at least 13 gridpoints in any coordinate direction (Ta-
ble ??). The imposed diapycnal diffusivity was applied to all dy-
namical variables, namely, u, v, w, ρ, and C. The resulting stratifi-
cation anomalies were then allowed to freely adjust to form small-
scale vortical motions plus internal waves. This forcing was in-
tended to represent episodic mixing events caused by a random in-
ternal wave breaking. We made no attempt to explicitly simulate
the turbulent mixing events themselves. Rather, we parameterized
their effect as randomly placed stratification anomalies, or buoy-
ancy flux events. Using this approach, the model was spun up to a
statistically stationary state in which the input of PE and subsequent
conversion to kinetic energy (KE) was balanced by dissipation.

d. Model Tracer / Inferred κH

Passive tracer was released into the model once the flow reached
a statistical equilibrium. The initial condition for the tracer was a
Gaussian streak at the center of the domain oriented with its major
axis in the y-coordinate direction,

C(x, y, z) = e
−

x2

2σ2
x
−

z2

2σ2
z . (17)
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This configuration allowed us to to evaluate lateral dispersion in
the x and z directions, but not the y direction. Note, however, that
since the model is homogeneous and isotropic in x and y, the latter
did not pose any limitation to our analysis, it merely allowed us to
diagnose horizontal mixing coefficients more efficiently.

To ensure that the tracer streak was at least initially well-
resolved in the model, we used the same σx and σz in (17) as for the
density anomalies in (16), namely 1/20 of the model domain. Al-
though this choice of tracer scales also fixes the scale of the tracer
patch relative to the anomaly scale, this does not effect our results
since it is the longer term dispersion acting over the scale of the
domain that determines the lateral diffusivity we are interested in,
and this long-term dispersion is insensitive to the initial condition
after a relatively short time. An additional advantage of maintain-
ing the scale of the dye patch relative to scale of the anomalies is
that when model runs are dynamically similar, this similarity is also
readily apparent in the dye fields.

Effective vertical and horizontal diffusivities in the model were
diagnosed by estimating the time rate of change of the second mo-
ment of tracer in the z and x directions, respectively. For example,
in the x direction,

κH =
1

2

∂σ2
x

∂t
, (18)

where

σ2

x =

R Lx

0
x2Cdx −

h

R Lx

0
xCdx

i2

R Lx

0
Cdx

, (19)

and Lx is the domain size in the x-direction. The expression for
the vertical diffusivity is similar. In the trivial case of no diapy-
cnal mixing events being introduced into the model, the vertical
and horizontal diffusivities would be equal to the explicit diffusiv-
ity, κ2, provided that the Fickian diffusivity term in (14) was much
larger than the hyper-diffusivity term, which it was. Any diffusivity
in excess of this could therefore be attributed to stirring by small-
scale vortices, or vortical modes, caused by patchy mixing.

e. N/f and Viscous Scaling

As in LS, to keep the simulations computationally tractable the
Coriolis frequency, f , was artificially increased by a factor of 10
compared to realistic values in the majority of our runs. The ef-
fect of this was to reduce the ratio of the buoyancy frequency to
the Coriolis frequency, N/f , from a realistic value of approxi-
mately 200 to a more tractable value of approximately 20. This
allowed us to capture the dynamics associated with both of these
time scales, i.e., internal waves and geostrophic adjustment, with-
out having to perform prohibitively long numerical integrations or
use prohibitively small time steps. As described in LS and dis-
cussed briefly in Section 4, this artificial increase in f did not fun-
damentally alter the dynamics of the adjustment of mixed patches
or the resultant vortical mode stirring in our model, provided that
two additional conditions were met. First, in the increased f runs,
we also reduced the horizontal scale of the anomalies, L, so as to
maintain the ratio of the size of the anomalies to the geostrophic
deformation scale R = ∆Nh

f
, and the importance of the nonlinear

advection terms in the horizontal momentum equations. In other
words, considering (2), we held both the Burger number and the
Rossby number fixed. This ensured that the geostrophic displace-
ment associated with adjustment occurred on the same scale rela-
tive to the anomalies, independent of the value of f . A consequence
of this reduced N/f scaling was that all horizontal scales in our
model were also effectively reduced by a factor of 10. Thus, for
example, a realistic horizontal domain size of Lx = Ly = 5000 m
in our model became Lx = Ly = 500 m.

A second condition for dynamical similarity was that we in-
creased viscosity/diffusion so as to hold the ratio of the diffusive
time scale of the anomalies to the inertial time scale, i.e., the Ek-
man number fixed. The purpose of this was to maintain the rel-
ative level of importance (or unimportance) of frictional forces in
both the adjustment and eventual spin down of geostrophic vor-
tices. This meant that the molecular/subgridscale diffusivities in
our model were also scaled compared to realistic values. Specif-
ically, model diffusivities were of order 10 times larger than their
corresponding realistic values (see discussion of viscosity parame-
ter dependence in Section 4e).

The above scalings preserve the dynamics associated with the
generation and decay of vortical modes. However, as noted by LS,
they do not exactly preserve the internal wave field. Nevertheless,
since the internal waves do not themselves contribute significantly
to lateral dispersion, and since interactions between the internal
wave and vortical mode fields are small, this did not significantly
effect the results presented here.

Finally, we note that in the analysis that follows, unless other-
wise indicated, all results are reported in terms of their scaled val-
ues in order to allow direct computation of various quantities from
the scaling. We shall then relate these values back to realistic values
relevant to the coastal ocean in the discussion in Section 5.

4. Results

a. Base Parameters
To illustrate the dynamics of vortical mode stirring and to test

the parameter dependence given by (10) – (11), we now present a
series of model runs for a range of values of external parameters,
including the background stratification, N , the horizontal and ver-
tical scales of mixing events, L and h, the change in stratification,
∆N2, rotation, f , the frequency of mixing events, φ, and subgrid-
scale viscosity and diffusion, ν2 and κ2. We begin by presenting a
base model run, which is representative of the geostrophic scaling
regime described in Section 2. We then examine a variety of runs in
which we vary different parameters in turn and in concert in order
to test the dependence of κH on the above variables.

Model parameters for a typical run in the geostrophic param-
eter regime are listed in Table ??. Values are based roughly on
observations made during the CMO dye-release experiments re-
ported by Sundermeyer and Ledwell (2001) and Sundermeyer et
al. (in press), except that, as described in Section 3, we use an
artificially increased value of the Coriolis frequency; namely, we
use f = 10 × 2Ω sin(40.5oN). Furthermore, for reasons that
will be discussed later, we set the frequency of diapycnal mixing
events, φ, to be small compared with f . (The case of larger φ will
be discussed in Sections 4f and 5.) For realistic values of buoy-
ancy frequency, N , and anomaly height, h, our increased value of
f decreases the deformation radius associated with the anomalies,
R = ∆Nh

f
, from 250 m to 25 m. To maintain fixed Burger and

Rossby numbers, we therefore also decreased the horizontal scale
of the stratification anomalies from L = 500 m to a scaled value
of L = 50 m. We similarly reduced the model domain size from
a nominal realistic value of 5000 m to a scaled value of 500 m.
Finally, in order to maintain the relative importance of friction, i.e.,
fixed Ekman number, we increased the viscosity approximately a
factor of 10 from realistic values, to ν2 = 2.5×10−5 m2s−1. Note
that in order to avoid strongly nonlinear interactions in our model
(see Section 4f), this is slightly larger than the appropriately scaled
molecular value. However, while this is true of the value used in
the base run, a run with a (scaled) value similar to molecular vis-
cosity is included in our analysis of the ν2 parameter dependence
of Section 4e.
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Table 1. Model parameters for base run.

Variable Name Symbol Model Value Scaled Value

Horizontal and Vertical Domain Size Lx = Ly, Lz 500 m, 12.5 m 5 km, 12.5 m
Coriolis Parameter f 9.5 × 10−4 s−1 9.5 × 10−5 s−1

Background Stratification ∂ρ
∂z

0.037 kg/m4 0.037 kg/m4

Interval between Anomalies Tφ 0.05 × 2π
f

0.05 × 2π
f

Anomaly Amplitude ∆N2

N2 1.0 1.0
Anomaly Horizontal Scale L = 2σx, 2σy 50 m 500 m
Anomaly Vertical Scale h = 2σz 1.25 m 1.25 m
∇2 Viscosity ν2 2.5 × 10−5 m2 s−1 2.5 × 10−6 m2 s−1

∇2 Diffusivity κ 2.5 × 10−6 m2 s−1 2.5 × 10−7 m2 s−1

∇6 Viscosity (horizontal) ν6 48 m6 s−1 –
∇6 Diffusivity (horizontal) κ6 48 m6 s−1 –
∇6 Viscosity (vertical) ν6 1.8 × 10−10 m6 s−1 –
∇6 Diffusivity (vertical) κ6 1.8 × 10−10 m6 s−1 –
Model Time Step ∆t 30 s 30 s
Total Model Run Time – 400 × 2π

f
400 × 2π

f

Tracer Injection Time – 100 × 2π
f

100 × 2π
f
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Figure 2. Time series of a) PE anomaly, and b) KE for a typi-
cal model run showing spin-up and equilibration to a statistically
steady state. Injection of model tracer is indicated by arrows and
background shading. Note that negative values of PE anomaly are
an artifact of the vertically periodic boundary conditions and our
method of forcing and do not represent a real extraction of PE from
the system (see text).

b. Spinup and Statistical Equilibrium

Time series of PE and KE for the base run are shown in Fig-
ure 2. The PE time series shows a quasi-steady level of energy
modulated by the injection of anomalies over the course of the run.
Note the negative values of PE are an artifact of the z-periodicity
in the model and the method of forcing, and do not represent a
real extraction of PE from the system. This is because although
stratification anomalies strictly represent a positive buoyancy flux,
anomalies which are injected near the top or bottom boundaries
of the domain (and hence partially wrap around the domain in the
vertical) appear to contribute a negative buoyancy to the total PE
budget. Unfortunately, this effect masks the initial spin-up of PE
from t = 0 to the stationary equilibrium state.

The KE time series shows both the spin up from t = 0 and the
eventual equilibration over the course of the run. Note that the time
scale for spin up is of the same order as the vertical diffusion time
scale for the anomalies, in this case, Tκ = h2/κ2 = 100 ∗ 2π/f .

100 101
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Figure 3. Horizontal KE spectrum for a typical model run show-
ing a spectral shape indicative of isolated vortices. The rapid de-
crease of energy at large wavenumber (small scales) is due to the
wavenumber truncation described in the text.

This is consistent with the idea that the number of anomalies in the
domain at any given time is determined by the diffusive time scale
times the frequency of diapycnal mixing events. Closer inspection
of the time series (not shown; however, see LS) further reveals that
the spin down of individual anomalies is of the same order as the
viscous time scale of the anomalies, Tν = h2/ν2 = 10 ∗ 2π/f .
This suggests that while the KE of individual anomalies is governed
by the viscous time scale, the total KE in the model is controlled
by the diffusive time scale.

The horizontal KE spectrum of a fully spun-up model run is
shown in Figure 3. Particularly noteworthy is the steep spectral
slope, in excess of k−10 for large wavenumbers. A similar spectral
shape was obtained for a single anomaly, except that in that case the
total energy was less (see LS). This is consistent with the isolated
nature of the vortices in this simulation, i.e., the spectrum is sim-
ply the sum of the spectra from individual vortices and associated
internal waves. Simulations in which vortices are not isolated, and
therefore interact nonlinearly, give shallower spectral slopes. This
case is discussed in Section 4f.

c. Evolution of u, v, w, ρ, C

Plan views and vertical cross-sections of velocity, Ertel poten-
tial vorticity (defined as PV =

h“

∂v
∂x

− ∂u
∂y

”

+ f
i

N2

g
, density,
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PV,(u, v)

ρ′

Dye

PV,(u,w)

ρ′

Dye

Figure 4. Rows from top to bottom: Plan views of (1) Ertel PV with (u, v) velocity vectors overlaid, (2) density
anomaly, (3) dye concentration; vertical slices of (4) Ertel PV with (u, w) velocity vectors overlaid, (5) density
anomaly, (6) dye concentration. Time increases from left to right in each row, and is given in terms of number of
inertial periods at the top of the figure. Domain size is 500 × 500 m in plan view, and 500 × 12.5 m in vertical
cross-section.

and dye concentration are shown in Figure 4. Noteworthy are
the positive and negative PV anomalies in the plan views of PV,
corresponding to cyclonic and anti-cyclonic vortices formed by
geostrophic adjustment following diapycnal mixing events. The
presence of both positive and negative vorticity anomalies is re-
quired by conservation of PV, since diapycnal mixing cannot create
or destroy PV, but merely redistribute it across layers (e.g., Haynes

and McIntyre, 1987). Indeed this can be seen in vertical sections
of PV, which show individual anomalies as anti-cyclonic PV cores
bounded by cyclonic PV counter-vortices above and below.

Plan views of density anomaly are similar in character to those
of PV, although the details differ somewhat. Specifically, at the
center of a stratification anomaly, the horizontal density anomaly is
zero while the PV is at its maximum value. This structure is best
seen in vertical sections (Figure 4), which show two-lobe structures
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in the density anomaly, corresponding to three-lobe structures in
PV (see also LS).

Tracer distributions show the evolution of the dye from an ini-
tial Gaussian streak to one that nearly fills the domain in both the
horizontal and vertical by the end of the run. Note that the horizon-
tal deformations of the dye patch occur at the scale of the stirring
vortices. Also, in the vertical, dye concentration shows significant
patchiness caused by horizontal stirring at different depth levels.
Finally, note that in this simulation, the rapid homogenization in
the vertical is due to the explicit background diapycnal diffusivity
in the model, not diapycnal mixing of episodic mixing events. This
is because in this run, we specifically chose φ to be small so that in-
dividual vortices did not interact with one another. A consequence
of this is that the contribution of episodic mixing to the total verti-
cal mixing is also small. As evidenced by Figure 4, however, this
does not necessarily imply that the effect on κH by the anomalies
is small.

d. Estimates of Effective Diffusivities

Effective vertical and horizontal diffusivities in the model were
diagnosed from the growth rate of the second moment of tracer
in the horizontal and vertical using (18) and its vertical analog
(Figure 5). The resulting vertical diffusivity for the base run was
κz = 2.5 × 10−6 m2s−1, which, as expected, was the same value
as the explicit Laplacian diffusivity set in the model (see Table ??).
This shows that, as noted above, the net vertical diffusivity in the
model was set by the explicit background diffusivity, κz , not by
event mixing. The above is consistent with the fact that mixing
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Figure 5. Growth of second moments of model tracer in (a) the
x-direction and (b) the z-direction. Dotted lines represent the 2nd
moments defined by (18), while solid lines indicate the maximum
slope, i.e., the maximum diffusivity. The asymptotic behavior for
large times in the σz is a numerical artifact of model tracer extend-
ing across the model domain in the vertical direction.

events are relatively infrequent in our model compared to realistic
ocean conditions (see also Section 5).

The effective horizontal diffusivity diagnosed from model tracer
in the x direction was κH = 1.6 × 10−3 m2 s−1 (Figure 5). This
was two orders of magnitude larger than the explicit horizontal dif-
fusivity set in the model, and was clearly the result of lateral stir-
ring, not subgridscale diffusive processes alone (see also Figure
4). Comparing this value to the scaling predictions of Section 2 a,
the actual horizontal diffusivity in the model was about 360 times
larger than that predicted by (7) and (9), and about seven times
larger than (10) and (11). This is an important result of this study;
it suggests that the effective horizontal diffusivity predicted by Sun-
dermeyer et al. (in press) holds to within an unknown constant scale
factor, and that for the parameter range examined here, the value of
that factor in (10) and (11) is approximately 7. As we shall now
show, this factor was approximately the same for all the runs exam-
ined here.

e. Parameter Dependence: φ, L, h, N , f , ν2

To determine the dependence of κH on relevant forcing param-
eters, we next varied the different parameters on the right hand side
of (10) and (11), and examined their effect on the effective horizon-
tal diffusivity in the model. In choosing what parameter combina-
tions to examine, numerous factors were taken into consideration
including the complexity and high order of the parameter depen-
dence in (10) and (11), the interdependence of many of the param-
eters on the right hand side of (11), and computational limitations
(domain size traded off with integration time).

Event Frequency (φ): We began with the simplest param-
eter dependence found in (10), the frequency of diapycnal mixing
events, φ. To determine the dependence of κH on φ, a series of
runs was performed starting with the base run described above, and
varying φ to be either larger or smaller. The range of φ spanned
one order of magnitude, with the base run falling approximately in
the middle. A limiting factor in how small we could make φ was
the model integration time; for example, to obtain a robust estimate
of diffusivity for φ× 2π

f
= 1.5 × 10−4 we had to integrate for ap-

proximately 250,000 time steps, which on a dual 1 GHz processor
linux station took approximately 2.5 days. While this integration
time is not prohibitive for any individual run, for the many differ-
ent parameter dependencies we examined, plus the numerous con-
trol simulations (e.g., realistic f/N runs, higher resolution, etc.), the
total number of runs and hence the total number of CPU hours was
well over an order of magnitude larger than this. More importantly,
however, is that the lower the event frequency and/or the higher
the viscosity, the further our simulations get from reality in terms
of the observed values of these parameters. Meanwhile, at the op-
posite extreme, i.e., high event frequency and/or low viscosity, we
encountered a different limitation, namely that simulations ceased
to equilibrate to a statistically stationary state in which a meaning-
ful estimate of diffusivity could be made (see below).

Results for κH vs. φ are shown in Figure 6. For small φ, κH

varied approximately linearly with φ, consistent with (10) and (11).
For larger φ, however, we observed a rapid increase in κH , indicat-
ing a transition to a more energetic, strongly nonlinear parameter
regime. One symptom of this transition was the failure of model
KE to equilibrate to a statistically stationary state. Since in those
cases the rate of tracer dispersal depended on when the tracer was
released, for large values of φ, the meaning of κH was ill defined.
We return to this more energetic regime in Section 4f. Neverthe-
less, an important conclusion we draw from Figure 6 is that at least
in the regime of interest (i.e., low φ), κH ∝ φ.

Viscosity (ν2): We next examined the dependence of κH on
viscosity, ν2. Again a series of runs was performed starting with the
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base run, but this time varying ν2. Again the range spanned approx-
imately an order of magnitude, with the base run falling toward the
high viscosity end. Analogous to the case of low φ, a limiting fac-
tor for high values of viscosity was model integration time, while
for low viscosity it was the failure of the model to equilibrate to a
statistically stationary state.

Results for κH vs. ν2 are shown in Figure 7. For larger ν2, we
found an inversely linear dependence of κH , consistent with (10)
and (11). For low ν2 (high κH ), however, again there was a tran-
sition to more energetic regime with much higher κH . As in the
case of high φ, this transition corresponded to the failure of KE to
equilibrate to a statistically stationary state. Nevertheless, at least
for larger values of ν2, we again conclude that the scaling given by
(10) and (11) appears to be valid, i.e., κH ∝ 1

ν2
.

Coriolis frequency and horizontal event scale (f and
L): As noted above, the remaining parameter dependence of κH

is somewhat more difficult to verify for a variety of reasons. Rather
than examining each of the remaining parameters individually, we
therefore examined them in concert, but still by comparing the re-
sults for κH to the predictions given by (10) and (11). Noting that
R/L appears as a non-dimensional parameter in (11), we began by
examining f and L together so as to hold R/L, or alternatively the
Burger and Rossby numbers fixed.

As our first (f, L) run, we decreased f by a factor of two, and
increased L by a factor of two compared to our base run. If (10)
holds, we would expect κH to increase by a factor of two, since
κH ∝ ( 1

L2 )( 1

f3 ). Indeed our results showed that κH increased by
a factor of 1.8.

As a second check of (f, L), we again decreased f by a factor
of two, and increased L by a factor of two. However, this time,
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Figure 6. (a) Growth of tracer variance and (b) effective lateral dif-
fusivity, κH , caused by vortical mode stirring for a series of runs
with varying frequency of mixing events, φ. In (a), steeper slopes
correspond to higher φ. In (b), the solid curves with circles indicate
model results, while dashed line indicates a linear dependence.

we also decreased viscosity, ν2, by a factor of two. In addition to
the Burger and Rossby numbers, this also held the Ekman number
fixed. If (10) holds, we now would expect κH to increase by a fac-
tor of four, since κH ∝ ( 1

L2 )( 1

f3 )( 1

ν2
). Again we found that our

results were consistent with (10), specifically, κH increased by of
a factor of 4.3.

As a final check of the dependence on (f, L), we performed a
third run with f decreased by a factor of two, and L increased by a
factor of two. This time, however, we additionally decreased both
viscosity, ν2, and the frequency of anomalies, φ, each by a factor
of two, i.e., in addition to the Burger, Rossby, and Ekman numbers,
we held the frequency of mixing events relative to the inertial time
scale fixed. Here (10) would thus predict that κH should increase
by a factor of two, which it did. More importantly, however, as
expected from the non-dimensional form of the momentum equa-
tion, (4), this run was nearly identical to the base run in terms of
the energy, dye variance, and even the details of the vorticity and
dye fields. (Note that in this case we also used the same random
number seed for the anomalies as in the base run.) In other words,
the two runs were dynamically similar after scaling the horizontal
extent of anomalies with the deformation radius, and the viscous
and anomaly recurrence time scales of events with the inertial time
scale. This is consistent with similar findings for the adjustment of
a single anomaly by LS, except that in that case the frequency of
anomalies was not a factor.

Buoyancy frequency and vertical event scale (N and
h): To understand the dependence of κH on N and h, we note
that these two parameters plus vertical viscosity and diffusion are
the only parameters affecting vertical scales in the model. Further-
more, note that by varying N and h in concert (and indirectly, ∆N ,
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Figure 7. (a) Growth of tracer variance and (b) effective lateral dif-
fusivity, κH , caused by vortical mode stirring for a series of runs
with varying Newtonian viscosity ν2. In (a), steeper slopes cor-
respond to lower ν2. In (b), the solid curves with circles indicate
model results, while dashed line indicates a linear dependence.



10 SUNDERMEYER AND LELONG - SUBMITTED TO J. PHYS. OCEANOGR., REVISED DECEMBER 21, 2004:

since we hold ∆N2/N2 fixed), we can again hold the deformation
radius, R, and thus the Burger and Rossby numbers fixed. As a
first test of the dependence on N and h, we therefore increased h
by a factor of two, and decreased N by a factor of two. According
to (10), this should lead to an increase in κH by a factor of four.
Instead, however, the model showed an unbounded growth in KE,
similar to that described above for high φ and low ν2.

We next repeated the same run, but this time we also increased
the viscosity by a factor of four. Based on (10), this should have re-
sulted in the same κH as in the base run, which it did. Moreover, we
found that the results of this run were again dynamically similar to
our base run. This was again as expected from (4), since this choice
of parameters preserves the Burger, Rossby and Ekman numbers,
as well as the frequency of anomalies relative to the inertial time
scale.

f. Weakly Nonlinear vs. Strongly Nonlinear Turbulent
Regimes

Thus far, for low values of κH , the numerical results are con-
sistent with the parameter dependence given by (10). However, for
larger κH resulting, for example, from either high φ or low ν2,
we found that the model transitioned to a more energetic regime in
which κH became very large. Closer inspection of these simula-
tions suggest that in these cases, strongly nonlinear vortical mode
interactions led to a cascade of energy to larger scales and hence an
unbounded growth of KE. To better understand this more energetic
regime, we now briefly examine a simulation similar to our base
run, except that we have increased the frequency of mixing events,
φ, by a factor of 10. The resulting run is typical of what we found
in this strongly nonlinear turbulent regime.

PE and KE time series for the strongly nonlinear turbulent run
are shown in Figure 8. In contrast to the base run (see Figure 2),
model KE in the strongly nonlinear run did not equilibrate; rather
it continued to increase throughout the integration. Corresponding
to this increase in total KE was a particularly large increase in the
amount of energy at large scales. The latter was in turn accom-
panied by an increase in spectral slope at low wavenumbers from
nearly zero in the base run to about k−3 in the strongly nonlinear
case, and a decrease in spectral slope at intermediate wavenumbers
from of order κ−10 in the base run to κ−5 in the strongly nonlin-
ear case (Figure 9, compare also with Figure 3). Noteworthy is the
similarity of these slopes to those reported by previous investiga-
tors in the context of two-dimensional turbulence without and with
coherent structures, respectively (e.g., Basdevant et al., 1981; Ben-
nett and Haidvogel, 1983; Babiano et al., 1985; Maltrud and Vallis,
1991. Such similarity is consistent with the quasi two-dimensional
(i.e., dominantly horizontal) nature of the velocity fields associated
with the vortical mode (see also, LS).

Based on the above runs as well as others not reported in de-
tail here, we have found that the transition to the strongly nonlinear
turbulent regime can be brought about by varying a number of dif-
ferent parameters. A condition which apparently precipitates this
transition is that anomalies are densely populated in space and time,
either by occurring very frequently, or by lasting a long time, or
both. Assuming that the transition threshold is related to the like-
lihood of encounters between individual vortices, we can estimate
the approximate density of anomalies required to enable such inter-
actions. At a minimum, we expect strongly nonlinear interactions
to occur if the ratio of the viscous time scale to the recurrence time
scale of events is greater than or equal to 1, i.e., if anomalies re-
cur at a given location before preceding anomalies have had time
to dissipate,

TνB

1/φ
=

„

h2

νB

« „

3
N2

∆N2

κz

h2

«

= 3
N2

∆N2

κz

νB
≥ 1. (20)

Here νB represents the background viscosity, which we presume
is ultimately responsible for dissipating the anomalies, while κz is
the net diapycnal diffusivity due to episodic mixing (see also Sun-
dermeyer et al., in press). Assuming N2

∆N2 ∼ 1, this occurs when
episodic mixing events contribute significantly to the overall di-
apycnal mixing, i.e., when κz ≥ νB . Note that this condition does
not imply that lateral stirring by small-scale vortices caused by the
relaxation of mixed patches is insignificant, as evidenced by the
results of the previous section.

Refining (20) somewhat, it can be shown on simple geometric
grounds that strongly nonlinear interactions may occur even before
the above threshold is reached, since such interactions can also oc-
cur if anomalies are merely proximate to one another. In practice,
we find from the above runs as well as others not described in de-
tail here, that strongly nonlinear interactions generally occur in our
model for values of φTνB

≥ (0.01 − 0.1).

g. Some Numerical Checks
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Figure 8. Time series of a) PE anomaly, and b) KE for the strongly
nonlinear turbulent run showing unbounded growth in model KE.
(Compare with Figure 2.)
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Figure 9. Horizontal KE spectrum for a strongly nonlinear tur-
bulent model run showing a k−5 spectral slope associated with an
inverse energy cascade (compare with Figure 3). The rapid de-
crease of energy at large wavenumber (small scales) is due to the
wavenumber truncation described above.



SUNDERMEYER AND LELONG - SUBMITTED TO J. PHYS. OCEANOGR., REVISED DECEMBER 21, 2004: 11

As final checks of the predicted parameter dependence and scal-
ing, additional runs were performed to verify both the numerics
and the scaling described above. The first of these checks was to
examine the effect of our reduced N/f scaling, i.e., the use of an
artificially increased f in our model. To this end, we compared
our base run to its unscaled (i.e., realistic f , L, and ν2) analog;
i.e., we decreased f by a factor of 10 back to a realistic value of
9.5 × 10−4 s−1, increased L by a factor of 10 to 500 m, decreased
viscosity by a factor of 10 to 2.5×10−6 m2 s−1, and decreased the
frequency of anomalies by a factor of 10. As described in the previ-
ous sections, this combination of parameter variations maintained
fixed Burger, Rossby, and Ekman numbers, and the frequency of
events relative to the inertial frequency. As predicted by (4), the
model fields were dynamically similar to the base run, i.e., the two
runs were nearly identical after scaling, with only minor differences
attributable to the internal wave field (see LS), provided we used
number of inertial periods as the time metric for comparison rather
than some absolute measure such as seconds, or days. Moreover,
as predicted by (10) and (11), the effective horizontal diffusivity,
κH , increased ten-fold compared to our base run.

As a second check, we verified that our choice of model resolu-
tion did not effect the model dynamics. To this end, we repeated
our base run, but with double the vertical and horizontal grid res-
olution. As expected, the results were identical to our base run,
suggesting that model resolution indeed did not affect our numeri-
cal solutions.

5. Discussion

a. Comparison with Predicted Scaling

The most significant finding of the present study is that model
results were consistent with the theoretical scaling given by (10)
and (11). Specifically, we found that for a wide range of forcing
and viscosity/diffusion parameters, the effective horizontal diffu-
sivity in the model agreed with the predicted scaling to within a
constant scale factor. Based on the results of our numerical simu-
lations, the value of this scale factor, which in the original scaling
by Sundermeyer et al. (in press) was assumed to be of order 1, is
actually about 7. Our results are summarized in Figure 10, which
shows the predicted versus modeled effective diffusivities for all
runs described in Section 4. The figure shows an approximately
linear relationship between the predicted and modeled effective dif-
fusivities that spans almost two orders of magnitude in κH . Thus,
based on our simulations to date, we find that the scaling proposed
by Sundermeyer et al. (in press) appears to be robust, at least in the
weakly nonlinear regime.

As a caveat to the above, we note that formally, our numerical
results do not prove the scaling given by (10) and (11), rather they
merely demonstrate consistence with it. Figures 6 and 7 in partic-
ular make a strong case for the predicted dependence of κH on the
frequency of events, and the background viscosity. However, anal-
ogous plots showing the dependence on f , L, h, and N were not
possible, partly due to the complexity of the parameter dependence
of these variables, and partly due to computational/numerical limi-
tations (see Section 4e). As a result, our tests using different values
of f , L, h, and N do not unambiguously show the dependence of
these variables. For example, by decreasing f and increasing L
and obtaining the expected increase in κH , we have argued consis-
tency with the dependence κH ∝ ( 1

L2 )( 1

f3 ) in (10). However, the
same change in κH could have resulted from a different parameter
dependence, e.g., if instead κH ∝ ( 1

L4 )( 1

f5 ). The most conclu-
sive evidence in support of the predicted scaling is that select com-
binations of the relevant parameters yielded solutions which were

dynamically similar. Since the conditions for dynamical similarity
are prescribed by (1) – (4), and since the theoretical scaling given
by (10) and (11) is derived directly from these expressions, the ef-
fective horizontal diffusivity is constrained by the same dynamics.

Another important point regarding our model results is the im-
plication of the reduced N/f scaling, i.e., our use of an artificially
increased value of f . As noted in Section 3e, in all of our increased
f runs, we also reduced L, and increased φ and ν2 by the same fac-
tor, i.e., tenfold. The purpose of this was to hold the Burger, Rossby
and Ekman numbers fixed. One consequence of this, however, was
that the effective lateral diffusivity by vortical mode stirring in our
model was also reduced by a factor of 10, since according to (10),
κH ∝ ( 1

L2 )( 1

f3 )( φ
νB

). While this reduction in κH is consistent
with the scaling (10) and (11), it also means that in order to com-
pare our model results with realistic ocean values, we must re-scale
the model κH by multiplying by 10 (or 5, in cases where we de-
creased f by a factor of 2 compared to our base run). Doing this,
we find that the values in Figures 6, 7 and 10 correspond to realistic
values of κH ranging from 10−2 to 10−1 m2s−1.

The above values of κH , even after re-scaling, are still consid-
erably smaller than those observed during CMO. This is despite
our use of realistic parameter values wherever possible to force the
model. The reason for this is that even after re-scaling, all our
model simulations had a much lower frequency of mixing events,
φ, and/or a (slightly) higher background viscosity, ν2, than occurs
in the real ocean. The larger culprit here by far was φ. Sundermeyer
et al. (in press) estimated for CMO that the frequency of events at
any given location was on the order of at least once per three days,
or about one per four inertial periods (this assumes a vertical scale
of h = 1.25 m). In contrast, the base run described in the previous
section used a value of approximately one per 3000 inertial peri-
ods. The reason for this choice of φ was that for values larger than
this, the model became strongly nonlinear and hence effective hor-
izontal diffusivities could not be unambiguously determined. This,
admittedly, is a limitation of the simulations and scaling presented
here.

Aside from φ, and in some cases ν2, all other parameter val-
ues in the model were comparable to realistic values either directly
observed or estimated during CMO. Nevertheless, given the unreal-
istically small value of φ used here, the exact relationship between
the present simulations and the real ocean remains speculative. Ex-
trapolating the predicted linear relationship between the frequency
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Figure 10. Predicted versus modeled effective horizontal diffusiv-
ities for all model runs described in Section 4. The dashed line
indicates 1:1 correspondence between predicted and modeled val-
ues, while the solid line is based on equation (10) times a constant
scale factor of 7.
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of events and the effective diffusivity, the scaling given by (10)
and (11) suggest that the use of a realistic value of φ in our model
would increase κH by three orders of magnitude. This would be
more than enough to explain the observed κH during CMO. How-
ever, as described in Section 4f, this scaling breaks down for large
φ and/or small ν2. Specifically, we have found that for values of
TνB

1/φ
≥ (0.01−0.1), the dynamics in the model transition to a more

energetic regime characterized by strongly nonlinear vortical mode
interactions, and a cascade of energy to large scales. Thus, while
the weakly nonlinear scaling may offer some insight, a compara-
ble scaling for this strongly nonlinear turbulent regime is clearly
needed.

b. Weakly Nonlinear vs. Strongly Nonlinear Turbulent
Regimes

As noted above, in the absence of other factors, the cascade of
energy to large scales and the concomitant unbounded growth of
KE in our model lead to a much larger effective horizontal diffusiv-
ity than (10) – (11) predict. However, in the real ocean we speculate
that such an energy cascade could not continue indefinitely, rather
at some scale it must eventually be arrested. In the open ocean,
the Rhines arrest scale, determined by planetary β (e.g., Rhines
1975) limits the inverse energy cascade of geostrophic β-plane tur-
bulence. This scale is likely too large to be of relevance over the
continental shelf, since it is generally comparable to the cross-shelf
scale itself. However, in the coastal ocean other processes such
as shearing or straining by large-scale internal waves or tides may
arrest the cascade by limiting the effective horizontal and vertical
scales of the vortical mode field and making it more prone to vis-
cous dissipation. Preliminary model simulations of a single vor-
tex superimposed on a low mode background internal wave fields
suggest that for sufficiently strong background shears, individual
vortices are indeed effected. However, exactly how this effects the
lateral diffusivity in the case of multiple vortices has not been ex-
amined.

One possible scenario for how the weakly and strongly nonlin-
ear regimes may be related to one another and to the hypothesized
energy arrest is shown schematically in Figure 11. Here the tran-
sition between the two regimes is shown by a sharp increase in
the effective lateral diffusivity at large φTνB

. However, there are
many aspects of this picture which have yet to be verified, includ-
ing the details of the transistion from the weakly to strongly non-
linear regime, and the magnitude of the effective diffusivity in the
strongly nonlinear regime. To make progress on these questions,
future numerical studies will need to address the issue of energy
build-up at large scales; in particular, whether to allow or remove
such energy, and the realism of doing so.

c. A Comment on R/L and Geostrophic Scaling

Regarding the parameter dependence given by (10) and (11), it
is worth noting that the non-dimensional parameter (R2/L2) in-
directly contains an additional parameter dependence that is not
accounted for by our scaling. Namely, as discussed by LS, the
magnitude of the geostrophic velocity generated during the adjust-
ment of a mixed patch depends on the precise value of R/L, not
just its order of magnitude. In particular, LS found that for val-
ues of R/L ≥ 0.1, but still ≤ 1.0, in general (5) over-predicts
the actual vortex velocity that results in our model. For example,
for R/L = 0.5 (the value used in our base run), the actual vortex
velocity was about 3 times smaller than (5) would predict. While
this difference does not have a major impact our results, the diffi-
culty that it presents in our dispersion analysis is that by varying
L in our model runs, say from L = R to L = 2R, geostrophic
scaling implies that the velocity should decrease by a factor of 2,

since U ∼ h2
∆N2

Lf
. In fact, however, the actual adjustment ve-

locity will change by somewhat less than this. This higher order
dependence has not been explicitly taken in account in (10) and
(11), as these expressions simply assume geostrophic velocity scal-
ing for R/L ∼ 1. However, to avoid ambiguity and/or confusion
in the results presented here, we have held R/L fixed in all of our
runs, even as we varied other parameters in our model. Notewor-
thy, however, is that had we used a different value of R/L in our
simulations, we likely would have obtained a different value for the
constant scale factor, i.e., our inferred value of 7 is not necessarily
universal among all values of R/L. Note, that this is not an arti-
fact of our numerical simulations, but rather is simply the nature of
geostrophic adjustment. A more detailed examination of how the
R/L dependence effects κH is left as a topic for future investiga-
tion.

d. An Energy Budget Approach

An interesting implication of episodic (as opposed to uniform)
diapycnal mixing is the simple fact that some of the PE gener-
ated by episodic diapycnal mixing events is converted back to KE
through the process of geostrophic adjustment. As noted by Sun-
dermeyer et al. (in press), in principle, it should thus be possible,
with some assumptions, to estimate the amount of KE in the vor-
tical mode field directly from knowledge of the net buoyancy flux,
or equivalently, the diapycnal diffusivity. We now consider this is
some detail.

Consider a random field of isolated diapycnal mixing events as
discussed in the previous sections. Classic adjustment theory sug-
gests that for a single axisymmetric lens, as much as half of the
available PE (APE) may be released during geostrophic adjustment
(e.g. Garrett, 1984; McWilliams, 1988; Arneborg, 2002). The ex-
act amount will depend on a variety of factors, including the scale
of the initial anomaly relative to the deformation scale, and the
background dissipation rate. For example, an anomaly which is
initially small relative to the deformation radius would lose a much
higher percentage of its APE through adjustment than an anomaly
that was initially of deformation scale. Of the energy released, pre-
vious studies have shown that between 30% and 50% will be con-
verted to KE in the form of geostrophically balanced flow, while
the remaining 50% – 70% will go to generating internal waves, or
be lost to dissipation (e.g., Ou, 1986, McWilliams, 1988). Indeed,
LS have found that this balance bears out in numerical simulations
of geostrophic adjustment of a single vortex.

In total, the above energy partition implies that up to 15% –
25% of the available PE generated through diapycnal mixing may
be converted back into KE in the form of vortical modes. To de-
termine the total KE of the vortical mode field at any given time,
however, we also need to know the rate at which this APE is being
supplied, as well as the decay time scale of the vortical mode field.
Assuming we know the vertical scale of mixing events, h, the fre-
quency of events φ can be inferred from the net vertical diffusivity
caused by the events via (8). Meanwhile, at least in the weakly non-
linear regime, the decay time scale, TνB

= h2

νB
provides a measure

of how long the individual geostrophic vortices will last. Following
Sundermeyer et al. (in press), a rough estimate of the magnitude of
the effective horizontal diffusivity can thus be obtained using the
eddy diffusion formulation of Taylor (1921), i.e.,

κH ≈ TI KE

≈ TI (0.15 to 0.25) × (Production rate of APE) TνB
,

(21)

where (0.15 to 0.25) × Production rate of APE × TνB
represents

the amount of KE generated through geostrophic adjustment, and
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Figure 11. Predicted effective horizontal diffusivity as a function of φTνB
for all model runs described in Section e.

Predicted values have been re-scaled to realistic values based on N/f scaling. The transition to the strongly nonlinear
regime described in the text is shown schematically along with the hypothesized energy arrest. Approximate values
of φTνB

inferred from the CMO dye release experiments (see Sundermeyer et al., in press) are also shown, along
with the respective diffusivities.

the factor TI represents the integral time scale of the motion. As-
suming the production rate of APE is given by the frequency of
diapycnal mixing events, φ, times the APE of individual events,

Production rate of APE = φ ×

„

−
2

3
ρo∆N2h3

«

, (22)

that the buoyancy flux associated with a mixing event can be ex-
pressed in terms of a diapycnal diffusivity per equation (8), and
that the integral time scale, TI , is of order the eddy turnover time,
i.e., a few inertial periods, and substituting into (21), it follows that
the horizontal diffusivity should scale as

κH ≈ (0.9 to 1.5)

„

N2

f2

« „

TνB

1/f

«

κz. (23)

Noteworthy is the similarity between this result and (11), the dif-
ference being that here the factor

“

R2

L2

”

is implicitly assumed to be
of order 1, and the particular the value of the constant scale factor.

6. Conclusions

In this study we examined lateral stirring by small-scale
geostrophic motions, or vortical modes, generated by the adjust-
ment of mixed patches following diapycnal mixing events. A ma-
jor finding of this work is that the parameter dependence predicted
by Sundermeyer et al. (in press) appears to be robust to within a
constant scale factor for what we have termed the weakly nonlinear
geostrophic regime. Specifically, for R/L ∼ 1, the effective lat-
eral diffusivity by vortical mode stirring is generally about 7 times
larger than predicted by (10) and (11). We have confirmed a lin-
ear dependence of κH on the frequency of mixing events, and an
inverse linear dependence on the background viscosity, νB . In ad-
dition, based on a series of runs with varying L, h, f , and N , we
have also found the model results to be consistent with the predicted
parameter dependence for these variables. Finally, we presented
additional arguments for how similar scaling can be obtained di-

rectly from energetics considerations. Noteworthy, is that the latter
provide a means of relating the amount of energy, and hence the
amount of stirring by the vortical mode field, directly to buoyancy
production by turbulent kinetic energy.

A second major finding of this study is that there is an addi-
tional parameter regime that is not well described by the scaling
of Sundermeyer (1998) and Sundermeyer et al. (in press), in which
vortical mode stirring becomes even more energetic. This regime is
characterized by strongly nonlinear vortical mode interactions and
an energy cascade to large scales, which significantly enhance the
effective lateral stirring by vortical modes. A key signature of this
cascade is a characteristic k−3 to k−5 horizontal KE spectrum at
low and intermediate wavenumbers similar to those reported by nu-
merous investigators in the context of two-dimensional turbulence
without and with coherent structures. Based on this and the overall
agreement between the present results and the quasi-two dimen-
sional geostrophic random walk model of Sundermeyer et al. (in
press), we believe that vortical mode stirring in stratified waters
shares many characteristics with two-dimensional turbulence.

The transition between the weakly nonlinear and strongly non-
linear turbulent regime in our model appears to be correlated with
the level of nonlinear interactions between individual vortices. This
transition can be brought about in a number of ways. We hypoth-
esize that a necessary condition for the transition is that mixed
patches must be densely populated in space and time, either by
occurring very frequently, or by lasting a long time, or both. As
a rough approximation, we expect that strongly nonlinear inter-
actions will occur if the ratio of the viscous time scale to the re-
currence time scale of events is greater than or equal to 1, i.e.,
if anomalies recur at a given location before preceding anomalies
have had time to dissipate. Based on simple geometric grounds, we
anticipate that strongly nonlinear interactions may occur even be-
fore the above threshold is reached. In practice, we have found that
nonlinear vortical mode interactions occur in our model for values
of φTνB

≥ (0.01 − 0.1).
As noted in our discussion, the strongly nonlinear parameter

regime, reported on only briefly here, is believed to be quite rel-
evant to the real ocean. An interesting aspect of this strongly non-
linear regime is its inverse energy cascade, which in our numerical
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model leads to an unbounded build-up of energy at large scales.
In the real ocean we hypothesize that there must be some mech-
anism that limits / arrests this cascade, and hence the dispersion.
However, whether or not this is the case has not been thoroughly
investigated, and is the subject of ongoing study.

The existence of a strongly nonlinear turbulent regime for large
values of φTνB

, and the fact that the CMO observations fell within
that regime means that we still cannot say conclusively whether
vortical mode stirring can explain the dispersion observed during
CMO. The most we can assert is that extrapolation of the weakly
nonlinear scaling into the strongly nonlinear regime implies that it
can (see Figure 11). However, we have already shown that these
two regimes behave quite differently. Understanding the strongly
nonlinear regime and any possible energy arrest is thus a critical
next step toward understanding the dynamics of vortical mode stir-
ring, and how the vortical mode field is maintained in the real
ocean. The present results for the weakly nonlinear regime are a
first step toward that goal.
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