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Abstract. In this first of two companion papers, we examine in detail the time-
dependent relaxation of an isolated diapycnal mixing event by means of numerical
simulations, with an emphasis on the energy budget, particle displacements and their
implications for submesoscale oceanic lateral dispersion. The adjustment and disper-
sion characteristics are examined as a function of the lateral extent of the event, L,
relative to the Rossby radius of deformation, R. The strongest circulations and hori-
zontal displacements occur in the regime R/L ≈ O(1). For short times, less than an
inertial period, horizontal displacements are radial. Once the adjustment is completed,
displacements become primarily azimuthal and continue to stir fluid over several to tens
of inertial periods. The cumulative effect of many such events in terms of the effective
lateral dispersion they induce is examined in Sundermeyer and Lelong (this issue).

1. Introduction

Motivation for this two-part study comes from a series of dye-
tracer releases conducted as part of the Coastal Mixing and Op-
tics experiment (henceforth CMO) during late summer stratifica-
tion over the New England shelf. Observed dye patterns revealed,
among other things, significant lateral mixing at small scales tradi-
tionally ascribed to internal waves, which could not be reconciled
with either shear dispersion or dispersion by lateral intrusions (Sun-
dermeyer, 1998; Sundermeyer and Ledwell, 2001; Sundermeyer et
al., in press). A similar result was found during the North Atlantic
Tracer Release Experiment (NATRE) in the pycnocline of the open
ocean (Ledwell et al. 1993, 1998; Sundermeyer and Price, 1998).
Specifically, in that case, observed dispersion on scales of 1-10 km
was 40 times that predicted by internal wave shear dispersion.

Temperature and velocity microstructure measurements taken
during CMO (Oakey and Greenan, 2004; Sundermeyer et al., in
press) showed the presence of patchy regions of intense mixing su-
perimposed on a relatively quiescent background of low diapycnal
diffusivities. It is speculated that these well mixed regions rep-
resent the end-state of random, localized wave-breaking or shear
instability events. These turbulent regions exhibited patchiness on
the same spatial scales as the dye, leading to the conjecture that the
small-scale dye dispersion observed during CMO may have be at-
tributable to the presence of submesoscale vortical motions formed
by the adjustment of such patches under gravity and rotation (Sun-
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dermeyer, 1998; Sundermeyer et al., in press). Similar interpreta-
tions have been used to explain the submesoscale dye dispersion in
the NATRE data (Polzin and Ferrari, 2004).

The physical situation we envision as being responsible for the
creation of isolated density anomalies is as follows: A wave packet
propagates in a stably stratified region, ultimately becomes unstable
to either shear or convective instability (depending upon its intrin-
sic frequency) and breaks. The turbulence generated by the wave
breaking creates a patch of well mixed fluid, a density anomaly,
out of equilibrium with the ambient stratification. Consequently,
a mass adjustment to restore equilibrium takes place. The early
phase of the adjustment is characterized by a gravitational slump,
followed by the emergence of a circulation in response to the Cori-
olis force.

Initially, the energy associated with the density anomaly is en-
tirely potential. During adjustment, some of the available potential
energy is converted to kinetic energy and some is radiated away
as transient inertia-gravity waves. The final adjusted state is some-
times referred to as the geostrophic component, the balanced part of
the solution, or the vortical mode field. The unbalanced component
is then the remainder, i.e., the transient wave field. Cyclostrophic
adjustment may also occur, depending on the size and intensity of
the mixed patch relative to the background stratification. However,
as pertains to the problem of lateral stirring (see Sundermeyer et al.,
in press), the case of geostrophic adjustment is of primary interest
here.

a. Scope and Outline

The idea that localized mixed patches resulting from diapycnal
mixing events can adjust to form submesocale coherent vortices
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was first investigated theoretically by McWilliams (1988; hence-
forth, JCM88). In the same fashion as Rossby (1937, 1938),
JCM88 used conservation laws for mass, angular momentum and
potential vorticity to relate the final adjusted state to the initially
prescribed mass imbalance. This approach is quite powerful since
it bypasses having to solve for the temporal evolution of the flow.
However, it does not provide information about the complicated
transition between initial and final states.

In the present paper, we re-examine the fluid-mechanics prob-
lem posed in JCM88 by solving the initial-value problem numer-
ically in three dimensions. We emphasize the details of the ad-
justment process and, in particular, the stirring ability of the re-
sulting vortices as it relates to small-scale lateral dispersion in the
ocean. We show that in general, as expected, the adjustment con-
sists of two phases: An initial slumping, followed by a longer-lived
geostrophically balanced flow. In the slumping phase, fluid is dis-
placed both radially and vertically. This phase is short-lived, typ-
ically lasting less than an inertial period. In the second phase, a
geostrophically balanced vortex structure develops, comprised of
a central anticyclone sandwiched vertically between two weaker
cyclones. The ensuing flow is characterized by azimuthal displace-
ments lasting several to many tens of inertial periods and is ulti-
mately limited only by viscous effects. Consequently, the balanced
flow induces significantly more lateral dispersion than the initial
slumping.

From an oceanic dispersion perspective, the adjustment of
mixed patches following diapycnal mixing events is of interest be-
cause it provides a mechanism for efficient lateral stirring at small
scales, i.e., horizontal scales of order 0.1 to 1 km, and vertical
scales of 1 to 10 m (e.g., Sundermeyer et al., in press; Polzin and
Ferrari, 2004). From an oceanic energy budget perspective, the
problem is interesting in that it provides an efficient pathway for
available potential energy generated by small-scale turbulence back
into kinetic energy in the form of internal waves and balanced mo-
tions (e.g., Arneborg, 2002).

The goal of our two-part study is to assess the efficiency of lat-
eral mixing by submesoscale vortical motions via numerical simu-
lations. The objective of this first paper is to provide a detailed de-
scription of the adjustment of an isolated diapycnal mixing event.
The cumulative effect of many such mixing events is addressed in
the companion paper (Sundermeyer and Lelong, this issue; hence-
forth SL). The present paper is organized as follows: The problem
is posed in Section 2, and a scaling analysis is given that leads to
a classification of the adjustment as a function of the ratio R/L
(where R is the Rossby radius of deformation and L is the half-
width of the density anomaly). Section 3 describes the numerical
model and the method used to create density anomalies in a man-
ner consistent with diffusion principles. Section 4 begins with a
validation of our numerical strategy of performing simulations in a
dynamically similar but reduced N/f regime. Next, we examine
the stages of adjustment of a density anomaly, and the stirring prop-
erties of a diapycnal mixing event for R/L = 1. We then explore
the energetics of different R/L regimes. Discussion is provided in
Section 5. Concluding remarks are provided in Section 6.

2. Background

We consider the adjustment of a single isolated lens of mixed
fluid superimposed on a background of linear stratification. As
noted above, the patch is presumed to be the end result of diapy-
cnal mixing caused by internal wave breaking. However, we do
not explicitly simulate the turbulence associated with the diapycnal
mixing itself. The density anomaly, or mixed patch, is assumed to

have zero velocity initially. We then allow it to adjust under the
influence of gravity and rotation, and examine the associated ver-
tical and lateral motions, paying particular attention to horizontal
displacements and their contribution to lateral stirring.

Following Sundermeyer (1998) and Sundermeyer et al., (in
press), we define the total buoyancy frequency following a mixing
event as

N2 = − g

ρ0

„

dρ

dz
+

∂ρ′

∂z

«

, (1)

where ρ′ is the perturbation density associated with the anomaly
and ρ(z) is the (initially linear) background stratification. The
change in the local buoyancy frequency between the onset and ces-
sation of mixing is then given by,

∆N2 = N2
background − N2, (2)

where N2
background = − g

ρ0

dρ
dz

is the squared buoyancy frequency of
the background state. In the case of complete mixing, the density
within the mixed patch is uniform with depth and ∆N2 = N2. In
the ocean, however, we expect ∆N2/N2 will generally be less than
1. For a given anomaly strength and size, we define an associated
Rossby radius of deformation,

R =
∆Nh

f
, (3)

where h is the vertical scale over which the stratification is mod-
ified by ∆N , and f is the Coriolis frequency. Based on typical
h and ∆N estimated from mixed patches observed during CMO,
we assume a deformation radius of 250 m (Sundermeyer et al., in
press, estimated an R of about 350 m).

Previous studies of geostrophic and gravitational adjustment
show that the relaxation toward a balanced state includes an ini-
tial radial slumping, accompanied by upward and downward move-
ment of fluid below and above the center of mass of the anomaly
(e.g. Lelong and McWilliams, unpublished results; Stegner et al.,
2003). Once the balanced state is achieved, pressure is expected to
satisfy the hydrostatic relation,
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From this, we obtain a pressure scale based on the anomaly strength
and vertical scale, P = ρ0∆N2h2. In the horizontal, neglecting
viscous forces, the final steady-state balance necessarily involves
Coriolis, inertial and pressure gradient terms. Scaling these terms
in the momentum equation with a velocity scale, U , a horizontal
length scale based on the half-width of the anomaly, L, and the
pressure scale derived above, we have

fuθ +
u2

θ

r
=

1

ρ0
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∂r
(5)
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where, uθ denotes the azimuthal velocity, Ro = U/fL is the
Rossby number, and Bu = (R/L)2 = (h2∆N2)/(f2L2) is the
Burger number. Here the Rossby radius, R, represents the scale
at which stratification and rotational effects become comparable.
Specifically, on scales smaller (larger) than the Rossby radius, strat-
ification (rotation) governs the flow behavior. Thus three distinct
regimes based on the relative magnitudes of R and L can be iden-
tified for the final adjusted state:
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Figure 1. Theoretical (solid) and computed (dashed) density
anomaly after integration over 100 ∆t.

• R/L ≈ O(1): This implies that Ro ≈ O(1) and Ro2 ≈
O(1). The right-hand side (rhs) is balanced by both Coriolis and
nonlinear terms and the velocity scales as

U ≈ fL

2
+

fL

2

p

1 + 4(R/L)2 (6)

This is the gradient-wind regime, sometimes referred to as the non-
linear geostrophic regime.

• R/L � O(1): Then Ro � O(1) and Ro2 � O(1). The
final balance involves the Coriolis term and the pressure gradient
and

U ≈ ∆N2h2

fL
(7)

This is the geostrophic equilibrium regime, sometimes called the
linear geostrophic regime.

• R/L � O(1): Then, Ro � O(1) and Ro2 � O(1). This is
the cyclostrophic regime characterized by a dominant balance be-
tween the nonlinear term and the pressure gradient. In this regime,

U ≈ ∆Nh. (8)

In the limit of very large R/L, the flow responds as if there were
no rotation. All of the initial PE is transferred to the transient wave
field and no steady circulation is set up.

It is these three regimes that we wish to examine numerically,
although we will focus primarily on the case of R/L ≈ O(1).

y

z

active mixing
(a)

(b) (c)

Figure 2. Schematic of (a) modification of background stratifica-
tion by random wave breaking events, (b) well mixed region prior
to collapse, (c) collapse inducing outward and inward radial and
vertical motions, resulting in the formation of an anticyclone and
two weaker cyclones.

3. Numerical Method and Analysis

To examine the adjustment of mixed patches, we use a pseudo-
spectral numerical model (Winters et al., 2003) to solve the three-
dimensional, Boussinesq equations on the f -plane, coupled with an
advection/diffusion equation for density and a passive tracer,

D~u

Dt
+ f î3 × ~u = − 1

ρ0
∇P − î3

g

ρ0
ρ (9)

+ν2∇2~u + ν6∇6~u

∇ · ~u = 0 (10)
Dρ

Dt
= κ2∇2ρ + κ6∇6ρ (11)

DC

Dt
= κ2∇2C + κ6∇6C. (12)

Here ~u, P , ρ, and C denote the 3D velocity, the pressure, den-
sity, and tracer respectively, ν2 and κ2 are Newtonian viscosity
and diffusivity coefficients, and ν6 and κ6 are 6th order hyper-
viscosity and hyperdiffusivity, which are employed for numerical
stability. Noteworthy is our use of both Newtonian and hyper-
viscosity/diffusivity. While the former are physically motivated,
the latter are strictly numerical, affecting only the smallest scales
in both the horizontal and vertical, independent of grid resolution.
This is done by scaling the hyperviscosity by the maximum non-
dimensional wavenumber in each coordinate direction. This, com-
bined with the wavenumber truncation method of Patterson and
Orzag (1971) is used to dissipate energy and tracer variance at the
smallest scales.

a. Initial conditions and model setup

For all cases considered here, the initial condition consists of a
linear background density, ρ(z), on which we superimpose a sin-
gle density anomaly, intended to represent the end-state of turbu-
lent mixing associated with a localized wave-breaking event. A
schematic representation of anomalies of this type and their adjust-
ment is shown in Fig. 2. Again we note our objective is not to
model the dynamics of wave breaking, but rather to focus on the
adjustment of the resulting weakly stratified region toward a bal-
anced state. Details of the flow evolution prior to the formation of
the well mixed patch are not addressed.

Anomalies are introduced into the model by imposing a diffu-
sivity κz(x, y, z) that acts locally in space and time on the mean
density profile. The form of κz is a Gaussian in x, y and z, i.e.,

κz(x, y, z) =
1

∆t
Az2

oe−(x2+y2)/(2r2

o
)−z2/(2z2

o
), (13)

where A is a prescribed amplitude, r0 and z0 are radial and vertical
scales, and ∆t is the time step of the numerical integration, which
is chosen based on numerical stability constraints. Assuming an
initial linear density profile in z, the above diffusivity yields an
anomaly that is approximately z-Gaussian in depth and Gaussian
in x and y, i.e.,

ρanomaly(x, y, z) = Az
dρ

dz
e−(x2+y2)/(2r2

0
)−z2/(2z2

0
). (14)

This shape was chosen to allow comparison with the analytic so-
lution of JCM88, i.e., a two-lobed axisymmetric lens consisting of
positive and negative density perturbations above and below the
center of the anomaly. However, because we impose a diffusivity
in our model rather than the density anomaly itself (this will be par-
ticularly important in SL when we generate multiple mixed patches
and hence also need to mix velocity and tracer), there are slight
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differences between the actual shape of our anomaly and the ana-
lytical form given by (14). These differences are shown in Fig. 1.
Note that although we integrate the above diffusion numerically
over a number of time steps, it is still imposed instantaneously in
our model, since we otherwise freeze the evolution of all model
fields during the mixing event. Also, the density anomalies used
here are not sufficiently steep to develop shocks or bores at their
edges such as those observed in the geostrophic adjustment of den-
sity fronts (e.g. Kuo and Polvani, 1997; Stegner et al, 2003).

In all simulations, boundary conditions are triply periodic. To
avoid having internal waves generated during adjustment propa-
gate back into the domain before the vortex has equilibrated, the
dimensions of our computational domain are chosen as large as
possible compared to the wavelength of the longest radiated inter-
nal wave. Also, in all cases, we limit the time window in which we
conduct our analysis to times before the fastest waves have prop-
agated across the boundaries back into the interior of our model
domain.

b. N/f Scaling

The CMO dye-release experiments (Sundermeyer et al., in
press) and microstructure measurements (Oakey and Greenan,
2004) suggest that a large aspect ratio exists between typical hor-
izontal (0.1 to 1 km) and vertical scales (1 to 10 m) of mixed
patches. To model the adjustment of such patches, it is therefore
necessary to simultaneously resolve length scales spanning several
orders of magnitude, a costly endeavor in any numerical study. In
addition, the adjustment process typically lasts a few inertial pe-
riods (the inertial period T =12-18 hours at mid latitudes), yet nu-
merical stability is ensured only when the buoyancy period (on the
order of minutes to tens of minutes) is well resolved. This requires
a maximum timestep of order tens of seconds. To avoid such high
resolutions and prohibitively long integrations, the simulations pre-
sented here are performed in a regime that is dynamically similar
to the real ocean, but numerically more tractable. This is done by
varying f and L so as to simultaneously increase h/L and decrease
N/f . Namely, whereas typical values of h/L and f/N are of or-
der 0.01, we use a value of 0.1. Decreasing N/f by a factor of 10
effectively reduces the Rossby radius R by the same factor. Mean-
while, decreasing L, and hence increasing h/L by the same amount
maintains the relative magnitude of L with respect to R, thereby
preserving the underlying dynamics. This technique has proven es-
pecially useful in the second part of our study (SL) where the model
spin-up from rest to a statistically equilibrated state can take hun-
dreds of inertial periods, but where time scales of 1/N must still
be resolved. For such long simulations, one must additionally pre-
serve the relative importance of viscous and diffusive forces, i.e.,
the Ekman number, Ek = ν2/(h

2f) (see SL for further details).
From now on, when we refer to reduced N/f calculations, it will be
understood that all relevant dynamical quantities have been scaled
appropriately to maintain dynamical similarity.

c. Lagrangian particle and tracer statistics

To determine net fluid displacements and hence effective stir-
ring during the adjustment of mixed patches, Lagrangian particles
and a passive tracer were released into the model at the beginning
of each run, and tracked for the duration of the simulations. The
initial condition for the tracer was a uniform streak in y through the
center of the anomaly, with a Gaussian profile in x and z. Taking
advantage of the axisymmetry of the problem, floats were placed
at evenly spaced radial and vertical locations in one quadrant of a
vertical plane through the center of the anomaly, and at regular in-
tervals in one quadrant of a horizontal plane through the center of
the anomaly.

In all cases, we report float positions relative to the center of
the anomaly, and displacements relative to their initial positions in

either the vertical or horizontal. Relevant to the problem of lat-
eral dispersion, we define the root-mean-squared (rms) horizontal
displacement of particles,

Drms =
p

〈(xi(t) − xi(0))2 + (yi(t) − yi(0))2〉. (15)

The latter provides a measure of the mean displacement of fluid
parcels about the anomaly, accounting for the fact that after suf-
ficient time some of the particles will execute complete rotations
about the center of the vortex. A complementary measure using the
passive tracer is the horizontal tracer variance,

σx =

R R R

xC(x, y, z) dxdydz
R R R

C(x, y, z) dxdydz
(16)

in the x- (i.e., cross-streak) direction.

d. Energy and energy ratios

For any time, t, during the adjustment process, the total energy
can be broken down into the following component parts,

PE0 = PEv(t) + KEv(t) + PEw(t) + KEw(t) (17)

where PE0 denotes the initial potential energy associated with the
density anomaly, PEv(t) is the potential energy of the balanced
flow, KEv(t) is the kinetic energy of the balanced flow that has been
converted from potential energy, and PEw(t) and KEw(t) are the
potential and kinetic energy of the radiated waves. Actually sepa-
rating wave energy from vortex energy, i.e., balanced from unbal-
anced PE and KE, in our model is not so simple, however, because
wave and vortical eigenmodes do not form an orthogonal basis in
a rotating system (Müller et al., 1986, Bartello, 1995). Neverthe-
less, an approximate separation of the various energy components
is possible when the adjusting flow is non-advecting and is con-
fined to one spatial location (as is the case for our single density
anomaly on the f -plane). In that case, we can define the vortex
energy as that contained within an inner domain centered about the
initial density anomaly once all the waves have radiated away. It
follows that the energy outside that domain can be attributed en-
tirely to the wave field. Again, this method is only approximate.
While outer-domain energies will always be associated with waves,
for short times, inner-region energies cannot be solely attributed to
the balanced component as long as waves are present. Still, as we
shall show, much can be learned from this analysis.

Having distinguished the various energy components, at any
time, t, the fraction of the converted PE transferred to the wave
field can be expressed as,

PEw(t) + KEw(t)

∆PE(t)
= 1 − KEv(t)

∆PE(t)
= 1 − e(t), (18)

where ∆PE(t) = PEv(0) − PE(t). In the case of inviscid adjust-
ment, as t → ∞, the terms on the rhs of (17) asymptote to fixed
values. We can thus define an energy ratio,

e∞ = lim
t→∞

e(t). (19)

The energy ratio, e∞, can be interpreted as an inverse measure of
wave generation (e.g., Kuo and Polvani, 2000), with large (small)
values indicating a weak (strong) wave field relative to balanced
motions. Another good measure of the final vortex strength is the
fraction of the total initial potential energy, PE0, that is converted
to balanced KEv, i.e., the ratio KEv/PE0. The latter is, in effect, a
measure of how much of the initial potential energy is converted to
balanced kinetic energy, i.e., how much energy will be released for
eddy stirring for a mixing event of given size and strength.
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Table 1. Model parameters for Run N/f = 10 and Run N/f = 100

Model parameters N/f = 100 N/f = 10

Domain dimensions Lx, Ly, Lz 5000 m, 5000 m, 25 m 500 m, 500 m, 25 m
Coriolis frequency f 9.5 × 10−5 s−1 9.5 × 10−4 s−1

Buoyancy frequency N 9.5 × 10−2 s−1 9.5 × 10−2 s−1

Rossby radius R = L 250 m 25 m
Vertical scale h 1.25 m
nx, ny, nz 128, 128, 64 128, 128, 64
∇2 viscosity ν2 2.5 × 10−10 m2 s−1

∇2 diffusivity κ2 2.5 × 10−10 m2 s−1

∇6 viscosity ν6 1 × 10−10 m6 s−1

∇6 diffusivity κ6 1 × 10−10 m6 s−1

Figure 3. (a) Temporal evolution of domain-averaged energies.
The inertial period corresponds to 18.4 hours for N/f = 100 and
1.84 hours for N/f = 10.

4. Results

We now examine the adjustment process and its implications
for small-scale lateral stirring, including the energetics of the three
R/L regimes identified in Section 2. Before we proceed, however,
we first verify the validity of our reduced N/f scaling.

a. Validation of reduced N/f calculations

The utility of performing simulations in the modified parameter
regime described above was demonstrated by Lelong and Dunker-
ton (1998a,b) in a numerical study of inertia-gravity wave insta-
bility. To verify that realistic and reduced N/f calculations main-
tain dynamical similarity for our current application, we begin by
comparing the results of two simulations, one performed with a re-
alistic value of N/f = 100, and the other with N/f = 10. In
the reduced N/f case, the horizontal extent of the anomaly rela-
tive to the Rossby radius is matched to that of the more realistic
N/f = 100 case. This ensures that both the Rossby and Burger
numbers are preserved. A list of key model parameters for both
simulations is given in Table I.

To compare the two cases, the temporal evolution of the total po-
tential (PE) and kinetic (KE) energies, normalized by the initial PE,
for both runs are shown in Fig. 3. The corresponding energies are
nearly identical for the first three inertial periods and remain within
a few percent of each other for the duration of the integration. This
suggests that in a globally averaged sense, the two simulations be-
have similarly.

Plots of velocity and density taken at different times through the
center of the anomaly further illustrate the similarity of the two
simulations (Fig. 4). At early times, when the effects of the ad-
justment are limited to the near-field of the anomaly, the overall

structure and amplitude of the velocity and density are nearly iden-
tical. At later times, the near-field (now primarily associated with
the balanced flow) remains similar. By contrast, the far field shows
slight differences in phase and amplitude, more pronounced in the
density field than in the velocity. These small differences occur be-
cause the internal wave dispersion relation does not scale exactly
linearly with N/f . To see this, let ω, k and m denote the wave
frequency, horizontal and vertical wavenumbers in the N/f = 100
case,

ω = ±
p

N2k2 + f2m2

√
k2 + m2

(20)

The corresponding quantities in the N/f = 10 case (denoted with
a subscript r, for ‘reduced’), are

ωr = ±
p

N2k2
r + f2

r m2

√
k2

r + m2
= ±

p

N2k2 + f2m2

p

k2 + (m/10)2
. (21)

Note that the vertical wavenumber is the same for both cases. Also,
in the limit of k � m, i.e., for near-inertial waves, ω and ωr scale
linearly, i.e., in this case,

ωr ≈ 10 ω. (22)

Noting that the above scaling exactly preserves the dynamics asso-
ciated with geostrophically balanced / gradient wind flow, that it ap-
proximately preserves the scaling of low-frequency internal waves
(which are most important to the adjustment process since they
dominate the radiated wave signal), and that any interaction be-
tween the waves (particularly the higher frequency waves) and the
geostrophic component will likely be weak (e.g. Bartello, 1995),
we conclude that the minor differences in the reduced N/f runs are
likely not important to the geostrophic component of the flow and
hence to the evolution of the vortex structure. Indeed, we find the
two simulations agree very well, suggesting that dynamical simi-
larity is achieved as long as the relative magnitudes of all relevant
parameters are preserved. Henceforth, all simulations discussed in
this paper are thus performed with reduced values of N/f .

b. Adjustment of a density anomaly with R/L = 1

Having verified the validity of the N/f scaling, we now ex-
amine in detail the inviscid adjustment of a density anomaly with
R/L = 1. To do this, at t = 0, a mixed patch is generated at
the center of the domain and allowed to gravitationally adjust un-
der the influence of rotation without any further external forcing.
Model parameters for this run are listed in Table 2. The principal
flow characteristics are presented in Fig. 5.

At very early times, the horizontal velocity field is entirely ra-
dial (Fig. 5a), outward in the core of the anomaly and inward above
and below (Fig. 5c). Very shortly thereafter, in less than an inertial
period, the flow begins to respond to the Coriolis force, veering an-
ticyclonically in the central core (Fig. 5b) and cyclonically above
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Figure 4. Comparison of N/f=100 (solid) and N/f=10 (dashed) velocity (top 4 panels) and density (bottom 4 panels).
Panels (a),(e),(c) and (g) are at z/h = 0.64 m above the center of the anomaly, and (b),(f),(d) and (h) at z/h = 6.4 m
are below the center of the anomaly.

and below. Superimposed on these motions are pulsations in both
the horizontal and vertical as waves are generated. Since there are
no external forces to break the symmetry, the adjusting flow re-
tains the radial symmetry of the initially unbalanced state. Concen-
tric wavefronts can be seen radiating away from the anomaly core.
In the vertical, a downward (upward) flow above (below) the cen-
ter of the anomaly is produced in response to the early-time radial
mass convergence (Fig. 5c). Once the waves have radiated away, a
geostrophically balanced flow remains.

The adjusted flow consists of a three-lobed velocity distribu-
tion, a central anticyclone flanked above and below by two smaller,
weaker cyclones, each comprised of primarily azimuthal veloci-
ties. This three-lobed structure is particularly evident in the poten-
tial vorticity distribution (Fig. 5d). Throughout the adjustment, the
density anomaly retains its original functional shape, but decreases
in strength and spreads out laterally. The anomaly undergoes sev-
eral oscillations in both horizontal and vertical directions before
settling down to its final state. Similar pulsations are a feature of
adjusting gravity fronts (e.g. Hallworth et al., 2001; Stegner et al.,
2003).

c. Energy and the Wave-Vortex Partition

The total energy, along with inner (balanced) and outer (wave)
KE and PE are plotted in Fig. 6. Here and in what follows, we de-
fine ‘inner’ as the region delimited by {±Lx/8,±Ly/8,±Lz/8},
or 2.5 times the anomaly scale about the origin. In both regions,
PE and KE remain out of phase with one another and continue to
exchange energy periodically on an inertial timescale. Over 70%
of the initial PE is converted to KE in the first one-half inertial pe-
riod following collapse of the anomaly. After this initial plunge,
PE relaxes back to roughly 60% of its initial value, oscillating with
decreasing amplitude thereafter. Noteworthy is that the equilibrium
level of the inner-region energies can be deduced by temporal av-

eraging well before the adjustment is complete. An exact time at
which the adjustment is considered complete is ill defined (e.g.,
Kuo and Polvani, 1997). However, for our problem, it is sufficient
to note that much of the conversion of available PE to KE occurs
rapidly, on a timescale of order one inertial period.

Additional characteristics of the wave field can be deduced from
the relative sizes of wave KE and PE. For the first half-inertial pe-
riod, outer-domain kinetic and potential energies grow at the same
rate and are comparable in magnitude. This approximate equiparti-
tion suggests that small-scale, high-frequency waves are the first to
leave the inner region. This is consistent with Gal-Chen’s (1983)
conclusions based on group velocity calculations that small-scale
waves are the first to be generated during adjustment. Subse-
quently, after one to two inertial periods, the outer potential energy
achieves a nearly steady-state, while the outer kinetic energy con-
tinues to increase. Overall, roughly 10% of the initial energy is
converted to wave PE and 25% to wave KE. For later times, the
frequency of the dominant wave signal may be inferred from the
ratio of the wave energies. Linear inertia-gravity waves satisfy the
following relation (Gill, 1986),

KEw

PEw
=

ω2 + f2 sin2 θ

ω2 − f2 sin2 θ
(23)

where θ is the angle between the 3D wavevector and the horizon-
tal plane, and the wave frequency ω satisfies the dispersion relation,
(20). The preponderance of KE in the wave field is consistent with a
low-frequency inertia-gravity wave signal. Since the radiated wave
field is unlikely to be monochromatic, θ is not unique. Nonetheless,
we expect that for all values of θ, 1/2 < sin2 θ < 1 and therefore,

f < ω < 1.5f (24)
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Figure 5. Early and late-time phases of adjustment. Panels (a) and (b): Horizontal cross-sections of density field
overlaid with velocity. Only a subregion of the total domain, centered about the initial position of the anomaly, is
shown. Panels (c) and (d): Corresponding vertical cross-sections of velocity superimposed on potential vorticity.
Cross-sections are through the horizontal plane of symmetry and slightly above the vertical plane of symmetry of the
density anomaly.

Table 2. Model parameters for R/L = 1 simulation

Variable Name Symbol Value

Horizontal and Vertical Domain Size Lx, Ly, Lz 500 m, 500 m, 12.5 m
Coriolis Parameter f 9.5 × 10−4 s−1

Background Stratification dρ/dz 0.037 kg m−4

Anomaly amplitude ∆N2/N2 1.0
Rossby radius R 25 m

Anomaly horizontal scale L 25 m
Anomaly vertical scale h 1.25 m

∇2 viscosity ν2 2.5 × 10−10 m2 s−1

∇2 diffusivity κ2 2.5 × 10−10 m2 s−1

∇6 viscosity ν6 1 × 10−10 m6 s−1

∇6 diffusivity κ6 1 × 10−10 m6 s−1

Model timestep dt 30 s
Resolution nx, ny, nz 256, 256, 64

This bounded estimate is in good agreement with the observed fre-
quency of oscillations in our model (e.g., Fig. 6). In contrast to
the wave field, most of the energy in the inner (balanced) region re-
mains in the form of PE, with PE exceeding KE by approximately
a factor of 2. This dominance of PE is a known characteristic of
balanced geostrophic flows (e.g. Gill, 1986).

A time series of e(t) for the R/L = 1 case (and for additional
values of R/L ) is plotted in Fig. 7 (see Section 4e for discussion
of differences associated with different values of R/L). After a few
large oscillations on the time scale of the inertial period, the energy

ratio quickly settles towards an asymptotic value of e∞ ≈ 0.35.
This value is typical of geostrophic adjustment, for which e∞ has
been reported to lie between 0.2 and 0.5, although Ou (1986) de-
rived a theoretical value of e∞ = 1/2 for continuously stratified
geostrophic adjustment, irrespective of initial conditions.

The ratio of the balanced kinetic energy, KEv to the initial po-
tential energy, PE0, for different values of R/L is plotted in Fig. 8.
For this ratio, a maximum value of 25% is achieved for R/L = 1.
As expected, this drops quickly as R/L is either increased or de-
creased, supporting the idea that mixed patches of order the de-
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Figure 6. Time evolution of total energy, and balanced and wave
KE and PE for R/L = 1. All energies are normalized with the
total initial PE.

Figure 7. Energy ratio, e(t), versus time for different values
of R/L. The solid line that asymptotes to 0.35 corresponds to
R/L=1. R/L values for the other lines are the same as in Fig. 8.

formation radius will be most effective at generating balanced mo-
tions, and hence inducing lateral dispersion.

Finally, horizontal kinetic energy density spectra |û|2 and |v̂|2
are shown in Fig. 9. The kinetic energy is primarily concentrated at
scales larger or equal to the Rossby radius, and drops off at smaller
scales, confirming that the adjusted state has larger radial extent
than the initial anomaly. Further discussion of the spectral shape of
the variance and how it relates to the multiple-anomaly case can be
found in SL.

d. Lagrangian Tracer and Particle Displacements

Horizontal trajectories of floats initially positioned at regular ra-
dial intervals through the center of the anomaly and the upper cy-
clone are plotted in Figure 10. Two displacement phases can be
distinguished during adjustment. The first, comprised of both ra-
dial and vertical displacements, is very short, lasting less than an
inertial period. The second, corresponding to the more persistent,
geostrophically balanced azimuthal velocities, begins once the vor-
tex has spun up, and continues for many inertial periods until even-
tually being dissipated by friction. Aside from periodic oscillations
about their equilibrium position, there is no net vertical displace-
ment associated with the second phase.

Analysis of float positions 10 inertial periods into the simulation
(not shown) indicates that maximum outward radial displacements

Figure 8. Fraction of initial energy converted to balanced kinetic
energy, KEv, for several values of R/L.

Figure 9. Kinetic energy density spectra for u (solid) and v
(dashed) at t = 10T . Rossby radius R, which in this case is
equal to L, corresponds to k = 20, where k is a nondimensional
wavenumber.

occur near r/L = 0.75 and are associated with the core of the anti-
cyclone. Above and below this, the formation of a weaker cyclonic
circulation accompanies smaller inward radial displacements. To
conserve mass, these radial motions are necessarily also accompa-
nied by downward and upward displacements of fluid within the
core of the anomaly. This behavior agrees both qualitatively and
quantitatively with the theoretical results of JCM88 (e.g., see his
Figs. 3f and g).

Relevant to the present discussion is that the longer displace-
ment phase that occurs once the vortex has spun up is dominated
by azimuthal displacements. Aside from periodic oscillations about
their equilibrium isopycnals, the floats do not experience any net
vertical or radial displacements in this phase. The largest azimuthal
(i.e., angular) displacements occur for floats whose radial positions
after adjustment are close to L (and hence R), consistent with
the fact that the azimuthal velocity reaches a maximum close to
r/R = 1. Meanwhile, particles closer to 2L from the vortex center
exhibit the largest rms horizontal displacements, as the time it takes
them to complete a single rotation about the vortex is larger. This is
evident in Fig. 11, which shows the rms displacement of a regular
array of particles initially located 1, 2, 3, 4, and 5 deformation radii
from the vortex core. Noteworthy is that the rms displacement of
particles within the anomaly core reaches is maximum of just over
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Figure 10. Float trajectories for 10 floats positioned along x/L =
0 m at t = 0; inviscid case. Top panel represents float trajectories in
the anticyclonic core; bottom panel represents floats situated above
the core in the cyclone. Dots (connected by dotted lines for visual
effect) denote the float positions in inertial period increments.

one deformation radius after a few inertial periods, while particles
situated between 1 and 2 deformation radii from the core, which
have smaller rms displacements initially, tend towards larger rms
displacements, up to 2 deformation radii, at later times. For par-
ticles much more than 2 radii from the core, displacements again
become small as their velocities decay exponentially with increas-
ing radius.

The time it takes a particle to execute one rotation around the
core is readily estimated, given the azimuthal velocity uθ and the
radius of the trajectory. A particle located a distance r from the
anomaly center, will travel 2πr in one revolution. In this particular
run, uθ has a maximum value of 1.6 × 10−3 m s−1 at r = L. It
will thus take approximately 9 inertial periods for fluid parcels at
that location to execute a complete rotation. This is consistent with
the curves plotted in Figs. 10 and 11. Noteworthy, however, is that
immediately above and below the vortex core (e.g., Fig. 10), where
the velocities are weaker, the time it takes to complete a rotation is
even longer. Again, this reinforces our statement that the second
phase, which we call the stirring phase, lasts significantly longer
than the initial (extremely short) radial adjustment phase. Hence, it
has a larger effect on lateral dispersion.

The cross-streak variance of the tracer streak shows behavior
similar to 1 < r/L < 2 rms particle displacements (Fig. 12;
compare with Fig. 11). Specifically, a time series of the tracer

variance shows steady growth throughout the simulation, although
at a slightly decreasing rate at later times. Noteworthy is that the
rate of growth of the variance is many times larger than can be ex-
plained by molecular diffusion alone, i.e., it is clearly the result of
the advection by the vortex, not diffusion.

The above particle and tracer behaviors illustrate two impor-
tant points about stirring by vortices. First, when considering all
fluid parcels influenced by a vortex (i.e., not just those within the
anomaly core, r < R), the rms displacement may increase for mul-
tiple eddy turnover times, not just a single eddy turnover time asso-
ciated with the core of the vortex. Second, given sufficient time, the
rms displacement of all particles effected by the vortex, i.e., those
more than one deformation radius from the core, may eventually
grow to many times the deformation radius.

e. R/L > 1 and R/L < 1 regimes

Up to this point we have examined the adjustment of mixed
patches via the generation of vortical motions and internal waves
for the case R/L = 1. We now briefly explore how the adjustment
differs in cases where R/L > 1 and R/L < 1. In all cases, we
hold the Rossby radius fixed at R = 25 m and vary the horizontal
extent of the anomaly, L. Also, in each case, the horizontal domain
size is adjusted to keep the anomaly’s relative extent constant. All
other parameters are unchanged from the values given in Table 2.
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Figure 11. RMS displacements of a regular array of particles ini-
tially placed 1, 2, 3, 4, and 5 deformation radii from the vortex
center showing the displacement of particles well beyond a single
deformation radius. Time is in inertial periods.
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Figure 12. Tracer variance in the y (cross-streak) direction as a
function of time showing steady growth throughout the simulation.
Time is in inertial periods.
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The results for the R/L > 1 cases can, in general, be interpreted
in the context of the R/L = 1 case, with a few important differ-
ences. An example using R/L = 10 is shown in Fig. 13. First,
since the initial extent of the anomaly is smaller than the Rossby ra-
dius, the anomaly initially slumps without feeling the effect of rota-
tion. As the height of the anomaly decreases, however, the effective
Rossby radius also decreases (recall that R2 = ∆N2h2/f2 and
that ∆N2 scales as ∆ρ/h). Eventually the adjustment approaches
the R/L = 1 case. An important difference, however, is that by
the time the radial displacement becomes comparable to R radius,
much of the available potential energy has already been converted
to wave energy and radiated away. Consequently, the percentage of
the initial potential energy available for conversion to balanced KE
is small, and the resulting circulation (relative to the initial scale of
the anomaly) is weak. For the case in point, the flow loses 90% of
its initial PE in a quarter of an inertial period, while the inner PE
is nearly an order of magnitude weaker than in the previous case
(compare with Fig. 6). Meanwhile, the outer energy is, on average,
equipartitioned between KE and PE, indicating that, in this region,
the signal is dominated by high-frequency waves. The periodic ex-
change between KE and PE in the outer region occurs 10 times
as frequently as in the previous case, i.e., on the buoyancy rather
than the inertial timescale. This, again, is consistent with a high-
frequency wave signal. Also noteworthy in the R/L > 1 case is
that the relative size of radial displacements compared to azimuthal

Figure 13. Time evolution of total energy, and balanced and wave
KE and PE for R/L = 10. All energies are normalized with the
total initial PE. (Compare with Figs. 6 and 14.)

Figure 14. Time evolution of total energy, balanced and wave KE
and PE for R/L ≈ 0.3. All energies are normalized with the total
initial PE. (Compare with Figs. 6 and 13.)

displacements (not shown) is much larger. Consequently, for early
times, displacements during the initial adjustment phase are more
significant than the stirring phase, i.e., radial displacements domi-
nate the dispersion.

Next, we examine an R/L < 1 case, specifically, R/L = 0.3
(Fig. 14). Here, the radial extent of the anomaly exceeds the
Rossby radius, and the flow is primarily dictated by rotational
forces. In this case the flow is characterized by a very slight adjust-
ment, confirming the well known fact that potential energy is hard
to extract from a flow dominated by rotation. Only about 25% of
the initial PE is lost with less than 10% converted to KE of the bal-
anced state. Again, the wave energies suggest that high-frequency
waves are the first to radiate into the outer region, while for longer
times, the wave energy is primarily low-frequency. Since very little
of the initial available PE has been converted to KE, the resulting
vortex is again weak compared to the R/L = 1 case. Both the
R/L > 1 and the R/L < 1 cases thus support the idea that the
most effective conversion to vortex KE, and hence the greatest lat-
eral dispersion will result for R/L = 1.

Finally, comparing the long-time behavior of e(t) for the differ-
ent cases of R/L, we find that in both the linear (R/L < 1) and
nonlinear (R/L = 1) geostrophic cases, it asymptotes to values be-
tween 0.3 and 0.5 (see Fig. 7). In the cyclostrophic (R/L > 1) case
(i.e., weak rotation), e(t) is much smaller, indicating strong wave
radiation. Noteworthy is that for all cases but the cyclostrophic
regime, e∞ appears to be largely independent of initial shape of the
anomaly, although the time it takes for e(t) to reach its asymptotic
limit is much longer for small values of R/L. For R/L = 0.3 and
R/L = 0.1, e(t) undergoes large excursions which eventually con-
verge to 0.5. By constrast, for somewhat larger values of R/L, e∞
is attained within a few inertial periods. Meanwhile, the fraction of
the total initial potential energy, PE0, that is converted to balanced
KEv (see Fig. 8) has a maximum value of 25% when R/L = 1.
As expected, this drops quickly as R/L is either increased or de-
creased. Again, this supports the idea that mixed patches of the
scale of the deformation radius will be most effective at generating
balanced motions, and hence inducing lateral dispersion. Some-
what surprising, however, is how readily this transition occurs as
R/L > 1 or R/L < 1, i.e., R/L � 1 or R/L � 1 is not re-
quired.

f. Comparison with geostrophic scaling

We now examine the velocities associated with the longer-term
balanced circulation, and compare them with values obtained from

Figure 15. Comparison of predicted velocities for geostrophic scal-
ing (dashed), nonlinear geostrophic scaling (solid), cyclostrophic
(dash-dotted) and model-computed velocity (+). Theoretical esti-
mates are based on initial anomaly parameters.
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the scalings given by (6)-(8). Assuming that the final density ex-
hibits the same functional dependence as the initial anomaly (but
with different eccentricity), an expression for the final velocity field
follows directly from (5). In our case, the final velocity exhibits
re−αr2

radial dependence, while its magnitude varies with R/L.
To illustrate this, velocities of the central anticyclone predicted
from the linear and nonlinear geostrophic expressions derived in
Section 2, versus those attained in our numerical simulations for
a broad range of R/L values are plotted in Fig. 15. For all but
a narrow range in which R/L � 1, model velocities are consid-
erably smaller than scaling predictions based on the initial density
anomaly characteristics. Those associated with the final adjusted
state (not shown) agree more closely. This is because over the
course of adjustment, h and ∆N decrease while L increases, and
hence R/L decreases, leading to smaller balanced velocities. Note,
for R/L > 1, the flow is cyclostrophic rather than geostrophic, and
we do not expect geostrophic scaling to hold.

5. Discussion

a. Implications to lateral dispersion

The above energy, velocity, and displacement statistics show a
number of features relevant to the problem of dispersion by the ad-
justment of mixed patches. First, energy ratios, e∞, support the
notion that mixed patches with R/L = 1 are most effective at gen-
erating lateral dispersion since in that case, the ratio of balanced
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Figure 16. Float trajectories for 10 floats positioned along x/L =
0 m at t = 0; viscous case. Top panel represents float trajectories
in anticyclonic core, bottom panel represents floats situated in the
cyclone above the core.

KE vs. initial PE is largest compared to other R/L values. Put
another way, for a given amount of PE, i.e., buoyancy production,
within a mixed patch, the maximal transfer to balanced KE occurs
when the horizontal scale of the mixed patch is of order the defor-
mation radius. Second, both rms particle displacements and tracer
variance in the region of influence of the vortex grow for many, if
not tens, of inertial periods, and hence many times the classic eddy
turnover time. As a result, for longer times, the rms displacement
of all particles influenced by the vortex can be many times the de-
formation radius. Furthermore, the number of particles influenced
extends well beyond those within L and h of the anomaly core.

The latter points in particular suggest that all else being equal,
the rms lateral displacement and hence the effective lateral disper-
sion associated with the adjustment of mixed patches may be con-
siderably larger than would be predicted based on the deformation
radius and eddy turnover time. However, this tendency is signifi-
cantly offset by the fact that the magnitude of the actual vortex ve-
locities following adjustment are considerably smaller than those
predicted from geostrophic scaling based on the initial scale of the
anomaly (see Fig. 15). A major lesson we draw from this is that any
number of factors could either increase or decrease the actual dis-
placements and hence the dispersion generated by the adjustment
of mixed patches compared to simple scaling estimates. Simula-
tions such as the ones presented here and in SL, which include a
more complete description of the relevant dynamics, are therefore
necessary to evaluate these competing factors.

b. Viscous Effects

In the above analysis, we have concentrated solely on the prob-
lem of inviscid adjustment of mixed patches. Ultimately, however,
the total displacement resulting from the generation and eventual
decay of a vortex also depends on processes acting on very long
timescales, namely dissipative forces. To underscore this point, a fi-
nal simulation was run similar to our R/L = 1 base run, but with a
larger, more realistic (scaled) viscosity value of 1.0×10−5 m2 s−1.
Resulting displacements are shown in Fig. 16. As anticipated, for
the first 1 to 2 inertial periods the trajectories are indistinguishable
from the inviscid case. Subsequently, however, the effects of vis-
cous damping become evident. In both the core anticyclone and
in overlying cyclone, net azimuthal displacements are significantly
smaller than in the inviscid case. Comparison of Figs. 10 and 16
also shows that viscosity damps out the smaller oscillatory excur-
sions due to internal waves. As will be shown in SL, this damping
of azimuthal displacements can significantly reduce the overall lat-
eral dispersion by adjusting mixed patches.

6. Conclusions

Numerical simulations of the time-dependent adjustment of a
density anomaly have shown that for anomalies of a given ampli-
tude, the ones with dimensions R/L = 1 are the most efficient
generators of balanced vortical motions. In this case, the vortices
produced are efficient at stirring fluid over long periods of time. By
contrast, for R/L < 1, rotational effects dominate the adjustment
process and very little of the initial available potential energy is
converted to kinetic energy. Consequently, for a given amount of
available PE, the vortices produced are weaker and do not generate
as much stirring. Finally, when R/L > 1, much of the poten-
tial energy is converted to wave energy during the initial stages of
the adjustment, and the resulting vortex, if it forms at all, is again
weak. It is not clear, at this point, whether the preponderance of
R/L ≈ O(1) structures in the CMO and concurrent microstructure
datasets means that most adjusting features tend to have dimensions
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in that regime. It may be that these features are the most likely to
be observed precisely because they are the most robust and able to
withstand dissipative effects. A careful study of the dynamics of
wave-breaking events would help in answering this question.

Regarding Lagrangian and particle displacements associated
with the adjustment of mixed patches, we draw the following
lessons. First, given sufficient time, the rms displacement of par-
ticles, as well as the variance of a passive tracer in and around
the vortex, may be many times the local deformation radius, R =
∆Nh/f , associated with the mixed patch. Second, because fluid
parcels far from the anomaly core can take many, possibly even
tens, of inertial periods to complete a single rotation about the vor-
tex, such displacements may occur over time scales many times the
conventional eddy turnover time. Third, balanced velocities associ-
ated with fully adjusted mixed patches may be many times smaller
than predicted based on geostrophic and/or cyclostrophic scaling
using the initial scales of mixed patches. The latter is a result of the
increase in the aspect ratio (horizontal:vertical) of mixed patches
that occurs during the adjustment. Finally, viscosity does not sig-
nificantly inhibit the initial adjustment of mixed patches but tends
to arrest motions associated with the balanced state, including az-
imuthal displacements, which are primarily responsible for lateral
displacements. Thus, thus limits the overall lateral dispersion by
these events.

The above characteristics have significant implications to the
overall dispersion by the adjustment of mixed patches following
diapycnal mixing events. In the present study, we have attempted
to highlight which of these are well predicted by theory, and which
are not. In summary, we conclude that there are numerous factors
that can affect the ultimate rate at which fluid parcels are stirred by
the adjustment of such events. In some cases, simple scaling argu-
ments would underpredict the resulting dispersion, while in other
cases they would overpredict it. Whether models such as the one
presented here and in SL incorporate enough of the relevant dy-
namics to enable an accurate prediction of the actual dispersion by
the adjustment of mixed patches remains to be tested in the field.
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