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Finiteelementsimulationof theelectromagneticfieldsin complexgeologicalmediais commonlyusedin interpretmg
field data. In this paper,recent,major improvementsto finite elementmethodologyare outlined.The implementation
of a moving finite elementtechnique,in which the meshnodesare allowed to moveadaptivelyto achieveanaccurate
solution, is described.Efficient matrix solutions basedon incomplete factorization and matrix ordering are also
discussed;theseofferorderof magnitudereductionsin memoryrequirementsandincreasesin executionspeed.Finally,
theadvantagesof adaptingfinite elementcodesto modem supercomputersareemphasized.Thesetopicsareillustrated
by formulatinga moving finite elementforward model for thetwo-dimensionalmagnetotelluricproblem.The result is
validatedby comparisonwith standardcontrol models. While preliminary in nature,the resultdoesindicate that
substantialimprovementsto geophysicalmodeling canbeachievedthroughtheuseof modemapproaches.

1. Introduction years for the numericalsimulation of EM prob-
lems. Examples include the use of FE to model

The experimental state-of-the-artin electro- magnetotelluric (MT) fields in 2-D structures
magneticgeophysicsis currently in a conditionof (Coggon, 1971; Lee and Morrison, 1985; Rodi,
rapid evolution.This is owing in largepart to the 1976; Wannamakeret a!., 1987), and standard
digital revolution,which hasmadereliable,porta- computer codesfor this purpose are becoming
ble instrumentationwidely availableandincreased available (e.g., Wannamakeret al., 1985). How-
the utility of advanceddata-processingmethods, ever, FE modelingwith eithermorecomplex(i.e.,
evenin the field. However,thecapabilityto model controlled) sources or 3-D structures has not
and interpret data in terms of electrical or geo- provenas satisfactory to date (e.g., Pridmoreet
logic structurehas laggedbehind.This poses the al., 1981), and other approaches,especially in-
singlelargestobstacleto the further development tegral equationmethods,are in more generaluse.
and wider application of electromagneticprinci- The advantagesof the FE methodinclude flexibil-
pies in geophysics. ity and a capability to handlecomplex structures

The finite element(FE) method,amongseveral in a straightforwardmanner.The principal disad-
others,hasreceivedincreasingattentionin recent vantage is the needfor relatively extensivecom-

putingresources,especiallystorage.This hasmade
* Presentaddress:AT&T Bell Laboratories,600 Mountain FE somewhatdifficult to implement on small

Ave., MurrayHill, NJ07974, U.S.A. computers.
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Major improvementsto 2-D and 3-D electro- where the symbolshavetheir usualmeaning.The
magneticmodelingcodescanbemadeby incorpo- role of electricchargein (1)—(3) is often confused.
rating recent advancesin FE methodologyand By removing the displacementcurrentto give (3),
numericalalgorithmswhich takefull advantageof phenomenawith time-scalesshorter than that of
the structureinherentin FE matrices. First, the EM diffusion are filtered out, and chargeappears
moving finite element(MFE) methodincorporates to travel instantaneously.Electric chargeis still
adaptively moving nodesinto the FE equations, present,usually in associationwith conductivity
substantiallyincreasing the accuracythat is oh- gradientsor discontinuities,andits fields are quite
tamable with a given size mesh. Second,while important.This is especiallytrue in 2-D and 3-D
most MT modelingcodesuse Gaussianelimina- structures,and chargeaccountsfor many of the
tion or LU decompositionto solve the resulting important differences between simple 1-D and
matrix equations, considerably more efficient higher-dimensionalrealizations.
methodsbasedon incompletefactorization(~ehie For a 2-D structure in which a and p~are
and Forsyth, 1984) are now available. This ap- independentof the ~ co-ordinate,it is well known
proachresultsin an order of magnitudereduction that the electromagneticfields separateinto two
in memory requirements,as well as a large in- independentmodesif the sourcesare also free of
creasein execution speed. Finally, while these ~ dependence.The first of these is called the
tools will yield markedly better performanceon E-polarization or transverseelectric (TE) mode,
conventional,scalarcomputers,the vector archi- and is completelydescribedby the field compo-
tectureof modernClassVI or VII supercomputers nents E~,B~,and B~.The secondcaseis called
canyield additional speedimprovementsof up to the B-polarization or transversemagnetic(TM)
a factorof severalhundredwith properlydesigned mode,andinvolvesonly the B~,E~,andE~fields.
algorithms. Following Rodi (1976),andassuminge’”” depen-

In this paper, the formulation of a 2-D MFE dencefor all variables,the vectorMaxwell equa-
forward codefor MT modelingis described.The tions (1)—(3) reduceto the genericscalarset
emphasisis placed both on the MFE formalism a i + ~ j + yv = 0 (4
and its implementationusing modern numerical
techniques.The code is validatedby comparison ~V± ‘qJ = 0 (5)
to standardcontrolmodelsproposedby Weaveret a ~ + ~ = 6
al. (1985, 1986). This result is consideredas an
intermediateone by the authors,and can be im- which may be combinedto give the second-order
proved by using more sophisticatedbasis func- partial differential equation
tions, triangular elements, and similar enhance-
ments.Ultimately, MFE will be usedboth in the a~(a~v/~)+ a~(a~v/~)— yV= 0 (7)
developmentof a regularizedinversionmethodfor wherethe variablesfor the two modesare
2-D MT dataand as a step toward a fully 3-D TM TE
modelingcode. V Br/fL E~

J —E~ B~/1s
2. Governing equations I E~ — Br/ft

s~ a

The physicsof electromagneticinduction is de- ‘y — a

scribed by the Maxwell equationsin the quasi-
static or pre-Maxwell limit, in which the magnetic At horizontalcontactsbetweenmedia of different
effect of displacementcurrentis neglected conductivity or permeability, the quantities V,

v . B = 0 (1) ~V/i~, and a~vare continuous,while at vertical
v x E + a B = 0 contacts,V. a~v,and are continuous.EM1 ~ ~‘ induction in a 2-D mediumis governedby two
v x (B/jz) — aE= 0 (3) independentscalar equations for the principal
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fields E~and B~.The auxiliary fields E~,E2, B~, meshFE, wherethe nodespacingmustbe chosen
and B2 are obtainedfrom (5) and (6). Note also ahead of time to yield the required accuracy
that the TE modeinvolves an electric field which throughoutthe solution region. More modernpre-
is always parallel to changesin the conductivity, dictor—correctoralgorithmsare far moreefficient,
and hence involves no electric charge. This is varying the step size and order locally to achieve
manifest in the absenceof terms involving the an accuratesolutionwithout usingexcessivecom-
conductivity gradientin the TE form of (7). By puter time. This is analogousto MFE, and can
contrast, boundary charge is important in de- handle more complicatedequationsin an auto-
termining the behaviorof the TM mode electric matic fashionwith a substantialreductionin com-
field. Theeqns.(4)—(7) maybesimplified for most puterrun-time. The MFE methodwas introduced
real Earth problemsby taking fi as constantand by Miller (1981) and Miller and Miller (1981).
equalto the free spacevalue; thiswill be assumed Furtherdevelopmentsandsomeillustrationsof its
for all of the results in thispaper. operationare containedin Gelinaset al. (1981)

and Dukowicz (1984).
The representationusedin the presentMFE

3. MFE Solution formulation is a standardlinear finite element
type.Thecomputationalmeshis divided into rect-

The resolution with which (7) can be solved angularcellswith horizontalor vertical sides.The
dependsstrongly on the numerical methodology field values are specified at the centers of the
that is applied. For a given simulation, thereare zones. A linear element is defined for each
two basic ways to enhanceperformance.First, quadrantof a zone. Denoting the indices of the
more accuracycan be achievedwith a limited zoneby i, j, where i is the z-index and j is the
number of mesh nodes. Second, the computer y-index, yields the basicfunction
usageandmemoryrequirementscanbeminimized v= V + a’

2 (y —y 1 2) — b’2 (z — z 2) (8)
by taking advantageof the structureof the FE ~ ‘ / /

equations; this is discussedin the next section. wherethe coefficientsare
Since most FE formulations use piecewisecon- ~ — J’ç j_i)

tinuouslinearbasisfunctionsbetweenfixed nodes, a
1=

oneway to improve the accuracyis to usea higher ~ + TJ~J~ Yi_i
order (e.g., quadratic)approximationin thediscre- 2 2~~,(J’ç1÷,—

tization. This invariably leads to more com- a,j = /

plicatedFE equationsanda largerbandwidth for ~ + ~1,,j+i Y~+i
the FE matrices,and usually results in substan- 2~~1(J’ç...11—

tially longer computer run-times. A better ap- b,~= ~ +

proach involves an adaptivemesh, in which the t1

nodes are allowed to move such that their loca- 2~~1(V1—

tions actuallybecome a part of the solution.The b~1= ~ +

nodeswill concentratein regionsof stronggradi- “~‘~ Z1 ~12±1~J Z~~1

ents where they are neededfor good resolution. with a,~= a~1,a~= a~,b~= b~,b~= b~,~y1
An attractive featureof this method is that low- y~~ and ~z1 — z~1.The cell quadrant
order basis functionsmay be usedwithout a sig- indices n of 1—4 correspondto the upper left,
nificant loss in accuracy.An analogycanbe made upper right, lower left, and lower right corners;
to two commonmethodsfor the numericalsolu- the co-ordinatesof the lower right cell cornerare
lion of ordinarydifferential equations.The stan- (y~,z); andthe cell centersare locatedat (y1 — 1/2~

dard Runge—Kuttamethod is not adaptive,and z11/2). In (8) and at horizontalcell interfaces,V
the order andstep sizemustbe chosena priori to and B2V/~are continuous,while at vertical inter-
yield an adequatesolution in the most complex face centers,V and 8~V/i,are continuous,corn-
part of solution space. This is similar to fixed mensuratewith the discussionof the last section.
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Integration of (7) over a computational cell, solution of (7) (with boundaryconditions) pro-
with application of the divergencetheorem to vides a minimum for the Lagrangianform
transform the volume integral to a surfacetype,
leadsto L = fdyf dzH(V, a~V,a2V)

j’dZ[a~V/~I;’ + j~dy[a2V/~]~’, = ~Re{fdyfdz[(ayV)2/n + (a2v)
2/~+ yV2]

_f~f1 dzdyyV=0 (9) 2

Z,.1 ~ . . + ~Jdy(_1)’(atV2_2$hV)

The useof (8) in (9) yieldsthe matrix equation 4

Av = f (10) + ~ Jdz( — 1)’(atV2 — 2$1V)} (12)

For this 2-D problem,A is a five-bandedmatrix
whoseelementsare This meansthat (7) is the Eulerequationobtained

from the variation of L with respect to V that
1 2 L~Y~ minimizes (12). For the FE formulation, the dis-

A~
1= ‘ ~ + ~ ~ creteform of (12)becomes

2~z~ LFE=~Re{~ ~ ~ [(a~)
2+(b~)2I

m,
1_~ y~1 ~i,J )~j i=1 j=1 ‘J

2~z tV+ V
2~ ‘J( 2

‘1 — A + A tij ~ “~‘ 1 2 ‘~ jf ij J Yj
~ y~+~m

1 y1

A
5=a 2~y

1
‘~ ‘~m-~-i,~~zi+i + Ti11 ~z1

1 / \2 / \2 2
+— (a ) +(a ) (Ay)A~

3
1 —(A~1+A~j+A~1+A~)—y1, ~z1 ~y1 12 “ ‘~1 ‘~ ~‘

(11) + .~.[(b,~)2+ (b~j)
2J(~zj)2

and

~z)2 ~ ~
a,

1= 1 — -y,~ii,~(

= — X~y1 (13)
8 The first variation of (13) with respectto the

The componentsof A must be modified ap- will give the FE set (10)—(11). To get an MFE
propriately at the edgesof the mesh to meet the formulation, additional equations for y1 and z1
boundaryconditions.The vector f also incorpo- will be obtainedin a similar manner.
ratesboundaryvalues. There are severalcomplications that can arise

The matrix eqn. (10) is similar to the usual whenthe FE mesh is allowed to move adaptively.
form obtainedin anyfixed meshfinite difference The most prominentof these is the obvious re-
(FD) or FE numericalapproximation.An adap- quirement that two nodes not be allowed to oc-
tive mesh approachrequiresadditional equations cupy the samelocation or pass each other. To
for the movementof (y~,z.). From the calculusof eliminatetheseproblems,note that arbitrary func-
variations(Clegg, 1968), it canbe shown that the tions in y and z canbe addedto the Lagrangian
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in (13)without affectingthe variationwith respect obtainedby solving (15) alone, will not usually
to V which gives (10). This resultsfrom the form satisfy (16) and(17), so the setis linearizedanda
of the Euler equations for the minimization of Newton iterative solution is found.This typically
(12). Theparticularform of thesefunctionscanbe requiresthreeto five iterations.In practice, some
chosento control the movementof the nodes y~ simplificationscanbemadein thenumericalsolu-
and z,. Following Miller (1981), (13) is modified tion of (15)—(17).Ratherthansolving all threesets
to give of equations simultaneously,(15) can be solved

for the current valuesof {J/1, y~,z.}, then (16)N c1 2 and (17) can betreatedseparately,neglectinglin-
= LFE + ~ (~ earization of the nonlinearterms Q1 and Q2, to

M 2 modify the node locations.This meansthat only
+ ~ ~y1 — -~~-) (14) tridiagonal equations are solved for y and z at

eachiteration.This approximateform works well
for the sampleproblemsdiscussedlater.

where�, c1, and c2 are constants.The additional The FE solutionof (4)—(7) requiresthe specifi-
entriesin (14) are penalty or regularizationones cationof a on a finite sizegrid z1 ~ z ~ z2, y~� y
which ensurea stablesolution by controlling the � y~.The conductiveEarth is assumedto lie in
allowed node spacing.The terms involving � are the region0 � z � z2, while the half spacez <0 is
frictional, andproducesmoothratherthanabrupt nonconductingair. Boundaryconditionsmust be
movementof the nodes,especiallywhenthe solu- specifiedon the outerlimits of the meshat z1, z2,
tion changesvery slowly from elementto element. y1, and y2. At the upperboundaryz1, the zero
The terms involving c1 and c2 are internodal wavenumbernatureof the MT sourcefields leads
repulsiveoneswhich preventtwo nodesfrom oc- to the requirementof a constanthorizontalmag-
cupying the sameposition. The constantse, C1~ netic field. For the TM mode,(5) showsthat .F3~is
andc2 arechosenempirically to avoidtheseprob- constantin a nonconductor,and z1 may be cho-
lems; their values are not critical. Miller (1981) sen as the interfacez = 0. For the TE mode, z1
discussesthe importanceof regularizationin MFE. must be negativeand sufficiently largethat sec-
The penaltyfunction usedfor nodecontrolis not ondaryfields inducedby lateralchangesin media
unique; a variety of other constraintscould be propertiesare small, a distancetypically of order
usedaslong as they are physically reasonable, the horizontal model dimension. The bottom

The solution { J’~,y1, z1} which minimizes(14) boundaryz2 must be deepenoughthat the prin-
is obtained from the first variations of the cipal fields are negligible, and either one-dimen-
Lagrangianwith respectto the variables sionality or a perfectconductormay be assumed

= Av — f = 0 (15) belowz = z2. A varietyof conditionsfor the model
edgesare in use. Rodi (1976) discussedperiodic

a~L.= ~
2Ty+ Q

1(V, y, z) = 0 (16) (a~V=0) and approximateconditionsfor use at

= c
2Tz + Q

2(V, y, z) = 0 (17) ~ and y2. The latter involve an implicit assump-
tion of one-dimensionalityoutsidethe mesh.For a

where T is tridiagonal with —2 on the main lucid discussionof thesepoints, seeRodi (1976).
diagonaland1 in the off-diagonallocations,andy The Maxwell eqn. (1) is a condition that is
and z are vectors of node co-ordinates. In implicitly satisfiedby the forms in Section 3, but
(15)—(17), the dependenceon y andz is nonlinear that may not be explicitly met by a numerical
in the A matrix and the Q1 and Q2 vectors be- solution owing to discretizationandroundoff. For
causeof the regularizationtermsin (14). a more generalizedfinite elementproblem,com-

To solve the MFE equations(15)—(17),an ii- monvectoridentitieslike v ‘V x A = 0 andV X
tial mesh must be specified; a simple, evenly V U = 0 must hold for the FE solution, although
spacedtype within regionsof constantconductiv- this is not necessarilyimplicit in the formulation.
ity generally is sufficient.An initial solution for v, Any numericalsolution of the Maxwell equations
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shouldbe forcedto satisfy as many of thesetypes
of constraintsandcontinuity conditionsas possi- 0 ~ o
ble to ensurean accuratesimulation.This gener- 0 a ~
ally requires FE representationshigher than lin- a ~th step of ~

ear. In practice,a decision is made,explicitly or Gaussian

implicitly, to favor some of theseconstraintsover 0 etimination

others to avoid the added complexity of banded matrix

higher-orderapproximations.Neglect of any of
these conditions can allow spurious numerical a \~\ ~

modes to appear, although they may be of no
harm or may be damped by other physical _______

processesincludedin the model equations.For the 0 th \\ \o ~\\

2-D MT problem,the condition (1) and thevector a 0 stePat ~

identity V V V = 0 lead to the requirementthat
8~V=8~V,a conditionthatholdsfor (sufficiently banded matrix
differentiable) continuousvariablesbut may not Fig. 1. Sketch illustrating the differences betweenordinary

for agiven FE formulation. GaussianeliminationandanILU methodon a bandedmatrix.
The solid diagonal lines indicate the matrix bands,which
containnonzeromatrix elements,while thelargezeroes indi-
cateregionswhere thematrix containsno entry.The top part

4. Efficient matrix solutions of the figure shows that Gaussianeliminationfills mostof the
empty locationswith an intermediateresult during computa-

A given FE schemecan also be improved tion. The bottompart of the figure indicatesthat ILU addre-

through minimization of the usageof computer ssesmany fewer suchelementsin thematrix.
time and memory by taking advantageof the
inherentstructureof the FE equations.Both FD
andFE discretizationsleadto matrix equationsof entry value originally was zero. With ILU, fewer
the form Av = b, where A is sparse(i.e., only a locationsare filled, or a particularentry is re-com-
small fraction of its elementsare nonzero), and putedfewer times, leadingboth to fasterexecution
(usually) symmetric and banded. The computa- and to a smaller memory storage requirement.
tional focus is thenplacedon optimizing a factori- Somenew variants have been developedto im-
zation of A to reduce the cost of solving the proveon ILU schemes.For example,variableILU
equations(Behie and Forsyth, 1984; Zyvoloski, (VILU) changesthe numberof Gaussianelimina-
1986). A considerableimprovementoverconven- tion steps per iteration in different parts of the
tional Gaussianeliminationor LU decomposition matrix depending on local conditions and the
can be achieved. For background on standard structureof the matrix problem. Behie and For-
numerical methodsfor solving matrix problems, syth (1984) and Zyvoloski (1986) discussedILU
seeGolub and Van Loan (1983). and VILU for solving FE and FD matrices.De-

The classof matrix methodsknown as incom- tails of theILU or VILU schemedependcritically
plete factorization(ILU) hasbecomequite popu- on the form of theequationsbeing solvedand on
lar for FD and FE calculationsin many disci- the discretizationused to parameterizethe prob-
plines.ILU is an iterativeprocedurein whichonly lem. A real advantageof this approachis its
oneor (at most)a few Gaussianeliminationsteps relative insensitivity to the dimensionality of a
are taken per iteration. Figure 1 illustrates the simulation becauseof the partial fill-in. This
differencebetweentheordinarymethodsandILU. should becomevery significant in 3-D applica-
In Gaussianeliminationon abandedmatrix, most tions.
of the entriesbetweenthe original bandswill be Another enhancementin solving matrix equa-
occupiedat sometime in the solution processby a tions arisesfrom changingthe order in which the
computed, intermediateresult even though the nodes are processed.Red/black partitioning re-
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19 20 21 22 23 24 7 11 15 19 22 2/. air

10 ii 12 ~2 16 20 23 yfl-a 2 y’a

1 2 3 4 5 6 1 3 6 10 14 18 Fig. 3. The geometryof the control model of Weaveret al.
(1985,1986). Theconductivestructureconsistsof threeregions

natural ordering red / block ordering of different conductivity and uniform thickness,d, separated

to) (b) at theinterfacesy = — a and y = a. Theconductingmediaare
overlain by nonconductingair and underlain by a perfect

Fig. 2. A comparisonof a typical ordenngfor finite element
conductor.

matnceswith red/blackordenng:(a) showsa standardorder-
ing, in whichthenodeaddressesaresetup in a straightforward
manner(b) showsthe red/blackordering,in which thenode red/black squared,which involves two orderings
addresseshave been redefined to facilitate reduction of the , .

matrix, yielding a reductionin thesizeof the problemby
up to a factor of three. Figure 2 comparesa
typical ordering for a FD or FE discretization

ordersthe nodesinto red types,whichhaveno red with a red/black ordering. The increasedcorn-
nearest neighbors,and black types, which con- puter time required to sort the matrix must be
stitute the remainder.The red termsare placedat balancedagainstthe savingsin time from factori-
the top of the matrix, and their associatedequa- zation; this will yield a substantialimprovement
tions can be removedby simple matrix transfor- for largeproblems.
mations.Only the black nodelinear systemhas to The use of accelerationmethodscan also in-
be solved by ILU. This results in a reductionin creasethe speedof matrix computations.At each
the sizeof the problem by up to a factor of two, iteration in the ILU method,an estimatecan be
dependingon the discretizationused. Wolfe and madeof the directionandrelativemagnitudethat
Zyvoloski (1987) discuss a new partitioning, the next correction to each dependentvariable

TMMODE T=300S TEMODE T=300S
xx,nuruerical. real xxx numedual. real

flu uumericxt.~mag xxx uumericul.imxg

0 400

—100

300

—200

200
—300

-~ ~ 0

—400 100 ~ll0cn=_~0.

I 0 I
—50 —40 —30 —20 —10 0 10 20 30 40 50 —50 —40 —30 —20 —10 0 10 20 30 40 50

(a) Y(KM) (b) Y(}O.4)

Fig. 4. Comparisonof the analyticsolutionsof Weaveretal. (1985, 1986)for the(a) TM and (b) TE moderesponsefunctionswith
theMFE numericalresultsat a periodof 300 s at theEarth’s surface.Thesolid anddashedlines arethereal andimaginarypartsof
the analytic E/B responsefunctionparameterizedby horizontaldistance,y; theinterfacesseparatingtheconductiveregionsareat
—10 and 10 km and aredelineatedby theheavyverticallines.Thediscretesymbolsshowthenumericalresults,with Xs for thereal
and circlesfor theimaginaryparts.
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shouldhaveto minimize the currentmatrix equa- atedto each.Thisperformsmuchlike an assembly
tion squaredresiduals.For symmetric matrices, line, so that independentparts of the hardware
the procedureis a conjugategradientschemewith operatesimultaneouslyon different parts of the
a carefully chosenstep-size(Kershaw, 1978). For dataandpassthe result on to the next station. A
asymmetricmatrices,the matrix equationresidual resultcanbedeliveredat eachmachineclock cycle
is still minimized,but an additionalorthogonaliza- using pipelining. Theseprinciples allow dramatic
tion step is requiredwhich transformsthe matrix improvements in machine performance to be
to its principal axesbeforedeterminingthe direc- achieved,with peakexecutionratesin excessof
tion and magnitudeof the optimal incrementfor 100 million floating point operationsper second.
the dependentvariable vector. A popular proce- Matrix calculationsare particularly well-suited to
durefor asymmetricmatricesis the ORTHOMIN vector machines,and the executiontime can be
methodof Vinsome(1976). This also controls the nearly independentof the size of the problem.
conditionnumberof the matrix. Dongarraet al. (1984) discussthe principles of

Finally, vectorization on a modern super- vectorpipeline computersandtheir use for linear
computer can dramatically improve computa- algebracomputations.
tional efficiency. A Cray-classsupercomputerde-
rives its enhancedperformancebothby the useof
significantly fasterhardwareandby implementing 5. Validation of the MFE code
a numberof new principles.The first of these is
the vector instruction, in which a singlemachine Thecurrentversionof the magnetotelluricMFE
instruction allows data vectors (as opposedto code, namedMTAM2D, has beenvalidated by
singleelements)to be processed.The Cray allows comparisonto the standardanalyticcontrol mod-
vectors of 64 words to be treated in this way. els for theTM andTE modesdevelopedby Weaver
Cray-class hardwarealso implementspipelining, et al. (1985,1986). Figure 3 displaysthe geometry
in which a single operationis split into smaller of their test case.A conductiveregionof constant
piecesandseparatepartsof the machineare alloc- thickness, d, overlies a perfect conductor, and

TM MODE T = 30,000S TE MODE T = 30,000S

0 ‘‘“~oo_~-.x. ~ 12

—5 8

4

—10 •__0____0___~___0___0___0___c_

0 ~ wx03C*010 III.—15 ~~0 —4

—20 i I I I I I —8 I I I I I I

—50 —40 —30 —20 —10 0 10 20 30 40 50 —50 —40 —30 —20 —10 0 10 20 30 40 50

(a) Y(KM) (hi Y(KM)

Fig. 5. Comparisonof theanalytic solutionsof Weaveretal. (1985, 1986) for the(a) TM and(b) TE moderesponsefunctionswith
theMFE numericalresultsat a period of 30000s at theEarth’s surface.The solid anddashedlines are therealandimaginary parts
of the analyticE/B responsefunctionparameterizedby horizontal distance,y; the interfacesseparatingtheconductiveregionsare
at — 10 and 10 km and aredelineatedby theheavy vertical lines. Thediscretesymbolsshow thenumericalresults,with Xs for the
real and circlesfor theimaginary parts.
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consistsof threedistinctzoneswith different con- GRID FOR TE MODE, F.M., T300S

ductivities ai(y < —a),a2(—a�y � a), anda3(y 100

> a). For this comparison, the variables have
beenchosenas follows

a=lOkm 50 -

d=SOkm 25

a1=0.1Sm
1 0

a
2=1.0Sm

1 j::
a

3 = 0.5 S m~ 30 110 90 70 50 30 10 10 30 50 70

(a) Y(KM)
Solutionsfor two penodsTof 300 and30000s for
bothmodeswerecomputed. 100 -

Figures 4 and 5 compare the analytic and -

numericalresultsfor the ratio E/B asa function 50

of y at the Earth’s surfacez = 0 for the TM and 25

TE modes at the two periods.The size of the
0

—25

GRID FORTM MODE, F.M., T=300S
—50 -

—130 —110 —90 —70 —50 —30 —10 10 30 50 70
0 iiHI

__________________________________________ (b) Y(KM)

—10 _____________________________________________ Fig. 7. The (a) initial and (b) final meshesfor the MFE
___________________________________________ solutionof Fig. 4b for theTE modeat 300 speriod.The initial
_____________________________________________ meshwas uniform,with 32 zonesin thevertical(12 in air and
___________________________________________ 20 within themodel Earth),and49 zonesin thehorizontal(25,

—30 ________________________________________________ 12, and 12 zonesin the threeconductiveregions).The final
________________________________________________ meshhasbeenadaptivelymodified to concentratethe nodes

—40 __________________________________________________ wheretheelectromagneticfield is changingmostrapidly,espe-

50 cially the boundaries between conductive regions and the
—130 —110 —90 —70 —50 —30 —10 10 30 50 70 Earth—atmospherecontactat z 0.

(a) Y(KM)

initial FE mesh(i.e., the numberof nodes)was

~ - adjustedempirically to the minimum requiredto
achieve acceptableaccuracyfor eachcase. The

-20 -~-~ ~M~fi initial mesh for the TM mode 300 s numerical
-30 - solution consistedof 30 uniformly sized zonesin

the verticaldirectionand60 zonesin the horizon-
tal—30, 15, and15 uniformly spacedzonesin the
threeconductiveregions,respectively.At 30000 s

-130-110 -90 -70 -50 -30 -10 10 30 50 70 period, the initial meshcontainedonly 20 zones
(b( y~ vertically and 45 horizontally—20, 10, and 15

Fig. 6. The (a) initial and (b) final meshesfor the MFE zonesin the threeconductiveregions.Forthe TE
solutionof Fig. 4afor theTM modeat 300 5 period.The initial caseat the shorterperiod, the verticalzoningwas
meshwasuniform, with 30 zonesin thevertical and 60 zones modified to include 12 sectionsin air (z <0) and
in the horizontal (30, 15, and 15 in the three conductive 20 within the Earth (z > 0), while the horizontal
regions). The final mesh has been adaptively modified to . .zomngincluded49 umformly spacedregions—25
concentratethenodeswheretheelectromagneticfield is chang-
ing mostrapidly, especiallytheboundariesbetweenconductive 12, and12 zonesin the threeconductiveregions.
regionsand theEarth—atmospherecontactat~ = 0. At 30000 s, the TE meshwas reducedto 10 and



441

20 vertical zonesin air and Earth,and45 uniform GRID FOR TE MODE, F.M., T=30,000S

horizontal zones—20,10 and 15 sectionsin the
100

threeregions.The sideboundaneswere locatedat
y = — 130 and y = 70 km for all of the models,
sufficiently far from the conductivetransitionsto So
not affect the solution, andthe horizontal deriva- ~
tives of the fields were taken to vanish at those
points(periodic boundaryconditions).At the bot-
tom of the model for theTM mode,B~B~wasset 25

to zero, while B~= 1 at the surfacez = 0. As for -so
the TE mode,E~wasset to zeroat the bottomof -130-1)0 —90 -70 -50 -30 -10 10 30 50 70

the model, anda~E~wasset to iw~tat z = z
1.The ~ ‘I’ ~

regularizationparametersin (14) were set as � = 100

i0
5, c

1 = c2 = 5 x 102 for the TM mode and - - - - - =
= 10~,c1 = c2 = 5 x i0~ for the TE mode.The - - - - -

50 - -—
quantitybeingminimizedin (14) takeson consid- ~. - - - -

erably different valuesfor the TE and TM mode ~ - -

cases,varying over a range of several hundred. 0

Accordingly, the valuesof the penalty term con- 25

stants�, c1, and c2 mustbe changedto keepthe
—50- r 1’ -T

—130 —110 —90 —70 —50 —30 —10 10 30 50 70

GRID FOR TM MODE, F.M., T=30,000S ) b) Y (1(M)
Fig. 9. The (a) initial and (b) final meshesfor the MFE

o solutionof Fig. Sb for the TE modeat 30000 s period. The
initial meshwas uniform,with 30 zonesin thevertical (10 and

-10 20 in air and Earth)and45 zonesin thehorizontal(20, 10 and
15 in thethreeregions).

~“ -30
correspondingterms in (14) small relative to the

-40 - LFE term. Variationsof a factor of 10 about the

-50 - specified valuesdo not affect the result apprecia-
—130 —110 —90 —70 —50 —30 —10 10 30 50 70 bly. Computerrun times for all calculationswere

(~) y~ <2 sona Cray X-MP.
0 _____ The adaptivemeshschememovedthe nodesso

_____ that the Lagrangianin (14) was minimized. This
-10 ______ also resultedin asmallervaluefor the non-penal-

20 _____ - ized Lagrangian in (12). Generally, no further
H ______ decreaseoccurs in the Lagrangianvaluesafter a

-30 ______ few iterations. The initial and final meshesare

-40 _____ shownin Figs. 6—9, correspondingto the models
in Figs. 4 and 5. The nodesare shifted near the

-50 , verticalboundariesat y = — a andy = a,nearthe
—130 —110 —90 —70 —50 —30 —10 10 30 50 70 surfaceat z = 0, and in regionswherethe electro-

b ‘I’ ~ magneticfields are changingrapidly. As would be

Fig. 8. The (a) initial and (b) final meshesfor the MFE expected,thezonesneartheboundariesandat the
solution of Fig. 5a for theTM modeat 30000 s penod.The . .

initial meshwas uniform,with 20 zonesin thevertical and 45 intenor interfacesbecomesmaller so that denva-
in the horizontal (20, 10, and 15 in the three conductive tives of the fields canbe resolvedmoreprecisely.
regions). In the interior regionbetweeny = — a and y = a,
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TM MODE T = 300S ~ one,the analyticsolutionsinvolve only variations

1 ______ ox, xumrro,nt.,x,x~ in conductivity in the 9 direction, and thechanges
in conductivity betweenthe regionsare not large.
In addition, this first version of the code, in the

05 interestof simplicity, requireda specifiednumber
of nodesin eachregion. When this restriction is
relaxedto simply requirespecificationof thenum-

0 ~ ~ ber of nodes for the entire mesh, greatermesh
deformationwill be observed.Another factor is
the nature of the numerical mesh. Becausethe

05 meshusesrectangularelementswith squarecorners
in the currentversionof the MFE code,all points
on a vertical or horizontal grid line are con-

I I I I I I strained to move simultaneously. The mesh is
-50 -40 -30 -20 -10 0 10 20 30 40 50 actuallyrespondingto the averagegradientof the

Y (1(1.0 solution along a y or z grid line. This restriction
Fig. 10.Themagneticfield componentB~,for theTM modeat results in less node movementthan is desirable.
300 s period and a depthof 15 km insidethe Earth. Note the The rectangularelementsused here will be re-
points at which the fields are changing most rapidly and .

comparewith Fig. 4 placedwith tnangulartypesin the nextversionof
the code, improving its ability to handle non-
horizontalinterfaces.Thiswill also allow thenodes

the zoning changesin an asynm’ietrical fashion. to move individually andimprove the adaptability
For example,in the 300 s casein Fig. 4, the zones of the result.Nevertheless,the principleof MFE is
haveshifted to the centrebetweeny = —10 and well-illustrated by the examplesin Figs. 4 and 5.
y = 10 km. Thereasonfor this becomesapparent The advantagesof an adaptive mesh in mini-
after inspectionof Fig. 10, which showsthe field mizing meshdesignproblemsandmaximizingthe
componentB~againstthe horizontal co-ordinate resolution for a given size meshare obvious, al-
y insidethe model Earthat z = 15 km. Thatcurve thoughcareful designof the mesh using a fixed
is fairly steepin the left part of the middle con- meshmodel would probablygive answersthat are
ductiveregion, but flattensout on the right-hand just as good. Adaptive proceduresshould reduce
section. Curvatureis greatestaround z = 0. The the humantime involved in solving forwardprob-
zoning will tend to reflect the structureof the lems, andwill be of definite advantagefor inver-
electromagneticfield componentthat is actually sionwhenthe locationsof conductivity boundaries
solved for, not the responsefunction that is ob- maynot be known apriori.
tamedfrom the fields. This accountsfor the ap-
parent discrepanciesin node locations between
Figs. 6—9 andthe shapesof the responsefunction References
curves shown in Figs. 4 and 5. The adaptive Behie,GA. andForsyth,PA., 1984. Incompletefactorization

meshesaresometimesnot as smoothas onewould methods for fully implicit simulation of enhancedoil re-

expect,as in Fig. 9. This is owing to choosingpoor covery. SIAM J. Sci. Stat. Comp., 5: 543—561.
Clegg,- J.C., 1968. Calculus of Variations. Oliver and Boyd,

valuesfor the constantsin (14). If regulanzation Edinburgh.

parametersare too small, the systemwill tend to Coggon,J.H., 1971. Electromagneticand electrical modelling

becomeill-conditioned. Practicewith the modelis by thefinite elementmethod,Geophysics,36: 132—155.
requiredto find the optimal rangeof regulari.za- Dongarra,J.J., Gustavson,F.G. and Karp, A., 1984. Imple-

tion parametervalues. menting linear algebra algorithmsfor densematriceson a
vectorpipelinemachine.SIAM Rev., 26: 91—112.In retrospect,the meshchangesobtamedfor Dulcowicz, J.K., 1984. A simplified adaptivemesh technique

the test cases are significant but not dramatic, derived from themoving finite elementmethod,J. Comp.
Thereare severalfactors acting to causethis. For Phys.,56: 324—342.



443

Gelinas, RJ., Doss, S.K. and Miller, K., 1981. The moving SPESymp. on Num. Sim. of ReservoirPerf,, Los Angeles,
finite elementmethod: applicationsto general partial dif- paper5PE5729.
ferential equationswith multiple largegradients.J. Comp. Wannamaker, P.E., Stodt, J.A. and Rijo, L., 1985.
Phys.,40: 202—249. PW2D—finiteelementprogramfor solutionof magnetotel-

Golub, G.H. andVan Loan,CF.,1983. Matrix Computations. luric responsesof two-dimensionalearthresistivity struc-
JohnsHopkins University Press,Baltimore,475 pp. ture: programdocumentation.Universityof UtahResearch

Kershaw, D.S., 1978. The incomplete Cholesky conjugate Institute ReportESL-158,71 pp.
gradient method for the iterative solution of systemsof Wannamaker,P.E., Stodt, J.A. and Rijo, L., 1987. A stable
linear equations.J. Comp. Phys.,26: 43—65. finite elementsolutionfor two-dimensionalmagnetotelluric

Lee, K.H. and Morrison,H.F., 1985. A numericalsolution for modelling. Geophys.J. R. Astron.Soc., 88: 277—296.
the electromagneticscatteringby a two-dimensionalinho- Weaver,J.T., Le Quang, B.V. and Fischer, G., 1985. A com-
mogeneity.Geophysics,50: 466—472. pansonof analytic and numericalresultsfor a two-dimen-

Miller, K., 1981. Moving finite elements—Il.SIAM J. Num. sional control model in electromagneticinduction—I. B-
Anal,, 18: 1033—1057. polarization calculations.Geophys.J. R. Astron. Soc., 82:

Miller, K. and Miller, R.N., 1981. Moving finite elements—I, 263—277.
SIAM J. Num. Anal., 18: 1019—1032. Weaver,J.T., Le Quang,B.V. and Fischer,G., 1986. A com-

Pridmore,D.F., Hohmann,G.W., Ward, S.H. and Sill, W.R., parisonof analytic andnumericalresultsfor a two-dimen-
1981. An investigationof finite-elementmodelling for elec- sional control model in electromagneticinduction—Il. E-
trical and electromagneticdata in threedimensions.Geo- polarizationcalculations.Geophys.J. R. Astron. Soc., 87:
physics, 46: 1009—1024. 917—948.

Rodi, W.L., 1976. A techniquefor improving the accuracyof Wolfe, J. and Zyvoloski, G., 1987. Comparisonof reordering
finite elementsolutionsfor magnetotelluncdata.Geophys. schemesin incompletefactorization methods.Los Alamos
J. R. Astron, Soc.,44: 483—506. National LaboratoryReportLA-UR-86-2527.

Vinsome,P.K.W., 1976. ORTHOMIN: an iterativemethodfor Zyvoloski, G., 1986. Incompletefactorization for finite ele-
solvingsparsesetsof simultaneouslinear equations.Fourth mentmethods.Int. J. Num. Meth. Eng., 23: 1101—1109.


