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Finite element simulation of the electromagnetic fields in complex geological media is commonly used in interpreting
field data. In this paper, recent, major improvements to finite element methodology are outlined. The implementation
of a moving finite element technique, in which the mesh nodes are aliowed to move adaptively to achieve an accurate
solution, is described. Efficient matrix solutions based on incomplete factorization and matrix ordering are also
discussed; these offer order of magnitude reductions in memory requirements and increases in execution speed. Finally,
the advantages of adapting finite element codes to modern supercomputers are emphasized. These topics are illustrated
by formulating a moving finite element forward model for the two-dimensional magnetotelluric problem. The result is
validated by comparison with standard control models. While preliminary in nature, the result does indicate that
substantial improvements to geophysical modeling can be achieved through the use of modern approaches.

1. Introduction

The experimental state-of-the-art in electro-
magnetic geophysics is currently in a condition of
rapid evolution. This is owing in large part to the
digital revolution, which has made reliable, porta-
ble instrumentation widely available and increased
the utility of advanced data-processing methods,
even in the field. However, the capability to model
and interpret data in terms of electrical or geo-
logic structure has lagged behind. This poses the
single largest obstacle to the further development
and wider application of electromagnetic princi-
ples in geophysics.

The finite element (FE) method, among several
others, has received increasing attention in recent
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years for the numerical simulation of EM prob-
lems. Examples include the use of FE to model
magnetotelluric (MT) fields in 2-D structures
(Coggon, 1971; Lee and Morrison, 1985; Rodi,
1976; Wannamaker et al., 1987), and standard
computer codes for this purpose are becoming
available (e.g., Wannamaker et al., 1985). How-
ever, FE modeling with either more complex (i.e.,
controlled) sources or 3-D structures has not
proven as satisfactory to date (e.g., Pridmore et
al,, 1981), and other approaches, especially in-
tegral equation methods, are in more general use.
The advantages of the FE method include flexibil-
ity and a capability to handle complex structures
in a straightforward manner. The principal disad-
vantage is the need for relatively extensive com-
puting resources, especially storage. This has made
FE somewhat difficult to implement on small
computers.



Major improvements to 2-D and 3-D electro-
magnetic modeling codes can be made by incorpo-
rating recent advances in FE methodology and
numerical algorithms which take full advantage of
the structure inherent in FE matrices. First, the
moving finite element (MFE) method incorporates
adaptively moving nodes into the FE equations,
substantially increasing the accuracy that is ob-
tainable with a given size mesh. Second, while
most MT modeling codes use Gaussian elimina-
tion or LU decomposition to solve the resulting
matrix equations, considerably more efficient
methods based on incomplete factorization (Behie
and Forsyth, 1984) are now available. This ap-
proach results in an order of magnitude reduction
in memory requirements, as well as a large in-
crease in execution speed. Finally, while these
tools will yield markedly better performance on
conventional, scalar computers, the vector archi-
tecture of modern Class VI or VII supercomputers
can yield additional speed improvements of up to
a factor of several hundred with properly designed
algorithms.

In this paper, the formulation of a 2-D MFE
forward code for MT modeling is described. The
emphasis is placed both on the MFE formalism
and its implementation using modern numerical
techniques. The code is validated by comparison
to standard control models proposed by Weaver et
al. (1985, 1986). This result is considered as an
intermediate one by the authors, and can be im-
proved by using more sophisticated basis func-
tions, triangular elements, and similar enhance-
ments. Ultimately, MFE will be used both in the
development of a regularized inversion method for
2-D MT data and as a step toward a fully 3-D
modeling code.

2. Governing equations

The physics of electromagnetic induction is de-
scribed by the Maxwell equations in the quasi-
static or pre-Maxwell limit, in which the magnetic
effect of displacement current is neglected

v-B=0 (1)
vXE+3B=0 (2)
v X (B/p)—oE=0 3)
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where the symbols have their usual meaning. The
role of electric charge in (1)-(3) is often confused.
By removing the displacement current to give (3),
phenomena with time-scales shorter than that of
EM diffusion are filtered out, and charge appears
to travel instantaneously. Electric charge is still
present, usually in association with conductivity
gradients or discontinuities, and its fields are quite
important. This is especially true in 2-D and 3-D
structures, and charge accounts for many of the
important differences between simple 1-D and
higher-dimensional realizations.

For a 2-D structure in which o and p are
independent of the X co-ordinate, it is well known
that the electromagnetic fields separate into two
independent modes if the sources are also free of
X dependence. The first of these is called the
E-polarization or transverse electric (TE) mode,
and is completely described by the field compo-
nents E,, B, and B,. The second case is called
the B-polarization or transverse magnetic (TM)
mode, and involves only the B,, E,, and E, fields.
Following Rodi (1976), and assuming e '’ depen-
dence for all variables, the vector Maxwell equa-
tions (1)-(3) reduce to the generic scalar set

8,1 +03,J +yV=0 (4)
a.V+nJ=0 (5)
aV+nl=0 (6)

which may be combined to give the second-order
partial differential equation

3,(3,V/m) +9,(3,¥/n) —yV=0 (7)
where the variables for the two modes are
™ TE
V BX/"L EX
J — Ey By /1
I E, ~B,/n
n o —iwp
Y —lwp c

At horizontal contacts between media of different
conductivity or permeability, the quantities V,
a,V/n, and 8,V are continuous, while at vertical
contacts, ¥, 9,V, and 9,V /7 are continuous. EM
induction in a 2-D medium is governed by two
independent scalar equations for the principal
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fields E, and B,. The auxiliary fields E,, E,, B,
and B, are obtained from (5) and (6). Note also
that the TE mode involves an electric field which
is always parallel to changes in the conductivity,
and hence involves no electric charge. This is
manifest in the absence of terms involving the
conductivity gradient in the TE form of (7). By
contrast, boundary charge is important in de-
termining the behavior of the TM mode electric
field. The eqns. (4)—(7) may be simplified for most
real Earth problems by taking p as constant and
equal to the free space value; this will be assumed
for all of the results in this paper.

3. MFE Solution

The resolution with which (7) can be solved
depends strongly on the numerical methodology
that is applied. For a given simulation, there are
two basic ways to enhance performance. First,
more accuracy can be achieved with a limited
number of mesh nodes. Second, the computer
usage and memory requirements can be minimized
by taking advantage of the structure of the FE
equations; this is discussed in the next section.
Since most FE formulations use piecewise con-
tinuous linear basis functions between fixed nodes,
one way to improve the accuracy is to use a higher
order (e.g., quadratic) approximation in the discre-
tization. This invariably leads to more com-
plicated FE equations and a larger bandwidth for
the FE matrices, and usually results in substan-
tially longer computer run-times. A better ap-
proach involves an adaptive mesh, in which the
nodes are allowed to move such that their loca-
tions actually become a part of the solution. The
nodes will concentrate in regions of strong gradi-
ents where they are needed for good resolution.
An attractive feature of this method is that low-
order basis functions may be used without a sig-
nificant loss in accuracy. An analogy can be made
to two common methods for the numerical solu-
tion of ordinary differential equations. The stan-
dard Runge-Kutta method is not adaptive, and
the order and step size must be chosen a priori to
yield an adequate solution in the most complex
part of solution space. This is similar to fixed

mesh FE, where the node spacing must be chosen
ahead of time to yield the required accuracy
throughout the solution region. More modern pre-
dictor-corrector algorithms are far more efficient,
varying the step size and order locally to achieve
an accurate solution without using excessive com-
puter time. This is analogous to MFE, and can
handle more complicated equations in an auto-
matic fashion with a substantial reduction in com-
puter run-time. The MFE method was introduced
by Miller (1981) and Miller and Miller (1981).
Further developments and some illustrations of its
operation are contained in Gelinas et al. (1981)
and Dukowicz (1984).

The representation used in the present MFE
formulation is a standard linear finite element
type. The computational mesh is divided into rect-
angular cells with horizontal or vertical sides. The
field values are specified at the centers of the
zones. A linear element is defined for each
quadrant of a zone. Denoting the indices of the
zone by i, j, where i is the z-index and j is the
y-index, yields the basic function

V= I/ij+a{lj(y_yj—l/2)_b?j(z_zi—l/Z) (8)

where the coefficients are

al, = 20, (V= Viy-1)
(miy Ay +mi 0 8y0)
a2 = 211,-,'(Vi,j+1 - Vij)
(mi; Ay +m; 5 Byyin)
B! 2nij(I/i—1,j_ V:/)

Y (11,-,- Azi+ni—1,j Azi—l)
znij(Vij— Vi+1,j)
("Tij Az, + MNi+1,; Azi+1)

: 301 4 _ 2 32 _ g1 74 _ 3 —
with a;, = a;;, aj;=a;;, bj;=b;;, b;=b;;, Ay, =
Y;—Yi-1, and Az;=z,—z;_;. The cell quadrant
indices n of 1-4 correspond to the upper left,
upper right, lower left, and lower right corners;
the co-ordinates of the lower right cell corner are
(¥, z;); and the cell centers are located at (y;_ 5,
z;_1,,)- In (8) and at horizontal cell interfaces, V
and 93,V /7 are continuous, while at vertical inter-
face centers, V' and ByV/n are continuous, com-
mensurate with the discussion of the last section.

3
b=



Integration of (7) over a computational cell,
with application of the divergence theorem to
transform the volume integral to a surface type,
leads to

[ az[ay ),

i—1

Y z.
+ [ dylav/mli,
Yi-1
Vi
—f f dz dyyV=0 (9)
Zi1" Y-
The use of (8) in (9) yields the matrix equation
Av=f (10)

For this 2-D problem, A is a five-banded matrix
whose elements are

24y

A¥-=a,-
! Imy Bzt Az
2 2 Az
AijZBij
M, j-1 ij—l + 1, ij
2 Az,
A =B, !

jni,j+1 ij+1 + i ij

2Ay
ijni+l,j Az T+ Nij Az,

A= — (A, + A5+ 4L+ 43) — vy, Az, Ay,
(11)
and
2
Yijnij(AZ('2
vl Ty
2
B.—1- Yijnij(ij)
ij 8

The components of A must be modified ap-
propriately at the edges of the mesh to meet the
boundary conditions. The vector f also incorpo-
rates boundary values.

The matrix eqn. (10) is similar to the usual
form obtained in any fixed mesh finite difference
(FD) or FE numerical approximation. An adap-
tive mesh approach requires additional equations
for the movement of (y;, z;). From the calculus of
variations (Clegg, 1968), it can be shown that the
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solution of (7) (with boundary conditions) pro-
vides a minimum for the Lagrangian form

L= [ay[azH(v, 8y, 8)
NP

+ ; fdz(—l)[(a'V2—2,BlV)} (12)

This means that (7) is the Euler equation obtained
from the variation of L with respect to V' that
minimizes (12). For the FE formulation, the dis-
crete form of (12) becomes

=%R{ZZ[ Z[u + (0]

411,]

V..
2 ij 2 1
+v,Vij +Yu( 2 (a2 —al;) Ay

XAy, Azi} (13)

The first variation of (13) with respect to the V;;
will give the FE set (10)-(11). To get an MFE
formulation, additional equations for y;, and z,
will be obtained in a similar manner.

There are several complications that can arise
when the FE mesh is allowed to move adaptively.
The most prominent of these is the obvious re-
quirement that two nodes not be allowed to oc-
cupy the same location or pass each other. To
eliminate these problems, note that arbitrary func-
tions in y and z can be added to the Lagrangian
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in (13) without affecting the variation with respect
to V which gives (10). This results from the form
of the Euler equations for the minimization of
(12). The particular form of these functions can be
chosen to control the movement of the nodes y;
and z,. Following Miller (1981), (13) is modified
to give

_ N e \2
L=L +Z(6Az,——)
FE = AZ,-
M e \2
+ X (c Ay‘——) (14)
j=1 7oAy

where €, ¢;, and ¢, are constants. The additional
entries in (14) are penalty or regularization ones
which ensure a stable solution by controlling the
allowed node spacing. The terms involving e are
frictional, and produce smooth rather than abrupt
movement of the nodes, especially when the solu-
tion changes very slowly from element to element.
The terms involving ¢; and ¢, are internodal
repulsive ones which prevent two nodes from oc-
cupying the same position. The constants €, ¢y,
and ¢, are chosen empirically to avoid these prob-
lems; their values are not critical. Miller (1981)
discusses the importance of regularization in MFE.
The penalty function used for node control is not
unique; a variety of other constraints could be
used as long as they are physically reasonable.
The solution {V,;, y;, z;} which minimizes (14)
is obtained from the first variations of the
Lagrangian with respect to the variables

9,L=Av—f=0 (15)
a,L= Ty +Q(V, y, z)=0 (16)
3,L=eTz+Q,(V, y,z)=0 (17)

where T is tridiagonal with —2 on the main
diagonal and 1 in the off-diagonal locations, and y
and z are vectors of node co-ordinates. In
(15)-(17), the dependence on y and z is nonlinear
in the A matrix and the Q; and Q, vectors be-
cause of the regularization terms in (14).

To solve the MFE equations (15)-(17), an ini-
tial mesh must be specified; a simple, evenly
spaced type within regions of constant conductiv-
ity generally is sufficient. An initial solution for v,

obtained by solving (15) alone, will not usually
satisfy (16) and (17), so the set is linearized and a
Newton iterative solution is found. This typically
requires three to five iterations. In practice, some
simplifications can be made in the numerical solu-
tion of (15)-(17). Rather than solving all three sets
of equations simultaneously, (15) can be solved
for the current values of {V;, y;, z;}, then (16)
and (17) can be treated separately, neglecting lin-
earization of the nonlinear terms Q; and Q,, to
modify the node locations. This means that only
tridiagonal equations are solved for y and z at
each iteration. This approximate form works well
for the sample problems discussed later.

The FE solution of (4)—(7) requires the specifi-
cation of o on a finite size grid z;, <z < z,, Y, <y
<y,. The conductive Earth is assumed to lie in
the region 0 < z < z,, while the half space z <0 is
nonconducting air. Boundary conditions must be
specified on the outer limits of the mesh at z;, z,,
1, and y,. At the upper boundary z,, the zero
wavenumber nature of the MT source fields leads
to the requirement of a constant horizontal mag-
netic field. For the TM mode, (5) shows that B, is
constant in a nonconductor, and z; may be cho-
sen as the interface z = 0. For the TE mode, z;
must be negative and sufficiently large that sec-
ondary fields induced by lateral changes in media
properties are small, a distance typically of order
the horizontal model dimension. The bottom
boundary z, must be deep enough that the prin-
cipal fields are negligible, and either one-dimen-
sionality or a perfect conductor may be assumed
below z = z,. A variety of conditions for the model
edges are in use. Rodi (1976) discussed periodic
(0,/=0) and approximate conditions for use at
y; and y,. The latter involve an implicit assump-
tion of one-dimensionality outside the mesh. For a
lucid discussion of these points, see Rodi (1976).

The Maxwell eqn. (1) is a condition that is
implicitly satisfied by the forms in Section 3, but
that may not be explicitly met by a numerical
solution owing to discretization and roundoff. For
a more generalized finite element problem, com-
mon vector identities like V - v X A=0and Vv X
v U =0 must hold for the FE solution, although
this is not necessarily implicit in the formulation.
Any numerical solution of the Maxwell equations



should be forced to satisfy as many of these types
of constraints and continuity conditions as possi-
ble to ensure an accurate simulation. This gener-
ally requires FE representations higher than lin-
ear. In practice, a decision is made, explicitly or
implicitly, to favor some of these constraints over
others to avoid the added complexity of
higher-order approximations. Neglect of any of
these conditions can allow spurious numerical
modes to appear, although they may be of no
harm or may be damped by other physical
processes included in the model equations. For the
2-D MT problem, the condition (1) and the vector
identity v - V¥ =0 lead to the requirement that
3.V =32V, a condition that holds for (sufficiently
differentiable) continuous variables but may not
for a given FE formulation.

4. Efficient matrix solutions

A given FE scheme can also be improved
through minimization of the usage of computer
time and memory by taking advantage of the
inherent structure of the FE equations. Both FD
and FE discretizations lead to matrix equations of
the form Av="b, where A is sparse (i.e., only a
small fraction of its elements are nonzero), and
(usually) symmetric and banded. The computa-
tional focus is then placed on optimizing a factori-
zation of A to reduce the cost of solving the
equations (Behie and Forsyth, 1984; Zyvoloski,
1986). A considerable improvement over conven-
tional Gaussian elimination or LU decomposition
can be achieved. For background on standard
numerical methods for solving matrix problems,
see Golub and Van Loan (1983).

The class of matrix methods known as incom-
plete factorization (ILU) has become quite popu-
lar for FD and FE calculations in many disci-
plines. ILU is an iterative procedure in which only
one or (at most) a few Gaussian elimination steps
are taken per iteration. Figure 1 illustrates the
difference between the ordinary methods and ILU.
In Gaussian elimination on a banded matrix, most
of the entries between the original bands will be
occupied at some time in the solution process by a
computed, intermediate result even though the
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—_——
nth step of
Gaussian

elimination

e
nth step of
ILu

banded matrix

Fig. 1. Sketch illustrating the differences between ordinary
Gaussian elimination and an ILU method on a banded matrix.
The solid diagonal lines indicate the matrix bands, which
contain nonzero matrix elements, while the large zeroes indi-
cate regions where the matrix contains no entry. The top part
of the figure shows that Gaussian elimination fills most of the
empty locations with an intermediate result during computa-
tion. The bottom part of the figure indicates that ILU addre-
sses many fewer such elements in the matrix.

entry value originally was zero. With ILU, fewer
locations are filled, or a particular entry is re-com-
puted fewer times, leading both to faster execution
and to a smaller memory storage requirement.
Some new variants have been developed to im-
prove on ILU schemes. For example, variable ILU
(VILU) changes the number of Gaussian elimina-
tion steps per iteration in different parts of the
matrix depending on local conditions and the
structure of the matrix problem. Behie and For-
syth (1984) and Zyvoloski (1986) discussed ILU
and VILU for solving FE and FD matrices. De-
tails of the ILU or VILU scheme depend critically
on the form of the equations being solved and on
the discretization used to parameterize the prob-
lem. A real advantage of this approach is its
relative insensitivity to the dimensionality of a
simulation because of the partial fill-in. This
should become very significant in 3-D applica-
tions.

Another enhancement in solving matrix equa-
tions arises from changing the order in which the
nodes are processed. Red/black partitioning re-



red / black ordering

natural ordering

(a} (b}
Fig. 2. A comparison of a typical ordering for finite element
matrices with red /black ordering: (a) shows a standard order-
ing, in which the node addresses are set up in a straightforward
manner; (b) shows the red /black ordering, in which the node
addresses have been redefined to facilitate reduction of the
matrix.

orders the nodes into red types, which have no red
nearest neighbors, and black types, which con-
stitute the remainder. The red terms are placed at
the top of the matrix, and their associated equa-
tions can be removed by simple matrix transfor-
mations. Only the black node linear system has to
be solved by ILU. This results in a reduction in
the size of the problem by up to a factor of two,
depending on the discretization used. Wolfe and
Zyvoloski (1987) discuss a new partitioning,

- analytic, real

TMMODE T=300S T analytio, imag,
X X X numerical, reat
000 numericalimag.
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Fig. 3. The geometry of the control model of Weaver et al.
(19885, 1986). The conductive structure consists of three regions
of different conductivity and uniform thickness, d, separated
at the interfaces y = —a and y = a. The conducting media are
overlain by nonconducting air and underlain by a perfect
conductor.

red /black squared, which involves two orderings,
yielding a reduction in the size of the problem by
up to a factor of three. Figure 2 compares a
typical ordering for a FD or FE discretization
with a red/black ordering. The increased com-
puter time required to sort the matrix must be
balanced against the savings in time from factori-
zation; this will yield a substantial improvement
for large problems.

The use of acceleration methods can also in-
crease the speed of matrix computations. At each
iteration in the ILU method, an estimate can be
made of the direction and relative magnitude that
the next correction to each dependent variable

TEMODE T=300S T e/
X % x numerical, real
500 numericalimog.
400
300
200 1
I
~
100
0 T T T T T T T
-50 -40 -30 -20 -10 0 10 20 30 40 50
() Y KM

Fig. 4. Comparison of the analytic solutions of Weaver et al. (1985, 1986) for the (a) TM and (b) TE mode response functions with
the MFE numerical results at a period of 300 s at the Earth’s surface. The solid and dashed lines are the real and imaginary parts of
the analytic E/B response function parameterized by horizontal distance, y; the interfaces separating the conductive regions are at
—10 and 10 km and are delineated by the heavy vertical lines. The discrete symbols show the numerical results, with Xs for the real
and circles for the imaginary parts.



should have to minimize the current matrix equa-
tion squared residuals. For symmetric matrices,
the procedure is a conjugate gradient scheme with
a carefully chosen step-size (Kershaw, 1978). For
asymmetric matrices, the matrix equation residual
is still minimized, but an additional orthogonaliza-
tion step is required which transforms the matrix
to its principal axes before determining the direc-
tion and magnitude of the optimal increment for
the dependent variable vector. A popular proce-
dure for asymmetric matrices is the ORTHOMIN
method of Vinsome (1976). This also controls the
condition number of the matrix.

Finally, vectorization on a modern super-
computer can dramatically improve computa-
tional efficiency. A Cray-class supercomputer de-
rives its enhanced performance both by the use of
significantly faster hardware and by implementing
a number of new principles. The first of these is
the vector instruction, in which a single machine
instruction allows data vectors (as opposed to
single elements) to be processed. The Cray allows
vectors of 64 words to be treated in this way.
Cray-class hardware also implements pipelining,
in which a single operation is split into smaller
pieces and separate parts of the machine are alloc-

analytic, real
,,,,,, analytic, imag.

x x x numerical, real
000 numericalimag.

TM MODE T = 30,0003

P =

Q.--o—»-ro»--amoma.,.u,..u,

—-104

—15 D

-20

T T T T T T T
-50 —-40 -30 -20 -10 0 10 20 30 40 50

(@) Y (KM)
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ated to each. This performs much like an assembly
line, so that independent parts of the hardware
operate simultaneously on different parts of the
data and pass the result on to the next station. A
result can be delivered at each machine clock cycle
using pipelining. These principles allow dramatic
improvements in machine performance to be
achieved, with peak execution rates in excess of
100 million floating point operations per second.
Matrix calculations are particularly well-suited to
vector machines, and the execution time can be
nearly independent of the size of the problem.
Dongarra et al. (1984) discuss the principles of
vector pipeline computers and their use for linear
algebra computations.

5. Validation of the MFE code

The current version of the magnetotelluric MFE
code, named MTAM2D, has been validated by
comparison to the standard analytic control mod-
els for the TM and TE modes developed by Weaver
et al. (1985, 1986). Figure 3 displays the geometry
of their test case. A conductive region of constant
thickness, d, overlies a perfect conductor, and

analytic, real
~~~~~~ analytic, imag.
x x x numerical, real
o0o0 numericalimag

TE MODE T = 30,0008

-8

T T T T T T T
-50 -40 -30 -20 -10 0 10 20 30 40 50

{0 Y (KM)

Fig. 5. Comparison of the analytic solutions of Weaver et al. (1985, 1986) for the (a) TM and (b) TE mode response functions with
the MFE numerical results at a period of 30000 s at the Earth’s surface. The solid and dashed lines are the real and imaginary parts
of the analytic E/B response function parameterized by horizontal distance, y; the interfaces separating the conductive regions are
at —10 and 10 km and are delineated by the heavy vertical lines. The discrete symbols show the numerical results, with Xs for the

real and circles for the imaginary parts.
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consists of three distinct zones with different con-
ductivities 6,(y < —a), 0,(—a<y <a), and o;(y
>a). For this comparison, the variables have
been chosen as follows
a=10 km
d =50 km
6,=01Sm!
02 = 1.0 S m_l
0;,=05Sm™!
Solutions for two periods T of 300 and 30000 s for
both modes were computed.

Figures 4 and 5 compare the analytic and
numerical results for the ratio E/B as a function

of y at the Earth’s surface z =0 for the TM and
TE modes at the two periods. The size of the

GRID FOR TM MODE, FM, T=300S

-130 -110 -90 -70 -50 -30 -10 10 30 50 70
(a) Y KM

_50 S : T +
-130 -110 -90 -70 -50 -30 -10 10 30 50 70

(b) Y KM

Fig. 6. The (a) initial and (b) final meshes for the MFE
solution of Fig. 4a for the TM mode at 300 s period. The initial
mesh was uniform, with 30 zones in the vertical and 60 zones
in the horizontal (30, 15, and 15 in the three conductive
regions). The final mesh has been adaptively modified to
concentrate the nodes where the electromagnetic field is chang-
ing most rapidly, especially the boundaries between conductive
regions and the Earth—atmosphere contact at z = 0.

GRID FOR TE MODE, F.M,, T=300S
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Fig. 7. The (a) initial and (b) final meshes for the MFE
solution of Fig. 4b for the TE mode at 300 s period. The initial
mesh was uniform, with 32 zones in the vertical (12 in air and
20 within the model Earth), and 49 zones in the horizontal (25,
12, and 12 zones in the three conductive regions). The final
mesh has been adaptively modified to concentrate the nodes
where the electromagnetic field is changing most rapidly, espe-
cially the boundaries between conductive regions and the
Earth-atmosphere contact at z = 0.

initial FE mesh (i.e., the number of nodes) was
adjusted empirically to the minimum required to
achieve acceptable accuracy for each case. The
initial mesh for the TM mode 300 s numerical
solution consisted of 30 uniformly sized zones in
the vertical direction and 60 zones in the horizon-
tal—30, 15, and 15 uniformly spaced zones in the
three conductive regions, respectively. At 30000 s
period, the initial mesh contained only 20 zones
vertically and 45 horizontally—20, 10, and 15
zones in the three conductive regions. For the TE
case at the shorter period, the vertical zoning was
modified to include 12 sections in air (z < 0) and
20 within the Earth (z > 0), while the horizontal
zoning included 49 uniformly spaced regions—25,
12, and 12 zones in the three conductive regions.
At 30000 s, the TE mesh was reduced to 10 and



20 vertical zones in air and Earth, and 45 uniform
horizontal zones—20, 10, and 15 sections in the
three regions. The side boundaries were located at
y=—130 and y="70 km for all of the models,
sufficiently far from the conductive transitions to
not affect the solution, and the horizontal deriva-
tives of the fields were taken to vanish at those
points (periodic boundary conditions). At the bot-
tom of the model for the TM mode, 9, B, was set
to zero, while B, =1 at the surface z=0. As for
the TE mode, E, was set to zero at the bottom of
the model, and 9, E, was set to iwp at z = z;. The
regularization parameters in (14) were set as € =
1073, ¢;=¢,=5x%X10"2 for the TM mode and
€=10"% ¢, = ¢, =5 X 107" for the TE mode. The
quantity being minimized in (14) takes on consid-
erably different values for the TE and TM mode
cases, varying over a range of several hundred.
Accordingly, the values of the penalty term con-
stants €, ¢;, and ¢, must be changed to keep the
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Fig. 8. The (a) initial and (b) final meshes for the MFE
solution of Fig. 5a for the TM mode at 30000 s period. The
initial mesh was uniform, with 20 zones in the vertical and 45
in the horizontal (20, 10, and 15 in the three conductive
regions).
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GRID FOR TE MODE, F.M,, T=30,000S
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Fig. 9. The (a) initial and (b) final meshes for the MFE
solution of Fig. 5b for the TE mode at 30000 s period. The
initial mesh was uniform, with 30 zones in the vertical (10 and
20 in air and Earth) and 45 zones in the horizontal (20, 10 and
15 in the three regions).

corresponding terms in (14) small relative to the
Lgg term. Variations of a factor of 10 about the
specified values do not affect the result apprecia-
bly. Computer run times for all calculations were
<2 s on a Cray X-MP.

The adaptive mesh scheme moved the nodes so
that the Lagrangian in (14) was minimized. This
also resulted in a smaller value for the non-penal-
ized Lagrangian in (12). Generally, no further
decrease occurs in the Lagrangian values after a
few iterations. The initial and final meshes are
shown in Figs. 6-9, corresponding to the models
in Figs. 4 and 5. The nodes are shifted near the
vertical boundaries at y = —a and y = q, near the
surface at z =0, and in regions where the electro-
magnetic fields are changing rapidly. As would be
expected, the zones near the boundaries and at the
interior interfaces become smaller so that deriva-
tives of the fields can be resolved more precisely.
In the interior region between y = —a and y = a,
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Fig. 10. The magnetic field component B, for the TM mode at

300 s period and a depth of 15 km inside the Earth. Note the

points at which the fields are changing most rapidly and

compare with Fig. 4.

the zoning changes in an asymmetrical fashion.
For example, in the 300 s case in Fig. 4, the zones
have shifted to the centre between y = —10 and
y =10 km. The reason for this becomes apparent
after inspection of Fig. 10, which shows the field
component B, against the horizontal co-ordinate
y inside the model Earth at z =15 km. That curve
is fairly steep in the left part of the middle con-
ductive region, but flattens out on the right-hand
section. Curvature is greatest around z = 0. The
zoning will tend to reflect the structure of the
electromagnetic field component that is actually
solved for, not the response function that is ob-
tained from the fields. This accounts for the ap-
parent discrepancies in node locations between
Figs. 6-9 and the shapes of the response function
curves shown in Figs. 4 and 5. The adaptive
meshes are sometimes not as smooth as one would
expect, as in Fig. 9. This is owing to choosing poor
values for the constants in (14). If regularization
parameters are too small, the system will tend to
become ill-conditioned. Practice with the model is
required to find the optimal range of regulariza-
tion parameter values.

In retrospect, the mesh changes obtained for
the test cases are significant but not dramatic.
There are several factors acting to cause this. For

one, the analytic solutions involve only variations
in conductivity in the y direction, and the changes
in conductivity between the regions are not large.
In addition, this first version of the code, in the
interest of simplicity, required a specified number
of nodes in each region. When this restriction is
relaxed to simply require specification of the num-
ber of nodes for the entire mesh, greater mesh
deformation will be observed. Another factor is
the nature of the numerical mesh. Because the
mesh uses rectangular elements with square corners
in the current version of the MFE code, all points
on a vertical or horizontal grid line are con-
strained to move simultaneously. The mesh is
actually responding to the average gradient of the
solution along a y or z grid line. This restriction
results in less node movement than is desirable.
The rectangular elements used here will be re-
placed with triangular types in the next version of
the code, improving its ability to handle non-
horizontal interfaces. This will also allow the nodes
to move individually and improve the adaptability
of the result. Nevertheless, the principle of MFE is
well-illustrated by the examples in Figs. 4 and 5.
The advantages of an adaptive mesh in mini-
mizing mesh design problems and maximizing the
resolution for a given size mesh are obvious, al-
though careful design of the mesh using a fixed
mesh model would probably give answers that are
just as good. Adaptive procedures should reduce
the human time involved in solving forward prob-
lems, and will be of definite advantage for inver-
sion when the locations of conductivity boundaries
may not be known a priori.
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