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S U M M A R Y
The marginal distributions for the magnetotelluric (MT) magnitude squared response function
(and hence apparent resistivity) and phase are derived from the bivariate complex normal
distribution that describes the distribution of response function estimates when the Gauss–
Markov theorem is satisfied and the regression random errors are normally distributed. The
distribution of the magnitude squared response function is shown to be non-central chi-squared
with 2 degrees of freedom, with the non-centrality parameter given by the squared magnitude
of the true MT response. The standard estimate for the magnitude squared response function is
biased, with the bias proportional to the variance and hence important when the uncertainty is
large. The distribution reduces to the exponential when the expected value of the MT response
function is zero. The distribution for the phase is also obtained in closed form. It reduces to
the uniform distribution when the squared magnitude of the true MT response function is zero
or its variance is very large. The phase distribution is symmetric and becomes increasingly
concentrated as the variance decreases, although it is shorter-tailed than the Gaussian. The
standard estimate for phase is unbiased. Confidence limits are derived from the distributions for
magnitude squared response function and phase. Using a data set taken from the 2003 Kaapvaal
transect, it is shown that the bias in the apparent resistivity is small and that confidence intervals
obtained using the non-parametric delta method are very close to the true values obtained from
the distributions. Thus, it appears that the computationally simple delta approximation provides
accurate estimates for the confidence intervals, provided that the MT response function is
obtained using an estimator that bounds the influence of extreme data.
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1 I N T RO D U C T I O N

The fundamental datum in the magnetotelluric (MT) method is the

site-specific, frequency-dependent, second rank tensor Z relating

the horizontal electric and magnetic fields measured at Earth’s sur-

face. The MT response tensor must be estimated statistically from

data using methods that are ultimately based on least-squares prin-

ciples. Considerable success has been achieved using robust and/or

bounded influence estimators that limit the effect of unusual or ex-

treme electric and magnetic field time-series intervals (e.g. Chave

& Thomson 2004), and this class of estimator is now in general use.

The ensuing estimates of the MT response function Z are generally

unbiased, statistically reliable, and consistent with the requirements

of the Gauss–Markov theorem, as further discussed in Section 2. In

addition, parametric estimates of the uncertainty (i.e. the variance

or standard error) δZ on Z are also statistically meaningful when

the influence of extreme data is bounded, while non-parametric es-

timators such as the jackknife (Thomson & Chave 1991) are more

accurate under these conditions.

However, MT interpretation is often based on an additional sta-

tistical entity derived for each tensor element of Z, the apparent

resistivity whose magnitude is given by

ρi j = μ0

∣∣Zi j

∣∣2
/ω, (1)

where μ0 is the magnetic permeability of free space, ω is the

angular frequency and Z is measured in units of electric field E
divided by magnetic induction B. Because the tensor elements

Zij are complex, there is a phase corresponding to the squared

response, but this is rarely used in practice. Instead, eq. (1) is

combined with the phase φ ij of Zij as substitute data for the

real and imaginary parts of Zij. Use of {ρ ij, φ ij} instead of

{Re[Zij], Im[Zij]} is often preferred because the ubiquitous occur-

rence of galvanic distortion biases ρ ij or {Re[Zij], Im[Zij]}, but

not φ ij.

While the transformation from {Re[Zij], Im[Zij]} to {ρ ij, φ ij} is

straightforward, statistical inference about the result is not. The most

widely used approach is a first-order Taylor series approximation for

δρ ij and δφ ij usually called the delta method (Stuart & Ord 1994,

section 10.5)

δρi j = 2μ0|Zi j |δZi j/ω

δφi j = sin−1(δZi j/|Zi j |)
,

(2)
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where the error terms in eq. (2) are O(1/N) and N is the sample size.

The arcsine function in the second equation is sometimes omitted at

some loss of accuracy. Propagation of error methods are sometimes

employed (e.g. Gamble et al. 1979; Stodt 1983), but their range of

validity remains unquantified, as is also true for the delta approxima-

tion. Yet, interpretation of accurate MT parameters combined with

inaccurate estimates for their uncertainty will bias the resolution of

derived models for Earth.

In this paper, the statistical distributions for {ψ ij, φ ij}, where

ψ ij = |Zij|2 is a substitute statistic for ρ ij, given {Re[Zij], Im[Zij]}
that satisfy the extended Gauss–Markov conditions are derived from

first principles. In Section 2, the general linear model is reviewed

to establish a statistical model for {Re[Zij], Im[Zij]}, and the joint

distribution of {ψ ij, φ ij} is obtained from it. Sections 3 and 4 derive

and describe the marginal distributions for ψ ij and φ ij, respectively,

along with symmetric confidence intervals on them. Section 5 con-

tains further discussion and a data-based comparison of confidence

limits computed from the distributions with approximate results

from the delta method.

2 J O I N T D I S T R I B U T I O N O F ψ A N D φ

The magnetotelluric response function Z is usually estimated us-

ing a variant of the Welch overlapped section averaging method

(Welch 1967) in which a time-series is broken into segments, each

segment is pre-whitened and tapered with a data window, discrete

Fourier transforms are taken, and pre-whitening is corrected for.

The ensuing Fourier estimates at a given frequency become data

in the context of MT data processing. The MT response tensor Z
follows from a linear regression of the electric on the magnetic data

using a robust M-estimator (Egbert & Booker 1986; Chave et al.
1987). Additional steps to bound the influence of extreme predictor

(i.e. magnetic field) data should also be taken (Chave & Thomson

2003, 2004). Accurate statistical inference about Z depends criti-

cally on minimizing bias in the Fourier estimates through effective

pre-whitening and the use of low bias data windows, on assuring the

independence of the Fourier estimates for distinct data sections and

frequencies, and on satisfying conditions on the linear regression

problem, including those of the Gauss–Markov theorem. The first

two of these require careful spectral analysis procedures; the issues

are reviewed by Thomson & Chave (1991) and Chave & Thomson

(2004).

The standard linear regression model for a row of the full MT

response tensor Z is

e = b ζ + ε, (3)

where e is the complex response (horizontal electric field) N-vector,

b is the complex N × 2, rank-2 predictor (horizontal magnetic field)

matrix, ζ is the complex solution 2-vector, and ε is a complex

N-vector of random errors. The least-squares solution for ζ obtains

from minimizing the error power, yielding

z = (bHb)−1(bHe), (4)

where the superscript H denotes the Hermitian (complex conjugate)

transpose. The conditions on the variables in eq. (3) and their mo-

ments that yield a least-squares solution eq. (4) that is optimal in a

well-defined sense are given by the Gauss–Markov theorem of clas-

sical statistics (Stuart et al. 1999, chapter 29). The textbook version

of the Gauss–Markov theorem applies when the predictor variables

in eq. (3) are fixed, but Shaffer (1991) has extended it to cover a

wide range of cases where b contains random variables. The linear

regression solution eq. (4) is an unbiased estimate with an asso-

ciated unbiased variance estimate when the random errors ε have

zero mean, are mutually uncorrelated and share a common variance

independent of any assumptions about their statistical properties ex-

cept that the variance must exist. In addition, if the random errors

are complex Gaussian, then the least-squares result is a maximum

likelihood, fully efficient, minimum variance estimate. The regres-

sion residuals {ri} are the differences between the measured values

of the response variable e and those predicted by the linear regres-

sion, and serve as an estimate for the random errors ε that can be

examined to check the validity of these conditions. It is well known

that MT data frequently violate the Gauss–Markov conditions, and

that the use of robust or bounded influence estimators that intro-

duce data-dependent weights into eq. (4) can mitigate this problem.

Further, the residuals can be tested for consistency with the Gauss–

Markov and residual normality conditions, as described by Chave

& Thomson (2004).

Assuming the Gauss–Markov theorem is satisfied and the random

errors ε in eq. (3) are complex Gaussian, it follows that the response

variables e are complex normal, independent, and homoscedastic

(i.e. share a common variance). Their distribution is

e : CNN(b ζ, σ 2I), (5)

where CNN is the N-variate complex normal distribution with ex-

pected value bζ and common variance σ 2; I is the identity matrix.

It can also be shown (e.g. Mardia et al. 1979) that the elements of a

row of the MT response are bivariate complex normal

z : CN2[ζ, σ 2(bHb)−1]. (6)

In addition, {|ri|2/σ 2} are χ2 distributed with N – 2 degrees of

freedom.

Despite the seeming simplicity of eq. (6), it still contains

eight unknown real parameters (the real and imaginary parts of

two elements of the MT response, the population variance for

each element and the real and imaginary parts of the popula-

tion covariance). Following Kotz et al. (2000 section 45.13), let

zj = xj + iyj have expected value μj, and assume var(x j ) =
var(y j ) = σ 2

j , cov(x j , y j ) = 0, cov(xi , x j ) = cov(yi , y j ) =
αi j , and cov(x j , yi ) = −cov(xi , y j ) = βi j . These conditions apply

to any signal that may be expressed as a Fourier transform (Wood-

ing 1956), and hence are not restrictive in the present context. The

Hermitian covariance matrix 
 follows directly from the definition.

Define the correlation coefficient � = (α12 + iβ 12)/σ 1σ 2. The joint

probability density function (pdf) for z1 and z2 is the bivariate com-

plex normal given by

f (z1, z2 | μ 1, μ2, 
 )

= 1

4π2σ 2
1 σ 2

2 (1 − |�|2)
e−[|ξ1|2−2Re{�ξ∗

1 ξ2}+|ξ2|2]/[2(1−|�|2)], (7)

where ξ = (zi − μi)/σ i. The marginal pdf for a single element z1

follows by integration over all possible values of z2, and it is well

known that the result is univariate complex Gaussian and hence

independent of the correlation coefficient. It is also identical in form

for z1 and z2.

The marginal pdf is traditionally used for statistical inference,

and especially to derive confidence intervals on the elements of z.

However, there are instances where the more appropriate choice

would be the conditional pdf of z1 given a particular value � for z2

f (z1 | z2 = �, μ1, μ2, 
)

= 1

2πσ 2
1 (1 − |�|2)

e−[|ξ1|2−2Re{�ξ∗
1 ξ2}+|�|2|ξ2|2]/[2(1−|�|2)],

(8)
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where ξ 2 is evaluated at z2 = �. For example, when the 2-D approx-

imation is used for inversion so that the diagonal elements of Z are

ignored, it is more appropriate to estimate confidence intervals on

the off-diagonal elements conditional on the diagonal elements be-

ing zero. The resulting confidence intervals may differ significantly

from those estimated using the marginal distribution for which no

constraints on the diagonal elements pertain, depending on the cor-

relation coefficient � and the size of |�ξ 2|. Derivation of confidence

intervals using eq. (8) is a straightforward extension of the results

presented in this paper.

In the interest of simplicity, only the marginal distribution for a

single complex element of the MT response tensor will be further

considered. This marginal pdf for z1, which is also the joint pdf for

the real and imaginary parts of the MT response, is given by

f (zR, zI | μ R, μI , σ ) = 1

2πσ 2
e−[(zR−μR )/σ ]2/2e−[(zI −μI )/σ ]2/2. (9)

The joint distribution for the magnitude squared response function

ψ = z2
R + z2

I and the phase φ = tan−1(ZI /ZR) follows from standard

transformation methods (de Groot & Schervish 2002, section 3.9)

g(ψ, φ | λ , ν, β) = β

2π
e−β(λ+ψ)e2β

√
λψ cos(φ−ν), (10)

where β = 1/(2σ 2) is the square of the precision modulus, λ =
μ2

R + μ2
I and ν = tan−1(μI /μR). This result is exact. The parame-

ters λ and ν are anticipated to be the population values of ψ and

φ, respectively, although the expected values and/or the maximum

likelihood estimates may differ. The marginal distributions for ψ

and φ are obtained by integrating eq. (10) over all possible values of

φ and ψ , respectively. When μR = μI = 0, this is straightforward,

reducing to the exponential distribution for ψ and the uniform dis-

tribution for φ. The distributions are substantially more complicated

in the more common instance where the expected value of the MT

response function differs from zero.

3 M A RG I N A L D I S T R I B U T I O N F O R T H E

M A G N I T U D E S Q UA R E D R E S P O N S E

F U N C T I O N

The marginal pdf for the magnitude squared response function ψ is

eq. (10) integrated over the range of φ

g1(ψ | λ , ν, β) = β

2π
e−β(λ+ψ)

∫ π

−π

e2β
√

λψ cos(φ−ν) dφ. (11)

Using the generating function for modified Bessel functions of the

first kind In(t), the exponential term in the integrand may be ex-

panded as

et cos θ = I0(t) + 2
∞∑

k=1

Ik(t) cos(kθ ). (12)

Performing the integration in eq. (11) yields

g1(ψ | λ, β ) = βe−β(λ+ψ) I0(2β
√

λψ) (13)

which is the non-central χ2 distribution with 2 degrees of freedom

with non-centrality parameter λ whose properties are described by

Johnson et al. (1995 chapter 29). As expected, it reduces to the

exponential distribution when λ = 0.

Defining the precision parameter κ =βλ and the non-dimensional

magnitude squared response function η = ψ /λ, eq. (13) may be

transformed under the requirement that probability is preserved to

yield

ĝ1(η | κ ) = κe−κ(η+1) I0(2κ
√

η). (14)

Figure 1. The probability density function (14) for the dimensionless mag-

nitude squared response function η = ψ /λ as a function of the precision

parameter κ = βλ = λ/(2σ 2) at values of 1, 3, 10, 30 and 100. Note the

increasingly skewed, non-Gaussian shape for κ < 30, and the lack of an

obvious mode for small values of κ .

It can be shown by integrating eq. (14) for its first two moments

that the expected value and variance of η are 1 + 1/κ and (2κ

+ 1)/κ2, respectively. Consequently, the sample value of λ is a

downward biased estimator for ψ , with the bias given by 1/β.

This may be important when the variance of MT response esti-

mates is large. The corresponding expected value and variance of

the apparent resistivity are μ(λ + 2σ 2) and 2μ2σ 2(λ + σ 2)/ω2,

respectively.

Fig. 1 shows the pdf (eq. 14) for κ = 1, 3, 10, 30 and 100. The

distribution is symmetric and peaked near η = 1 for large κ , but

is highly skewed and lacking an obvious mode for small values. It

takes on an increasingly Gaussian form as κ increases, but differs

substantially for κ < 30.

Confidence intervals are always non-unique and may be central

or non-central about a given value, but minimum size is typically

achieved in the central case. A central confidence interval about η

= 1 may be derived by solving

∫ 1+c

�0, 1−c�
ĝ1(η | κ ) dη = γ (15)

for c at an appropriate probability level γ , where �� denotes the

supremum. The lower bound on the integral reflects the non-negative

form of η. The confidence intervals about the expected value of η

may be found by replacing 1 with 1 + 1/κ in the integral bounds.

Fig. 2 shows c from eq. (15) evaluated as a function of κ for γ =
0.68, 0.95 and 0.99, respectively. The confidence interval is approx-

imately linear with κ on a log–log scale, exhibiting slight upward

curvature for small values. Large values of κ must be achieved for

the confidence limits to become small; for example, 3 per cent on

either side of the centre at the 95 per cent level is obtained only for

κ > 10 000. This corresponds to a relative error δZ/|Z| of about

0.7 per cent.

Eq. (13) may easily be transformed to the distribution of the

gain factor
√

ψ . The result is the Rice distribution, reducing to the

Rayleigh distribution when λ = 0.
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Figure 2. The confidence interval c about 1 for the dimensionless magnitude

squared response function η = ψ /λ as a function of the precision parameter

κ = λ/(2σ 2) at probability levels of 0.68, 0.95 and 0.99. The statistics λ

and σ 2 are the expected value and variance of ψ , respectively. A confidence

interval of 3 per cent on either side of the centre at the 95 per cent level is

obtained only for κ > 10 000, and corresponds to a relative error δZ/|Z| of

about 0.7 per cent.

4 M A RG I N A L D I S T R I B U T I O N

F O R P H A S E

The marginal pdf for phase is obtained by integrating the joint pdf

eq. (10) over the range of ψ . Converting to non-dimensional form

as in eq. (14) gives

ĝ2(ϑ | κ ) = κ

2π
e−κ

∫ ∞

0

e−κηe2κ
√

η cos ϑdη, (16)

where θ = φ − ν. This can be integrated using the Mathemat-

ica 5 package (Wolfram 2003) subject to verification by numerical

quadrature of eq. (16). The result is

ĝ2(ϑ | κ ) = e−κ

2π
[1 + √

πκ cos ϑ eκ cos2 ϑerfc(−√
κ cos ϑ)], (17)

where erfc(x) is the complementary error function. Eq. (17) reduces

to the uniform distribution when κ = 0. The expected value of

θ is zero, so θ is the expected value of φ. A closed form solu-

tion for the variance cannot be obtained. The distribution eq. (17)

is symmetric about φ = ν for all values of κ (Fig. 3), becoming

increasingly concentrated as κ increases and approaching a point

distribution in the limit of large κ . However, the phase distribu-

tion is increasingly shorter tailed than the Gaussian as κ increases,

asymptotically falling off algebraically rather than exponentially

with θ .

Central confidence limits on θ about 0 (and hence on φ about ν)

follow from solution of∫ c

−c
ĝ2(ϑ | κ ) dϑ = γ. (18)

Fig. 4 shows c from eq. (18) evaluated for γ = 0.68, 0.95 and 0.99.

As for the confidence limits on the magnitude squared response

function, these are approximately linear on a log–log scale, exhibit-

ing a departure from linearity when the influence of the bounds on

θ at {−π , π} is evident. Large values of κ must be achieved for the

confidence limits to become small; for example, 0.02 radian (∼1◦)

on either side of the centre at the 95 per cent level is obtained only

for κ > 10 000, and 0.05 radian (∼3◦) is observed for κ = 800.

Figure 3. The probability density function (17) for the phase as a function

of the precision parameter κ = λ/(2σ 2) at values of 0.3, 1, 3, 10, 30 and 100.

Note the increasing concentration and more Gaussian-like behaviour as κ

increases, and the approach to a uniform distribution for small κ .

Figure 4. The symmetric confidence interval c about the expected value

ν for the phase as a function of the precision parameter κ = λ/(2σ 2) at

probability levels of 0.68, 0.95 and 0.99. The total confidence interval is 2c.

A confidence interval of 0.02 radian (∼1◦) on either side of the centre at the

95 per cent level is obtained only for κ > 10 000, and 0.05 radian (∼3◦) is

observed for κ > 800. These values correspond to relative errors δZ/|Z| of

about 0.7 and 2.5 per cent, respectively.

These values correspond to relative errors δZ/|Z of 0.7 and 2.5 per

cent, respectively.

5 D I S C U S S I O N

Confidence intervals obtained independently from eqs (15) and (18)

tend to underestimate the true value because they are exclusive,

placing all of the uncertainty in ψ or φ, respectively. Unless there

is an a priori reason to believe that one parameter is substantially

more accurate than the other, it is simultaneous confidence intervals

on both the magnitude squared response and the phase at a given

probability level that are required for inference purposes. Let γ =
1 − α in eqs (15) and (18). Simultaneous Bonferroni confidence
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Table 1. Apparent resistivity statistics.

Period (s) κ ρ (�-m) B[ρ] (�-m) Exact 95 per cent Delta 95 per cent γ

17 067 5.30 3.40 0.641 5.72 4.67 0.949

12 800 1.65 0.384 0.233 1.44 0.948 0.913

8533 10.5 2.15 0.205 2.36 2.10 0.962

6400 6.35 0.564 0.089 0.846 0.709 0.953

4267 18.2 1.23 0.067 0.970 0.912 0.967

3200 32.1 2.24 0.070 1.29 1.25 0.971

2133 47.0 1.83 0.039 0.866 0.847 0.972

1600 45.0 2.36 0.053 1.14 1.12 0.972

1067 81.9 2.47 0.030 0.876 0.865 0.973

800 104 3.60 0.035 1.13 1.12 0.974

533 277 3.76 0.014 0.719 0.717 0.974

400 291 4.36 0.015 0.812 0.809 0.974

267 542 5.68 0.010 0.775 0.773 0.975

200 509 6.85 0.013 0.965 0.962 0.975

133 1234 8.52 0.007 0.770 0.769 0.975

100 1664 9.48 0.006 0.737 0.737 0.975

66.7 4346 11.4 0.003 0.548 0.548 0.975

50.0 6880 13.1 0.002 0.502 0.501 0.975

33.3 14204 13.4 0.001 0.357 0.357 0.975

25.0 14100 16.0 0.001 0.427 0.427 0.975

16.7 6550 13.7 0.002 0.537 0.536 0.975

12.5 317 5.94 0.019 1.06 1.06 0.975

intervals on both parameters may be obtained by replacing α with

α/p (Rencher 1998, section 7.5), where p = 2 is the number of

parameters. Thus, simultaneous confidence intervals on magnitude

squared response and phase at the 95 per cent level would utilize

the 97.5 per cent level in both eqs (15) and (18). Alternately, crit-

ical values from Hotelling’s T2 distribution rather than Student’s

t may be used. It is recommended that the Bonferroni or Hotelling’s

T2 method be more widely adopted, as failure to use simultaneous

confidence intervals will tend to underestimate the uncertainty in

apparent resistivity and phase.

For illustrative purposes, time-series from site 127 (28◦48′S,

23◦47′E) of the 2003 Kaapvaal, South Africa, transect are employed.

The time-series were sampled every 5 s for about 40 d. The hori-

zontal magnetic field from site 172 (22◦38′S, 29◦31′E) was used

as a remote reference. The time-series were converted to MT re-

sponses using the bounded influence estimator described in Chave

& Thomson (2004); the Zyx (where y is east and x is north) com-

ponent of the response function is explored in detail. The electric

field at site 127 is strongly polarized to the north, and the Zyx tensor

element is concomitantly noisy, making it suitable for evaluating the

statistics under less than optimal conditions. The delete-one jack-

knife given in Thomson & Chave (1991) was used to estimate the

standard error s. Zyx and s serve as sample estimates for μR + iμI

and σ , respectively, from which sample estimates of λ, ν and β fol-

low directly. Note that jackknife and parametric variance estimates

are comparable for data that even approximately meet the Gauss–

Markov conditions, although the jackknife is conservative and hence

always yields a slightly larger result (Efron & Stein 1981), so that

use of a parametric variance estimate on the response function would

not substantially alter the conclusions. Bonferroni 95 per cent con-

fidence intervals were obtained using the delta method (eq. 2) by

scaling δZ by 2.24 (or the inverse normal distribution at the 1 −
α/2p level with α = 0.95, where the extra factor of 2 follows from

symmetry), as well as from eq. (15) expressed as apparent resistivity

and eq. (18) for phase, respectively, with γ = 0.975. Note that the

lower integration limit in eq. (15) guarantees that the resulting con-

fidence interval will be at the γ level, but the delta method does not

include the non-negativity constraint. As a result, the delta method

will systematically underestimate the size of the apparent resistivity

confidence band when its lower limit intersects zero.

Table 1 contains period, the sample estimate of the precision pa-

rameter κ , apparent resistivity computed from eq. (1), the bias (i.e.

the difference between the expected and sample values) of the appar-

ent resistivity, the 95 per cent confidence limit on apparent resistivity

from (15), the 95 per cent confidence limit from the delta method,

and the actual probability level achieved in the latter by computing

(15) with the delta method value for c. The precision parameter κ

varies from 2 to 14 000, primarily reflecting decreasing variance

at short periods due to higher coherence and increasing degrees of

freedom in the MT response estimates. The apparent resistivity at

the longest four periods is not useful, as the confidence band is ex-

tremely broad and intersects zero. The bias in the apparent resistivity

is small except at long periods, and even then is not significant when

compared to the confidence limits. Further, the differences between

the confidence limits estimated using the actual distribution and the

delta method are also small, and certainly insignificant once κ ex-

ceeds ∼100. The delta method systematically underestimates the

confidence band, although the difference is not important unless the

lower limit intersects zero. Thus, it appears that the delta method

does produce accurate confidence intervals for the apparent resis-

tivity, presuming that the MT response function estimates and their

standard errors are themselves reliable.

Table 2 shows period, the phase, the 95 per cent confidence limit

on phase from eq. (18), and the 95 per cent confidence limit from

the delta method. The precision parameter estimates are identical

to those in Table 1. Agreement of the exact and delta method con-

fidence intervals is excellent, except at 12 800 s where the delta

method yields nothing meaningful. The delta method systemati-

cally underestimates the confidence band, although the discrepancy

is unimportant.

These are gratifying results given the simplicity of eq. (2), and

would not be known without the statistical basis for comparison

given in this paper. The Site 127 data set is of low quality due to

strong polarization of the electromagnetic field and cultural noise,
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Table 2. Phase statistics.

Period (s) Phase (◦) Exact 95 pre cent (◦) Delta 95 per cent (◦)

17067 13.56 43.47 43.48

12800 41.03 101.1 180.0

8533 76.83 29.28 29.26

6400 61.88 38.96 38.94

4267 66.01 21.78 21.77

3200 58.63 16.24 16.23

2133 66.34 13.37 13.36

1600 62.57 13.67 13.66

1067 60.84 10.08 10.08

800 66.29 8.94 8.93

533 66.46 5.47 5.46

400 66.24 5.33 5.32

267 69.56 3.90 3.90

200 65.87 4.03 4.03

133 67.04 2.59 2.58

100 64.56 2.23 2.23

66.7 59.52 1.38 1.38

50.0 58.39 1.09 1.09

33.3 51.86 0.76 0.76

25.0 47.29 0.76 0.76

16.7 44.85 1.12 1.12

12.5 14.98 5.11 5.11

and hence the delta method is probably valid for all save extremely

noisy or very short duration data sets, where useful response esti-

mates are difficult to obtain in any case.

The apparent resistivity and phase are derived quantities rather

than entities that can be estimated directly from data using a lin-

ear least-squares-based procedure. The approach used in this paper

is to first compute bounded influence estimates for the elements

of the MT tensor Z along with their standard errors (either para-

metrically or based on the jackknife), and then transform these to

apparent resistivity, phase, and their associated confidence limits.

An alternate approach would apply the jackknife directly to the ap-

parent resistivity and phase by deleting data with replacement from

estimates of Z. However, the jackknife yields accurate confidence

limits only if the underlying distribution is approximately Gaussian,

which does not apply to eq. (14) without applying a variance stabi-

lizing transformation (Stuart et al. 1999, section 32.38). It is easy

to show that log(ψ − σ 2) should be jackknifed instead of ψ . Phase

estimates may be jackknifed directly, as the distribution is symmet-

ric and quasi-Gaussian in appearance. An alternate approach would

be application of the bootstrap at a significant increase in computa-

tional load. However, consistency of the much simpler delta method

confidence limits with the full parametric ones suggests that more

complicated approaches are not generally required.

On the basis of empirical analyses, Bentley (1973) and Fournier

& Febrer (1976) claimed that apparent resistivity is log normally

distributed, and this result has been widely cited. It is not diffi-

cult to understand this conclusion if it were derived from ordinary

least-squares MT response function estimates, as would be standard

practice in the 1970s. Such estimates are frequently dominated by

a small number of extreme data, so that the apparent resistivity will

be very long-tailed and its distribution might be approximated as

log normal. However, the correct distribution for the apparent resis-

tivity based on statistical theory is non-central χ 2 with 2 degrees of

freedom, which is always shorter tailed than log normal, especially

as the non-centrality parameter (or the squared response function)

increases. Further, the shapes of the correct distributions for both

apparent resistivity and phase change markedly as the non-centrality

parameter increases, in contrast to log normal or normal approxi-

mations to each. It is recommended that the correct distributions be

used for future inference.
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