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Performance of digital image velocimetry processing techniques

S. P. McKenna, W. R. McGillis

Abstract Digital particle image velocimetry (DPIV)-pro-
cessing techniques have become increasingly more
sophisticated in recent years. However, much work is still
done using standard traditional methods of analysis. This
paper investigates several traditionally based techniques for
cross-correlation image processing in terms of computa-
tional efficiency and measurement accuracy. Direct spatial
domain correlation, standard fast Fourier transform (FFT)
correlation, a dynamic FFT correlation technique, and a new
hybrid correlation method are discussed and evaluated. In
addition, a particle-tracking velocimetry scheme based on
that of Cowen and Monismith (1997) is examined in the
same context as the DPIV methods. A detailed examination
of the behaviors of each correlation method reveals that
direct spatial domain correlation is more accurate than FFT-
based methods, with the standard FFT correlation showing
the weakest performance. Using the more robust methods
(dynamic FFT and hybrid correlation), accuracy can be
improved significantly over the standard FFT method in
many cases, while still remaining computationally efficient.
The particle-tracking algorithm studied was found to yield
comparable accuracy to the DPIV routines and can provide
much higher spatial- resolution possibilities.

1

Introduction

This paper examines the performance of a number of
digital particle image and particle-tracking velocimetry
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(DPIV and PTV)-processing techniques. Focus is
restricted to the more common approaches to DPIV and
PTV processing found in practice today. One reason for
this particular focus is that many commercial image
velocimetry packages available today are based upon
traditional forms of analysis (e.g., fast Fourier transform
techniques). Understanding the limitations and expected
performance of these types of processing codes is neces-
sary. A second reason for this focus is the relative
simplicity of these methods and the lack of intensive
algorithm development required for implementation.

In addition to focusing on basic processing schemes, this
study also puts emphasis on practicality. Theoretical con-
siderations are not used, but rather synthetic image flow
fields are processed to determine expected algorithm per-
formance in terms of accuracy and computational
efficiency. For this investigation, no a priori knowledge of
the flows is used to guide the processing, thereby providing
a truly comprehensive evaluation of the processing meth-
ods. Finally, the material presented in this paper can be
found in greater detail in McKenna (2000).

2

Processing digital image data for velocimetry

Traditional forms of DPIV-processing algorithms have
relied on auto- or cross-correlation schemes. Cross-cor-
relation implementations are typically favored over auto-
correlation methods since the former yield directionally
unambiguous displacements and have been found to
provide superior aggregate performance, e.g., lower
correlation noise, greater dynamic range, and less gradient
bias (Keane and Adrian 1992). Early DPIV cross-correla-
tion analyses were performed in the Fourier domain, as
this provided the most efficient means of processing the
data (e.g., Willert and Gharib 1991). However, with

the continual development of faster CPUs, the need for the
transformation into frequency space is becoming less
imperative and some methods of correlation are
performed ‘brute force’ in the spatial domain directly
(Huang et al. 1993, Roesgen and Totaro 1995). Here, four
cross-correlation algorithms are studied: (1) direct spatial
domain correlation, (2) standard FFT (fast Fourier trans-
form) correlation, (3) dynamic FFT correlation, and (4) a
new hybrid dynamic FFT/direct spatial domain correla-
tion. In addition, a particle-tracking technique that is
based closely on the hybrid method of Cowen and
Monismith (1997) is examined. Each scheme was
investigated for accuracy and efficiency for a number of
prescribed displacement fields.



2.1

Cross-correlation algorithms for DPIV

Extracting velocity information from a pair of single-ex-
posed DPIV images involves subdividing the images
(hereafter, A and B) into smaller subimages and quantify-
ing the average spatial shift of particles from subimages in
A to subimages in B. The spatial offset between A-B sub-
image pairs can be determined using the statistical tech-
nique of cross-correlation. In two dimensions, the discrete
cross-correlation between two real-valued functions, f(x, )
and g(x, y), is given by Gonzales and Wintz (1987) as
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(1)
forx=0,1,..,M-1land y=0, 1, ..., N - 1. Equation
(1) can be used to express the correlation between sub-
images f and g, of dimensions A X B and C X D, respec-
tively. In order to avoid wraparound errors, these samples
should be extended (e.g., through zero-padding) and made
periodic with periods M and N in the x- and y-directions
suchthat M=A + C-1and N= B + D - 1; however, in
practice, this precaution may or may not be taken. The
cross-correlation can be computed in either the spatial
domain directly or in the Fourier domain (with certain
potential restrictions), the latter being preferred when
computational efficiency is the primary goal. Before ad-
dressing issues of implementation, Eq. (1) should be
slightly modified to yield a de-meaned, variance-normal-
ized cross-correlation coefficient:
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The quantities f and g represent the respective means of
subimages f and g. A variance-normalized coefficient is a
more robust measure of correlation between two sub-
images since it accounts for intensity variation (both local
and global) between images A and B. This measure of
correlation has been shown to be more accurate than al-
ternative non-normalized measures by Burt et al. (1982)
and Huang et al. (1997). In each of the algorithms exam-
ined here, correlation peak locations are found to subpixel
accuracy using two three-point Gaussian curve fits - one
in the x-direction, one in the y-direction. Thus, in this
investigation, Eq. (2) was used as the correlation measure,
leaving only the implementation of the cross-correlation
calculation (spatial domain versus frequency domain) and
advanced subimage matching strategies as the differences
between the DPIV algorithms considered.

(2)
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Direct spatial domain correlation (template matching)
Direct spatial domain correlation is perhaps the most in-
tuitively straightforward manner in which the cross-cor-
relation can be computed, in that it can be made to mimic
a simple template-matching operation. However, this ap-
proach is also the most numerically intensive. Specifically,

subimage in A

RxS

search region in B

B.,B, B,
—_ . 1
! [}
—_— [}
[]
| '
i ]
]
1
I
I
|
| 1
BFF = :
B?r l I
B, :
Bdr '
Mx N :
I
1
|
1
1
1
|

Fig. 1. Schematic of direct spatial domain cross-correlation cal-
culation. The shaded subimages (B;) show a sampling of all
possible image B subimages used to generate the complete cor-
relation surface. The remainder A-B pairings are found by tiling
the Bj; subimages horizontally and vertically within the search
region as indicated by the arrows

it uses the coefficient given by Eq. (2) with a direct mul-
tiplication operation like that given by Eq. (1). In this
work, the direct correlation has been implemented as de-
picted by Fig. 1. A subimage in A of size M X N is iden-
tified and a search region in B of size R X S is centered
about the subimage in A. The subimage in A (the tem-
plate) is correlated with each possible M X N subimage in
the search region of B, building up a correlation surface of
size (R - M + 1) x (S - N + 1). In this way, issues of
subimage extension and periodicity are avoided and the
actual unique content from image B is utilized.

There are a number of advantages to direct correlation
in the spatial domain. Most importantly, this approach
minimizes the out-of-pattern (or, in-plane loss-of-pairs)
effect (Keane and Adrian 1992, Huang et al. 1993) since,
under ideal conditions, a properly defined search region
allows for all of the particles in the subimage from A to be
found in a subimage from B. This has been referred to as
particle image pattern matching, or PIPM (Huang et al.
1993). By allowing for PIPM, direct correlation is a pow-
erful method of cross-correlation, and this was found to be
the case as will be shown in Sect. 3. A further advantage of
the direct spatial domain approach is its flexibility. Unlike
FFT-based schemes that can be restricted by certain Fou-
rier transform algorithms (e.g., square, power-of-two,
equal-size subimages), direct correlation has no limita-
tions on subimage/search region shapes or sizes. This can
be helpful when flows are quasi-unidirectional (e.g.,
channel flows). In such instances, the search region can be
stretched in the flow direction and reduced in the cross-
flow direction, reducing the number of unnecessary
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computations. Eliminating unnecessary calculations is
particularly desirable for the direct correlation since this
method of correlation is an order N* operation. To ame-
liorate this issue of computational load, possible speed
enhancements have been implemented for direct spatial
domain correlation schemes (Roesgen and Totaro 1995;
the present hybrid technique).

2.1.2

FFT correlation

Because the direct spatial domain correlation operation is
so computationally demanding, use of Fourier transform
methods is popular in DPIV processing. In frequency
space, the double summation in Eq. (1) can be replaced by
a complex conjugate pointwise multiplication of the two-
dimensional Fourier-transformed subimages. This is
expressed by the correlation theorem (Gonzales and Wintz
1987),

f(x,y)og(x,y) & F(&n)G" (&) (3)

where F denotes the Fourier transform of the function f,
and G* represents the complex conjugate of the Fourier
transform of function g. In practice, the FFT implementa-
tion involves taking an N X N subimage from image A and
a co-located N x N subimage in B, and generating the
correlation surface in a single step using Eq. (3) with Eq. (2).
When working with an FFT calculation of the corre-
lation, it must be understood that the correlation theo-
rem assumes the samples being correlated are periodic.
For DPIV, this means that the two raw subimages being
correlated, which are not periodic, are considered peri-
odic with periods equal to the subimage dimensions. This
condition reveals under which circumstances the FFT
computation of the correlation and the direct spatial
domain calculation of the correlation will be equivalent.
The two will be equal only when the direct correlation is
executed using subimages that are made periodic with
periods equal to the subimage dimensions. However, as
Fig. 1 illustrates, the direct-correlation approach
discussed here does not impose this periodicity, but
instead uses the actual content of image B to calculate the
correlation in a template-matching sense - the informa-
tion is available and the direct correlation method
exploits it, avoiding errors due to in-plane loss of pairs.
In the case of the FFT approach, windowing methods like
those used in spectral analysis to deal with the artifacts of
non-periodic data are undesirable in DPIV since they can
introduce systematic errors and/or degrade the correla-
tion signal-to-noise ratio (Raffel et al. 1998). Further-
more, Westerweel (1993) has argued that the use of
window functions is unnecessary in practice. The method
of zero-padding the subimage data in order to remove
wraparound errors is also a possible topic of debate.
Wraparound errors emerge when the domain for the
computed correlation is not large enough and part of the
unresolved correlation is folded back (aliased) onto the
correlation space. For a common N X N subimage, this
would typically require padding the sample with zeros to
arrive at a sample of size M X M, with M = 2N. West-
erweel notes that in practice, for particle displacements
less than about 1/4 of the subimage size (N/4), the cross-

correlation effectively vanishes beyond displacement
offsets of N/4. This being the case, the choice of M = N is
acceptable. However, calculating the cross-correlation via
FFTs without zero-padding can have consequences for
larger displacements (Westerweel 1993) and for multiple-
exposure images (Westerweel 1997). In the spirit of
simplicity and based on the practical findings of West-
erweel, neither zero-padding nor windowing is used in
the FFT-based methods studied here.

The FFT correlation method, while very efficient, only
being of the order of Nlog N in complexity, can suffer
dramatically from the out-of-pattern effect since the sub-
image in B typically will fail to contain all of the particles
found in the subimage from A. As the mean particle dis-
placement increases (e.g., >1 pixel) this effect becomes
more pronounced and errors can become significant.
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Dynamic FFT correlation (DFFT)

Westerweel et al. (1997) have shown that out-of-pattern
effect difficulties can be removed by using an image-
shifting technique. The authors find that by shifting the
location of the subimage in image B by an amount equal to
the integer part of the displacement (in pixels, px), the
precision of the cross-correlation estimates can be en-
hanced. The improved precision stems from results
showing that the root-mean-square (RMS) error in esti-
mating displacements is proportional to the displacement
itself for displacements less than 1/2 px (Adrian 1991,
Willert and Gharib 1991). By shifting the location of the
subimage in B by the integer value closest to the total
displacement and performing the cross-correlation, the
residual displacement will always be less than 1/2 px, thus
yielding less variation in the measurement error. The
Westerweel et al. (1997) approach was shown to improve
the displacement estimate accuracy for cases where a
universal mean flow component existed (simulated iso-
tropic turbulence and experimental grid turbulence) and
also for the more general case of a pipe flow where the
shifting was implemented on a subimage-by-subimage
basis using an initial correlation pass, followed by a second
pass using individually offset subimages.

In their hybrid particle-tracking algorithm, Cowen and
Monismith (1997) present a dynamic subimage-shifting
procedure for FFT-based correlation methods. This strat-
egy was adopted for the dynamic FFT (DFFT) algorithm
used here. The scheme begins with a standard FFT pass
through the entire image. This pass provides an initial
estimated displacement vector for each node location. For
each node, the (dx, dy) displacement estimates are
rounded to their nearest integer values and the results are
used as the amounts by which to dynamically shift the
image B subimage in the next pass. This process is
repeated iteratively for all nodes on a node-by-node basis,
stopping when the rounded integer-pixel displacements
for both components of the displacement are zero. Five
dynamic iterations are performed in all. Scarano and
Riethmuller (1999) report a similar DFFT method in
which, along with dynamic shifting, iterative subimage size
refinement takes place, allowing for increased spatial
resolution.



2.14

Hybrid correlation

To achieve both high accuracy and efficiency, a hybrid
cross-correlation scheme was developed in this work that
makes use of the dynamic FFT approach and the direct
spatial domain calculation of the correlation. It is a
straightforward extension of both that exhibits the fa-
vorable accuracy found in the direct correlation calcula-
tion along with the superior computational efficiency of
the FFT methods. The first phase of the hybrid scheme
performs a full DFFT correlation operation for the image
pair. The second phase further refines the cross-correla-
tion with a limited direct spatial domain correlation
operation. An example serves to illustrate the method-
ology. Consider a node located at (x, y) that has yielded a
converged DFFT result of (—1.017 px, 6.230 px) dis-
placement using N x N subimages. The next step locates
an (N + 6) X (N + 6) search region in image B centered
at coordinates (x - 1, y + 6). This yields a 7 x 7 directly
computed correlation surface that is dominated by the
correlation peak. The choice of a 7 X 7 correlation sur-
face is somewhat arbitrary, but it allows for refinements
to the DFFT displacement up 2.5 px based on the oper-
ation of the present subpixel peak locator, with an ac-
ceptable increase in computation time. This refinement
pass is done once for all nodes in the image.

2.2

Particle tracking

Spatial resolution is a limitation in all correlation-based
DPIV approaches. Flow scales smaller than the subimage
dimensions cannot be captured since the result from an
auto- or cross-correlation operation represents the mean
displacement of all particles within the subimage region.
Therefore, subimage size plays an important role in de-
termining the achievable spatial resolution of the flow.
Reducing the size of the subimage increases the resolution,
but there is a limit on how small the subimage can be
based on the statistical requirement for an adequate
number of particle images, or unique image texture, in the
subimage. A further limitation of typical correlation pro-
cedures, which also derives from the integrating nature of
the correlation operation, is their difficulty in handling
velocity gradients. The main problem encountered when
velocity gradients are present, particularly for standard
static FFT correlation schemes, is gradient biasing. For
instance, when an in-plane gradient exists, faster moving
particles leave the subimage region and the remaining,
slower moving particles act to bias the displacement esti-
mate toward slower velocities. Using dynamic correlation
methods like the ones described here reduces this error.
However, even with dynamic correlations that achieve
PIPM, small-scale gradients are still undetectable because
of the finite size of the correlation subimages. An alter-
native technique that can overcome resolution and gradi-
ent-biasing effects is particle tracking. Particle tracking, by
definition, tracks individual flow tracer particles, and as-
suming ideal particles that exactly follow the flow, can
provide a high-accuracy measurement of the flow field.
The challenge is to successfully track large numbers of
particles to achieve high spatial resolution.

In this work, a particle-tracking scheme based on the
ideas of Cowen and Monismith (1997) was implemented.
The scheme is also similar to those of Keane et al. (1995)
and Rehm and Clemens (1999). It is a hybrid technique
that uses dynamic FFT DPIV results to guide the particle-
matching algorithm. This approach allows for much
higher particle-seeding densities than have been used in
previous particle-tracking methods. Details of the method
can be found in Cowen and Monismith (1997), therefore it
is only summarized here. The routine begins by per-
forming a coarse dynamic FFT DPIV pass over the entire
image domain. Next, the original images are binarized
using a user-adjustable threshold and individual particles
in both images are identified and labeled using a region-
growing algorithm. Particles between image A and image B
are matched in a multi-step process that utilizes the coarse
DPIV pass results as initial displacement estimates that are
increasingly refined and subsequently used to direct the
particle-matching algorithm. Each particle displacement is
found by differencing the two matched particle centers,
which are found from either an intensity-weighted cen-
troiding method or, as in the Cowen and Monismith
(1997) approach, two three-point Gaussian fits. A final
quality control check is imposed: the particle displace-
ment, dp, is compared to the quantities (1 * o) U, where
U, is the final estimated displacement and « is a selectable
factor. If (1 - a)Uese < dp < (1 + ) Uegy, the result is re-
tained, otherwise, the particle match is discarded. This
check effectively operates like an outlier removal routine
and is successful at removing wildly incorrect particle
matches. All particles are tracked in the same fashion, and
the resulting irregularly spaced data are put to a regular
grid using a standard triangulation-based interpolation
routine.

3

Algorithm accuracy and efficiency

To ascertain the accuracy and computational efficiency of
the five processing schemes described above, numerically
generated PIV images were used with known prescribed
displacements. Images were generated by populating a
black background with randomly located particle images.
A random number generator was used to determine the
horizontal (x) and vertical (y) coordinates of each particle
image in the field. Particle images were assumed to possess
normally distributed intensity profiles of the form

(x — x,)2+(y —mz}

(4)

I(x,y) = I, exp { Ry
where I, is the central intensity (also randomly generated)
at the particle center (x,, y,), and ¢ is related to the particle
diameter as D, = 4¢ (based on the e”” intensity value). A
constant particle diameter of D, = 2.8 px was used. The
digital-image array was filled by integrating Eq. (4) over
each member pixel for each particle image. The particle
image density was set at 20 particles per 32 X 32-px image
region. This density is realistic in practice and is compa-
rable to values used in other simulated image tests. Once
particles were distributed in image A, a displacement
function was used to shift the particle locations in image B
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and the pixel intensity integrations repeated. Two dis-
placement functions were investigated: uniform transla-
tion and uniform solid-body rotation. Out-of-plane
particle motions were not simulated.

Errors associated with DPIV algorithms often are de-
composed into two components: mean bias error and RMS
error. Given the actual displacement, d,,, and the estimated
DPIV/PTV displacements, d; (i =1, 2, ..., N), the mean
bias error can be defined as

Ebias = dm - da ) (5)

where d,, represents the spatial mean of the N estimated
displacements. Mean bias errors arise when the actual
correlation peak is not well represented by the peak-fitting
curve or procedure (Huang et al. 1997). This is often the
case when out-of-pattern effects are prominent, or when
strong gradients within the subimage act to broaden and/
or distort the symmetry of the correlation peak. The RMS
error was defined as

N
Erms = %Z (dl - dm)z 5 (6)
i=1

and reflects the deviation of the displacement estimates
about their mean. RMS errors are due to any number of
influences: poor particle seeding, velocity gradients, out-
of-plane particle motions, imaging imperfections (e.g.,
non-uniform illumination, camera non-linearities, paral-
lax), and data acquisition noise. As in Huang et al. (1997),
the errors associated with the methods of processing the
digital-image data are the main focus of this investigation.
For all results shown here, the only post-processing per-
formed on the displacement fields was a simple outlier
removal operation. Outliers were determined on a node-
by-node basis by differencing each component of dis-
placement with its eight neighbors and comparing the
results to a user-selected threshold. If the differences ex-
ceeded this threshold for more than four neighbors, the
value was flagged an outlier and replaced with a bilinearly
interpolated value. With slight modification to the above
scheme, edge and corner values in the data arrays were
also processed with the outlier removal operation. Use of
outlier removal was consistent with the theme of practical
application of these methods.

3.1

Uniform translation

Following the approach of Huang et al. (1997), a series of
subpixel uniform displacements ranging from 0 to 1 px
was considered first. The image size was 640 X 640 px. The
situations for 16 X 16-px and 32 X 32-px subimage size
were studied separately with zero overlap (all measure-
ments independent). For each case, the processing strategy
was held consistent for all processing methods. In these
uniform translation tests, outlier removal was not neces-
sary. The DPIV processing results for the RMS and mean
bias errors are shown in Fig. 2 for the 32 x 32-px case.
Because the direct spatial domain correlation incorporates
the most image information and does not inherently suffer
from out-of-pattern effects, this method produces the most
accurate results, as expected. This figure also begins to
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Fig. 2a, b. Variation of a RMS error, and b mean bias error,
for all four DPIV methods over the 0-1 px displacement range
with 32 x 32 subimage processing

demonstrate the favorable performance of the hybrid
scheme and the reasoning behind it. The hybrid technique
is able to retain the same accuracy as the full direct cor-
relation and as will be shown in Sect. 3.2, does so with an
increase in speed of at least an order of magnitude.
Considering the RMS errors, the variability of the error
for the direct and hybrid techniques remains essentially
constant over the complete subpixel range. The reason for
this finite variability is the statistical variability in the
content of the individual subimages themselves. With
direct calculation, the peak is comprised of correlations
between several different A-B subimage combinations and
consequently, the peak can assume an asymmetric shape
due to the particular spatial distributions of particle im-
ages and their intensities in these subimages. This asym-
metry should be a random process, assuming randomly
located particles with randomly generated intensities.
Thus, subpixel Gaussian curve fitting of the peak, as was
done here, will yield random variability in the computed
peak location. The FFT-based methods produce less cor-
relation peak asymmetry near zero displacements because
of the assumed periodicity of the calculation. This is ob-
served for the FFT and DFFT methods near displacements
of zero and for the DFFT method near 1 px, where it has
shifted to produce a zero residual displacement. The
standard FFT correlation shows a proportional increase in
RMS error as the pixel displacement increases for dis-
placements less than 1/2 px, confirming what was noted



earlier. Beyond 1/2 px, but less than 1 px, the RMS error is
nearly independent of the displacement. The behavior of
the DFFT scheme is somewhat more subtle. For displace-
ments less than 1/2 px, the DFFT results are identical to
that of the FFT method since no shifting takes place. At
0.7 px and beyond, the DFFT results are symmetric (be-
cause of shifting) and at 0.5 px and 0.6 px there are dis-
crepancies. The explanation lies with the dynamic nature
of the DFFT method. When the displacement is 1/2 px,
most DFFT results will converge to rounded values of 0 px
because of the typical underestimation of displacements
computed using FFTs (see Fig. 2b). A small number of
nodes may converge to 1 px, and for these nodes, the
DFFT will shift the second subimage by 1 px. Conse-
quently, the mean result at 1/2 px will be different for the
DFFT compared to the FFT, which does not shift. Simi-
larly, at 0.6 px most DFFT nodes will converge to 1 px, but
a small number may round to 0 px because of underesti-
mation. This results in the increased variability observed
at this displacement.

Turning to the mean bias errors, for the direct and
hybrid methods, the mean bias incurred is extremely small
(0.0005 px mean magnitude over the complete 0-1-px
range). For the two FFT-based methods, the mean bias
errors are comparable in magnitude to the RMS errors, a
result also described by Huang et al. (1997). The non-
symmetric behavior of the DFFT mean bias errors over the
0-1-px range follows the same logic as described above for
the RMS errors. Evident is the consistent underestimation
bias of the displacement using the static FFT scheme. This
is a consequence of in-plane loss of pairs. Westerweel
(1993) has shown that this bias is directly proportional to
the width of the correlation peak relative to the subimage
dimension. In general, this width is determined by not
only the particle image size but also by the variation of the
displacement field over the subimage. To further amplify
this behavior, Fig. 3 shows the displacement frequency
distributions due to a 1.0-px shift for the FFT and direct
spatial domain correlation methods. This result clearly
shows both the significant negative mean bias error and

(a) (b)
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Fig. 3a, b. Displacement frequency distributions for a FFT and
b direct spatial domain correlation methods. Actual displacement
is 1.0 px

the substantial variability of the displacement estimates
obtained from the FFT calculation. Westerweel (1993)
derived an analytical result that enables elimination of this
mean bias error for FFT methods (also, Raffel et al. 1998).
The FFT implementation studied here does not incorpo-
rate this correction since it is unclear as to how prevalent
the use of this correction is in practice. Essentially, the
correction involves a compensation factor in the correla-
tion calculation to account for the in-plane loss of pairs.
Interestingly, the present hybrid technique achieves the
same effect in a different manner: the FFT implementation
of the correlation is employed and the effect of in-plane
loss of pairs is eliminated via the local, direct spatial do-
main calculation of the correlation peak.

Processing with the 16 X 16-px subimages yielded
similar qualitative behavior in both components of the
error over the 0-1-px range. Summarizing, for the 16 x
16-px case, RMS errors were higher by about a factor of 4
and mean bias errors were higher by about a factor of 2.5
over that shown for the 32 x 32-px result. This implies
(and was further validated with tests using 64 x 64-px
subimages) that, for these displacements, the error in the
displacement estimates decreases with increasing subim-
age size. This would be expected since larger subimage
sizes incorporate a greater statistical sample, or alterna-
tively, more unique subimage templates; the drawback, of
course, is reduced spatial resolution.

Investigating the errors for pixel displacements in the
0-1-px range is useful in ascertaining the detailed behavior
of the correlation schemes. Here, it has revealed certain
shortcomings of FFT, as well as DFFT, methods of DPIV
processing that are undesirable in certain flow situations.
However, rare is it that DPIV images yield such small
displacements in general, making processing schemes that
use offset subimages very advantageous (e.g., Westerweel
et al. 1997). To examine the behavior of the four pro-
cessing methods for pixel displacements larger than 1 px,
the same procedure as above was performed for dis-
placements of 1.25, 2.25, .. ., 10.25 px (Fig. 4). First to note
is the relatively poor performance of the standard FFT
method, in terms of consistent negative mean bias error
(underestimation) and larger RMS variability in the error.
This is a consequence of its static nature and the resulting
out-of-pattern effects incurred. For the other three meth-
ods, patterns very similar to the results for the 0-1-px
range were found to repeat for subsequent single-pixel
intervals (see Fig. 6) and the results at dx.25 px are
observed. Thus, increasing displacements have little effect
on the behavior of the accuracy of these three methods.
This is noteworthy because subimage shifting is taking
place automatically, thereby handling general flow pat-
terns without any special knowledge of the flow. Results
using 16 X 16-px subimages showed both larger RMS and
mean bias errors, and somewhat less systematic behavior
over the range of displacements. Considering just the FFT
results as an indicator, the maximum RMS error was
nearly an order of magnitude higher (at a displacement of
5.25 px - beyond this point, the correlation is nearing the
Nyquist limit and the estimates become poor) compared to
the 32 x 32-px case. The largest FFT mean bias error was
higher by roughly a factor of 3 for the 16 x 16-px case.
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Fig. 4a, b. Variation of a RMS error, and b mean bias error, for
all four DPIV methods over the 0-10.25-px displacement range
with 32 X 32-px subimage processing

The mean, relative displacement error,

di —d,
dq

1 N

Erel = N E

i=1

X 100% | (7)

for the 32 x 32-px subimage size case over the detailed 0-
1-px range and the extended displacement range is shown
in Fig. 5. For this case, as well as for the 16 X 16-px case
(not shown), the direct and hybrid methods show the
smallest errors, with the DFFT method yielding similar
results. For all methods, the errors beyond about 2 px are
relatively constant - less than 2% for the 32 X 32-px case,
and less than 5% for the 16 X 16-px case. These results
show that the directly calculated correlation methods
(direct and hybrid) are noticeably superior to the tradi-
tional static FFT method over the complete displacement
range studied and are slightly better than the DFFT
method over this range.

To further understand the detailed behavior of the
DPIV errors at larger displacements, a more detailed
analysis was performed for the 5-6-px displacement range
and the 32 X 32-px results are given in Fig. 6. The errors
for the DFFT, direct, and hybrid methods appear to be
cyclical over the displacement range studied. Over this
range, both the RMS and mean bias errors show qualita-
tive similarity to the 0-1-px range results, indicating that
PIPM is achieved. This is not the case for the FFT method
and consistent errors are observed. Unlike the result for
the 0-1-px range, the relative error also exhibits a cyclic
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%—x DFFT

A *——% Direct
S6 @\ —8—8—e R~ » Hybrid ]
S
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o4
2
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[0}
o 2f-

0 | ; .
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(@) Displacement (px)

Relative error (%)
N

N

4 6
(b) Displacement (px)

Fig. 5a, b. Variation of relative error over the a 0-1-px dis-
placement range, and b 0-10.25-px displacement range, for all
four DPIV methods with 32 X 32-px subimage processing

pattern over the 5-6-px displacement range. This is be-
cause the relative error for the 0-1-px range is based on
scaling the absolute error by a small displacement value
(<1 px), whereas for the 5-6-px range, the absolute error
is similar but the scaling value is much larger.

At this point, the results of PTV processing of the
uniform displacement tests are included. Figures 7 and 8
show the 32 X 32-px DPIV error results with the raw, ir-
regularly gridded results of PTV included. Although ex-
hibiting favorable mean bias errors of less than 0.012 px,
the RMS errors are quite large. The primary reason behind
this is particle pair mismatching. Although these events
were rare, the errors incurred were relatively significant,
leading to the large RMS errors seen in Fig. 7a and the
large relative errors for the smallest displacements in
Fig. 8a. Figure 8c shows the behavior of the PTV error at
larger displacements in more detail. The PTV error also
appears to exhibit a cyclic structure for displacements
greater than 1 px.

3.2

Uniform rotation

To simulate rotational flow, synthetic image pairs were
used to achieve constant vorticity, solid-body rotations.
Two rotations were investigated. The rotation used for
the 16 X 16-px subimage case had a maximum pixel
displacement of 5.6 px and the rotation used for the



0.05

FFT
DFFT
Direct
Hybrid

RMS error (px)

5 5.2 54 5.6 5.8 6
Displacement (px)

©

o]

)
:

-0.02 (®)

0,04y ey A e .
-0.06 !

5 5.2 5.4 5.6 5.8 6
Displacement (px)

Mean bias error (px

Relative error (%)
o©
o

L

5.6 5.8 6
Displacement (px)

5 5.2

5.4

Fig. 6a-c. Variation of a RMS error, b mean bias error, and
c relative error, for all four DPIV methods over the 5-6-px
displacement range with 32 X 32-px subimages

0.12 B & . — . -
. o—oO FFT
%—x  DFFT
01_ .................................................. * X Dired
G—&  Hybrid
A—A PTV
0.08 ........ .

RMS error (px)
(o]
(=]

o
o

0.2 0.4 0.6 0.8
(a) Displacement (px)

I
o
o

Mean bias error (px)
S
o

!
©
=]
@

0 0.2 0.4 0.6 0.8 1
(b) Displacement (px)

Fig. 7a, b. Same as Fig. 2, but with raw, ungridded PTV results
included

-
\*]

Q) O0—O FFT
& *%—x  DFFT
- *—% Direct
9 8_ ............ £ £ H brid H
5 A—A PTV
o (@)
5 4
[
o

0 L i i 1 N

0 0.2 0.4 0.6 0.8 1

Displacement (px)

12 " T T
§ N
§>,’ (b)
."_a 4 .
[
o

0

0

1
9
s
@
mos ............................. (C)
=
X
[
o

5.2 5.4 5.6 5.8
Displacement (px)

Fig. 8a—c. Variation of relative error over the a 0-1-px dis-
placement range, b 0-10.25-px displacement range, and ¢ 5-6-px
displacement range, showing raw, ungridded PTV performance
(32 x 32-px subimage size used for all methods)

32 x 32-px subimage case had a maximum of 11.3 px. The
choice of these displacements was guided by the often used
rule of thumb that the maximum displacement within a
given subimage should be less than about 1/3 of the sub-
image dimension (e.g., Willert and Gharib 1991). In addi-
tion to assessing accuracy, these tests also were used as the
basis for the algorithm efficiency comparison. Computa-
tional performance is presented in Table 1. The speed of
the standard FFT method is readily apparent; it is at least
twice as fast as the other DPIV schemes, being 1-2 orders of
magnitude faster than the direct spatial domain calcula-

Table 1. Computational performance of DPIV/PTV processing
algorithms. Computational times are the result of processing with
a 400-MHz Intel PC running Linux. For the PTV results, sub-
image size reflects the size used during the coarse DPIV pass

Scheme Time (s)  Vector count  Vectors/s
16 X 16-px subimages
FFT 0.71 1369 1928
DFFT 1.43 1369 957
Direct 9.73 1369 141
Hybrid 3.18 1369 431
PTV 4.62 5376 1164
32 x 32-px subimages
FFT 0.81 361 446
DFFT 1.63 361 221
Direct 35.11 361 10
Hybrid 3.29 361 110
PTV 4.62 5101 1104
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tion. While not as efficient as the FFT-based algorithms, the
hybrid technique is found to be anywhere from about three
to ten times the speed of the direct correlation. The speed of
the PTV scheme is impressive considering the large num-
ber of vectors the method is able to yield.

The outcome of the accuracy tests is summarized in
Table 2. Outlier removal became a factor in the rotation
tests and is reported in this table. In this case, where a
single mean displacement is of little use, the definition of
the RMS error was modified slightly,

1 N
Erms = NZ (dz - da)z ) (8)
i=1

with the actual local displacement being used instead. The
mean (relative) vorticity error was defined as

53
Evort = =
N i=1

where w, = 20, 0 being the angle of rotation. The
estimated vorticities, w;, were computed from the local
eight-point circulation calculation around each node. This
approach has been shown to be preferable over a first-
order central difference method (Westerweel 1993).
Table 2 reveals how the performance of the algorithms is
affected by the subimage size used. In terms of displace-
ments, the 16 x 16-px subimage size DPIV processing
shows much more error and variability in accuracy than
does the case with 32 x 32-px subimages. This is largely
the effect of the reduced statistical sample size increasing
the probability of spurious correlation peaks. Typically,
at least four or five particles per subimage are required
to obtain an unambiguous measurement of the displace-
ment — at the particle seeding density used here, the av-
erage number of particles per 16 X 16-px subimage is just
slightly greater than five.

X 100% (9)

Wi — Wq
(P

Table 2. Simulated uniform rotation results. Boldface indicates
best performance. DPIV processing parameters are identical to
those used in the uniform translation tests except for outlier
detection. For the 16 x 16-px case, an outlier threshold of 2 px
was used; for the 32 x 32-px case, a threshold of 4 px was used.
DPIV outlier fraction represents the fraction of the total number

Examining the algorithms, at the 16 X 16-px subimage
size, the FFT algorithm shows significant RMS error and
large error in the derived vorticity. The dynamic FFT
scheme reduces these errors by approximately a factor of
2. The direct and hybrid methods further reduce this error
by another factor of 2. Thus, at this fine spatial resolution,
the direct and hybrid techniques are still viable, whereas
the FFT-based routines are being strained. This would
indicate that in addition to extending the useable valid
dynamic range, the direct and hybrid techniques also can
offer greater spatial resolution without sacrificing accura-
cy. The 32 x 32-px subimage results show much improved
accuracy and less performance variability. All DPIV
methods show favorable results, the differences in errors,
both absolute and relative, being small. Note, however,
that the direct and hybrid schemes reduce the displace-
ment errors by nearly a factor of 2 over that of standard
FFT processing. Based on these results, the errors of the
DPIV methods would be expected to become less disparate
as the subimage size became larger, at which point choice
of a processing method can be done based on efficiency
concerns alone.

Three forms of particle-tracking results are also in-
cluded in Table 2. The first, PTV, represents the accuracy
based on the irregularly spaced individual particle vectors.
The second, PTVppry_gria, Tepresents the results after
transforming the raw PTV vectors to a regular grid iden-
tical to the DPIV grid formed by the other four processing
methods. The third, PTVge_gria> T€presents the raw parti-
cle-tracking results gridded to a fine-resolution regular
array. The array density was chosen such that approxi-
mately the same number of vectors appear in the gridded
result as in the raw result, thereby mimicking the actual
spatial resolution.

In both subimage size cases, the PTV result, which
successfully tracked 80-85% of the detected particles,
shows the smallest relative displacement error. Examining

of computed vectors that were determined to be outliers. PTV
outlier fraction represents the fraction of the total number of
particles that were eliminated from tracking due to poor local
correlation or considerable deviation from the local mean
displacement

Scheme Outlier fraction (%)

RMS error (px)

Relative error (%) Vorticity error (%)

16 X 16-px subimages

FFT 7.23 0.326
DFFT 2.41 0.165
Direct 0.73 0.088
Hybrid 0 0.060
PTV 11.08 0.089
PTVDPIV-grid - 0.062
PTV e grid - 0.059
32 X 32-px subimages
FFT 0 0.095
DFFT 0 0.060
Direct 0 0.052
Hybrid 0 0.052
PTV 8.15 0.169
PTVpprv_grid - 0.108
PTV e grid - 0.117

6.93 28.85
3.08 16.84
2.03 7.21
1.98 6.86
1.15 -

1.19 6.77
1.23 14.29
1.93 2.39
1.28 2.07
1.18 1.70
1.18 1.70
0.75 -

1.25 2.97
1.14 11.13




the 16 x 16-px subimage case, the smoothing effect of the
gridding procedure is observed, yielding a reduction in the
particle-tracking RMS errors. This smoothing also has the
effect of marginally increasing the relative error, as would
be expected for a vortical flow with displacement gradi-
ents. The incurred vorticity error as calculated from the
PTVpprv.gria result is essentially the same as that for the
two spatial domain correlation DPIV methods. For the
fine-grid result, the vorticity error is doubled (2.11 X ).
This is not surprising since the finer grid is close to twice
(1.97 x ) the resolution of the DPIV grid and the vorticity
is still computed using eight-point circulation contours.
The vorticity calculation as implemented here involves a
division by the node spacing and will show greater sen-
sitivity as the node spacing is reduced. Thus, the errors in
displacement, which essentially remain the same for both
PTV gridded resolutions, are amplified during the vorticity
calculation for the finer grid resolution. Similar PTV re-
sults are found for the 32 X 32-px subimage case; however,
the RMS errors for the raw data are nearing 0.2 px. It
should be kept in mind, though, that this flow field has
significant displacements - this fact is reflected by the
excellent PTV relative error results. It appears that the
gridding operations in the 32 X 32-px case have the same
effect of reducing the RMS scatter and increasing the rel-
ative errors of the PTV results. The behavior of the relative
vorticity error follows the earlier discussion. In this case,
the PTV e gria results are at a spatial resolution 3.94 times
the DPIV grid results and, as expected, the vorticity error
increases by a similar factor of 3.74 since the displacement
errors do not change significantly between the two reso-
lutions. Rehm and Clemens (1999) report similar behavior
of derived quantities at higher resolutions. Finally, it was
found that except for the FFT method with 16 X 16-px
subimages, all other processing schemes obtained mean
values for the estimated vorticity extremely close to the
actual values (less than 1% error). The FFT results for the
16 x 16-px subimage case underestimated the actual vor-
ticity by about 5%.

4

Summary

These numerical experiments have shown that, on a de-
tailed level, the generation of the cross-correlation using
the direct spatial domain calculation provides high-ac-
curacy results from digital-image data for a variety of
flow fields. The method accomplishes this by incorpo-
rating more of the available actual image content when
computing the correlation surface, rather than relying on
subimage extension and periodicity assumptions. The
result is a correlation that avoids the negative effects of
in-plane loss of pairs and minimizes the displacement
estimate error. The dynamic FFT method is a viable
processing scheme, but the standard FFT method has to
be considered the least accurate of the group studied and
its use would not be suggested unless speed is a primary
concern. Both the DFFT and the hybrid methods can
improve upon the accuracy of the FFT processing at only
minimal computational cost. In fact, the hybrid method,
which is an original approach to PIV data processing,
was found to mimic the accuracy of the direct spatial

domain method, while only requiring a fraction of the
computational effort. The particle-tracking routine stud-
ied has shown its ability to provide accurate displace-
ment results at resolutions several times greater than
standard DPIV techniques. Note, DPIV data often are
oversampled (overlapping subimages), which increases
the number of measurement points. However, this does
nothing to reduce the size of the scales resolvable; the
smallest scales measurable are still dictated by the size of
the subimage. The PTV scheme used here would be
better served by a more sophisticated gridding procedure
than the one employed for these results (e.g., the thin-
shell spline method of Spedding and Rignot 1993), but
this subject is beyond the scope of this paper. Additional
improvements that reduce particle pair mismatching
would also be helpful (see, for example, Rehm and
Clemens 1999).
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