NOSAMS Developments

Hybrid Gas Ion Source Development

NOSAMS has installed a hybrid gas ion source from NEC as the final stage in upgrading the NOSAMS Tandetron AMS system (USAMS). This source can run either graphite samples or carbon dioxide (CO2). The hybrid sputter gas ion source allows direct measurement of radiocarbon in CO2 without first converting to graphite.

Rapid Extraction of Dissolved Inorganic Carbon System

We have developed a new system to efficiently extract dissolved inorganic carbon (DIC) from seawater and groundwater samples. REDICS uses a gas-permeable polymer membrane contractor to extract the DIC from an acidified water sample in the form of carbon dioxide (CO2), introduce it to a helium gas stream, cryogenically isolate it, and store it for stable and radiocarbon isotope analysis. More »

Development of a Continuous-Flow AMS System

Under a NSF Major Research Instrumentation (MRI) award, NOSAMS has built a new AMS system designed specifically for continuously monitoring 14C in a flowing gas stream. The instrument is capable of continuously analyzing chromatographic effluents and determining the abundance of 14C in individual chromatographic peaks. This system will enable a dramatic expansion of significant and well-established lines of inquiry including: (i) surveys of the distribution of radiocarbon among natural products and thus of the sources of those materials, (ii) quantification of 14C tracers at extraordinary levels of dilution, and (iii) sensitive recognition of fossil-fuel-derived pollutants in natural systems by exploiting their zero content of 14C as a ‘negative label’. More »

Image Caption: Mark Roberts Staff Physicist assembles the gas-ion source at the 0º port.

Albert Benthien and Baoxi Han Post-docs 2004 with the gas-ion source .

Development of a Gas-Ion Source

NOSAMS has been exploring the capabilities of a gas-accepting microwave ion source originally built at the Atomic Energy of Canada, Chalk River Laboratories. The source uses 2.45 GHz microwaves and a continuously flowing stream of argon gas to sustain a plasma. Carbon containing gases mixed into the argon yield C+ ions that can be extracted as an ion beam. Negative ions are obtained by passing the beam through a magnesium charge-exchange canal. Initial success with this ion source has led to the design of a new gas-ion source. More »

Image caption: Albert Benthien and Baoxi Han Post-docs 2004 with the gas-ion source.

Karl von Reden Staff Physicist loads samples.

Collaborative Efforts to Improve NEC Ion Source

A collaborative research effort involving National Electrostatics Corp. (NEC) and three AMS laboratories (UC Irvine, University of Arizona, WHOI/NOSAMS) is underway to improve the design of Cs-sputter ion sources manufactured by NEC and currently in use at each of these labs. The NSF-sponsored collaboration is supported for the two-year period beginning in August, 2003. More »

Image caption: Karl von Reden, staff physicist, works on the NEC ion source.