Physical and chemical properties of cesium-bearing microparticles and their impact on the ocean

H. MIURA¹, A. KUBO², T. ISHIMARU³, Y. ITO³, J. KANDA³, Y. KURIHARA⁴, D. TSUMUNE¹, and Y. TAKAHASHI⁵

Type-B

⁽¹Central Research Institute of Electric Power Industry, ²Shizuoka University, ³Tokyo Univ. of Marine Sciences and Technology, ⁴ Japan Atomic Energy Agency,⁵ The University of Tokyo)

1. Cs-bearing microparticles on land

 $\langle 1-1. Introduction \rangle$

Two types of Cs-bearing microparticles (CsMPs) from Fukushima Daiichi Nuclear Power Plant have been reported on land.

Similarities

• matrix is $SiO_2 \rightarrow$ water-resistant

- including Cs and U \rightarrow from FDNPP
- including Fe and Zn

	2.6 μm	100 µm
Differences	(Adachi et al., 2013)	(Ono et al., 2017)
	Type-A	Type-B
¹³⁴ Cs / ¹³⁷ Cs	>1	<1
Size (µm)	~0.1-10	~10-1000
Shape	Mainly spherical	Various
¹³⁷ Cs concentration (Bq/mm ³)	~10 ⁸ -10 ⁹	~10 ⁴ −10 ⁶
Elements	Na, CI (volatile)	Ca, Ti (refractory)

systematically

CsMP(•)

Other particle(•)

\langle 1-4. Deposition area and migration through the river \rangle

Plumes (P2, P3) including Type-A particles from Unit 2

Type-A particles were deposited over a wide area including the Kanto region.

Miura et al. (2018) reported Type-A particles from suspended particles in the river.

 K_{d} value (solid-water distribution) of Cs in river is affected by CsMPs.

the Kuchibuto River

Plume (P1) including Type-B particles from Unit 1

$\langle 1-2. Motivation \rangle$

How CsMPs were generated? \rightarrow related to physico-chemical condition of units at the accident

The number of reported particles was small because of the difficulty of separating.

 \rightarrow wet separation method let us isolate CsMPs easily.

(Miura et al., 2018)

$\langle 1-3. Wet separation method \rangle$ We separated ~100 radioactive CsMPs by the new method to understand physical and chemical properties

Previous method \rightarrow 1 particle/day This method \rightarrow 1 particle/hour

Type-A

but ¹³⁴Cs/¹³⁷Cs was >1.

Type-B particles were deposited in a limited area to the north due to their large size.

Tsuruta et al. (2014); Nakajima et al. (2017); Tsuruta et al. (2018); Katata et al. (2015); Chino et al. (2016); Tanabe (2012); TEPCO (2017)

\langle 1-5. X-ray µ-computed tomography (CT) for Type-B particles \rangle

Unit 2 · · · Type-A

Gas (mainly Cs, H₂, Rb?) was

emitted from blowout panel.

Unit 1 · · · Type-B

Melt (fuel and other materials) was emitted by hydrogen explosion.

Type-A

particles

- **PM-C** (plankton net)
- **PM-D** (sinking particles)
- **PM-F** (suspended particles at estuary)

CsMPs from Unit 3 were deposited mainly onto the ocean surface.

The plume from Unit 3 was directed toward the ocean.

these CsMPs were consistent with Type-B particles

Cs concentration and elemental composition of

These CsMPs probably originated from Unit 3.

The contribution ratio of CsMPs to each sample ranged from 4.1–99.5% (median 58.8%).

The large variation of Cs activity in marine sediments might be explained by the presence of CsMPs in the ocean.

Cs in CsMPs contribution ratio (%) = ×100 Cs in bulk sample

• **MS-E1**, **E-2** (marine sediment)

Cs concentration and ¹³⁴Cs/¹³⁷Cs of MS particles were consistent with Type-A particles but they look aggregate.

MS particles include Ca possibly from concrete. (Type-A particles do not include Ca.)

The molten core concrete interaction was more limited in Unit 2 than in Unit 3.

The plume from Unit 3 was directed toward the ocean.

MS-E1 and -E2 probably originated from Unit 3.

The presence of CsMPs can cause overestimation of the Kd of Cs for marine samples and a high apparent CF(concentration factor) of Cs for marine biota.

Corresponding Author: Hikaru Miura (hi-miura@criepi.denken.or.jp)