Chapter 14 Weakly nonlinear instability theory and chaos

14.1 Introduction:

We have examined severd linear stability problems and have found norma mode
solutions that grow exponentialy when the basic flow is ungable. Obvioudy, such exponentid
growth cannot continue indefinitely. When the perturbation amplitude is no longer infinitesmd,
the reservoir of energy, which seemsinfinite to the tiny perturbation, becomes depleted and the
dructure of the mean flow, which remains equd to the basic flow to order amplitude squared,
will begin to noticeably change affecting the further evolution of the perturbation. That being the
case we can ask whether those changes will eventudly halt the growth of the wave and if <o, &
what amplitude leve? And, if the amplitude does reach a saturation value what subsequently
happens? Does the amplitude remain fixed at that vaue or is there further dynamicd variations?
These are difficult questions to answer in generd and we will discussin this chapter avery
smple modd in which the amplitude remains smdl but no longer infinitesma. Thisdlows usto
condruct atheory for the equilibration of the perturbation while still alowing usto use an
expandon method to find explicit solutions. We will examine avery smple problem, namely, the
two layer Phillips modd without beta but in the presence of Ekman friction. In Chapter 10 we
derived the stability condition.
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For our purposes it turns out to be smpler to consider the parameter F as the criticd
parameter asking what vaue of F is necessary for indability for agiven shear. Clearly, this
yields,
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Figure 14.1 The curve of Fg;; vs. k.

We now imagine that we are conddering avaue of F thet is dightly greater than the
critical vaue at that wavenumber k. So we write,
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The nature of the nonlinear dynamics depends very much on the relative importance of
frictiond to inertid forces and we will be interested, as indicated in the figure, for wavenumbers
on theinviscid branch of the curve where friction is not the defining stability condition so that the
second term in (14.1.2) is smal with respect to the first term. In particular, we will be interested
in the limit where the second term in (14.1.2) is of the same order as the third term. Thiswill
enaure that the frictiond time scale (essentidly the spin-down time) is of the same order asthe
inviscid estimate of the inviscid e-folding time of the ingtability. If we assume thet ordering,
equation (10. 4.12) dlows us to cdculate the growth rate and find
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Hence for smal D and for r> =O(D) the growth rate will be of order D¥2. This further implies
that the time for growth will be long, much longer than the advective time L/U that we have used
for the time scale for the quasi-geostrophic equations. We will exploit this fact by considering
that al dependent variables are explicitly functions of two times: one is the advective time whose
vaiableist and variables, like the geostrophic streamfunctions will dso be evolving on with the
dow time variable T=D"2t. In particular thisimplies that al variables are functions of both

time varidbles, i.e.
fo=f,(xytT) (14.1.4)
time derivatives in the origind quas-geostrophic equations will be replaced by,

Te 1ipe L (14.1.5)
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Wewill dso explicitly scae the amplitude of the geostrophic perturbation stream

functionsin (10.2.5), i.e we write

fo=6, (14.1.6)
where e measures the perturbation amplitude and we shall see that we will get abaance

between the linear destabilization process and a nonlinear equilibration processby determining
that e =O( D"?).

14.2 The mathematical formulation

Let’suse a Galilean transformation and choose the basic flow to have equa and opposite
veoditiesin the two layers. In that case, linear theory tells us that in the aosence of averticdly
averaged basic flow the red part of the frequency on the marginal curvewill be zero. That
alows usto search for solutions in which the fields are functions of only the dow time T. It isnot
difficult to handle casesin which both times explicitly are present but the algebrais a bit smpler
if we choose the above configuration. Then
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and the quasi-geostrophic equations for the perturbations are:
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We now smply expand in the asymptotic series,

i = 2+g P+ej @+, (14.2.4)
and use the fact that
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At O(1) from (14.2.2) we obtain the equations for the lowest order perturbation stream function
(recdl that f . = ¢ ). Theseyidd the solutions when D=0, right on the margind curve a
infinitesma amplitude, i.e.
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From which it follows that for wave perturbations of the form

j @@= ReAﬂ')e'kxsmrrpy——An(T)é"Xsanpy+* (14.2.7)

that
A=AC°A (14.2.8)
just asin the linear problem on the margina curve.

Note that the amplitude of the perturbation is an, as yet, unknown function of the dow
timeT. Our god isto develop evolution equations for the amplitudes on the dow time. What
we accomplished by consdering a separation of time scaes is that we have been able to solve
for the lowest order spatial structure independent of the development process on the long time
scae and thiswill dlow usto obtain an evolution equation for the perturbation that focuses on
the development only in time. The next order problem is the problem at order

e =0(D"?) =O(r) . At this order we obtain the problem for j @, namely,
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(14294, b)

Since each of the lowest order solutions is a plane wave the Jacobian of each wave with
itsrelative vorticity (Laplacian) isidenticaly zero so that the nonlinear terms on the right hand
sdeof (14.29 a, b) areidenticaly zero.

If we put in the form of the order one solutions as given by (14.2.7) and search for

solutions of the O(e) perturbation fields as,

j @ =ReA"d“snmpy (14.2.10)
we find that, the two equations above are redundant and each give
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The firg term on the right hand side gives us a solution at O(e) which reproduces the O(1)
solution in its horizontal and vertica ructure. We can normaize our solution and ingst thet dl
terms with that Sructure are contained aready in the O(1) solution otherwise we are only
redefining A. The second term however is very sgnificant. It provides the solution with a phase
shift between the two layersthat is proportiond to both the rate of increase of the wave
amplitude and to the friction in the modd. This may become clearer if we write out the solution

we have obtained to this point.
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Thetermsin A are precisely the vertica structure we would obtain from the linear two layer

modd in thevidnity of the margind curve if we were to write ﬂ%T =kcA. The above



expresson would give us vertical structure of the dightly unstable wave as affected by the
exponentia growth and the shear. If we were to assume exponentia growth, of course, the
game would be over for then we would be frozen into an exponentia incresse of the amplitude
which is precisdy what we are trying to avoid. The use of the dow time variable dlows usto
represent the phase shift due to growth (or decay) of the wave amplitude without specifying a
priori the nature of the time behavior. We will solve for thet as part of the nonlinear problem.

Notice that we have added to each perturbation an order amplitude squared (e?)
function that is only afunction of y and the dow time T. Since the linear operators on the right
hand involve x derivatives of the function we can ways, at each order, add such functions as
homogeneous solutions. We will shortly see that these corrections, which represent corrections
to the zona mean flow at O(e?) are the first corrections that are required. We should have
anticipated this on the basis of the iterative calculation we did for the Eady problem where we
calculated the correction to the mean flow. The disadvantage of doing it in an iterdtive way in
which the totd linear solution is used, isthat the correction as well as the perturbations
themsalves continue to grow exponentidly.

So, at this stage we il need to find equations governing the evolution of the amplitude A
of the lowest order solution and equations governing the change in the mean flow. Aswe shdl
see these equations are coupled. If we go back to our origind equations, (14.2.2 a, b) we note
that the increment of F above the critica value, i.e. terms of O(D or d) have not yet entered the
problem. That is, to this order, the physics doesn't redlize we are actually supercritica and that
the linear perturbations would grow. We clearly need to include that physics and so we will
push on to the next order in e. At thisthird order problem the supercriticdity will enter and it is
at this order that the equations for the wave amplitude and the mean flow corrections will be
determined.

Itisfirgt convenient to define the function,
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If we now go to the third order problem for j .? we obtain:
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Carrying out the calculaions indicated in the right hand side of the above equationsis tedious
and lengthy. The important point is that the Jacobian terms do not vanish. Indeed they yield two
different types of forcing termsfor the problem. One set of interactions, between the lowest
order eigenfunctionsj * and the potentia vorticity of the next order correction that is
wavelike, i.e. the terms coming from the function X, contribute to a forcing term on the right
hand side of the above equations that is independent of X, i.e. aforcing term for a correction to
the zonal mean flow, much as we cal cul ated when we examined the nonlinear correction to the
Eady problem. Thet forcing term, if left unbalanced, would produce atermin j . that would
linearly grow in x according to (14.2.14). We need to baance it with the dow time derivative of
the correction to the mean flow that isindicated in the first term on the right hand sde. Doing S0
leads to the following equations for the mean flow correction:
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Thisisjust the x-averaged potentia vorticity equation in which the correction to the potential
vorticity is being forced by the potentia vorticity flux in the developing wave. We found
something Smilar in the Eady problem except that we did not include friction and we were
already committed to awave fidd that was growing exponentidly in time. Now, the dow
growth of the wave is still undetermined and might even be zero (in a seady wave state). Note,
consistent with the generd theorems of wave-mean flow interaction, the potentia vorticity flux of
the waves vanishes if there were no friction acting on the wave or if the wave amplitudes
themselves were steady. It dso follows from the form of (14.2.15) that the correction to the
mean flow will be purdly barodinic.

The equation aboveisapartia differentid equation and it requires boundary conditions on
y =0 and y=1. We noted before that in the inviscid problem the proper boundary condition for

the correction to the mean flow was all F, =0.Itisnot difficult to show that this still holds true

iy
when Ekman friction is added and we will use that in the solution o f(14.2.15). Now we need to
obtain and equation governing the amplitude A.

There are agroup of terms on the right hand side that will elther have the form, or project
on the form of the O(1) e genfunctions. We can find those terms by multiplying the right hand
sdeof (14.2.14) by € ® sinmpy and integrating fromy =0 to y=1. We are then l&ft with two
agebraic equations for the amplitudes of the O(e®) egenfunctions. Those equations will have as
their left hand sides a matrix times the wave amplitudes of the O(€®) terms. The determinant of
the coefficients of that matrix will be zero and the condition thet the forcing terms on the right
hand side that project on the matrix will vanish yields an equetion for A. Thisis nothing more

than the usua remova of secular termsin an asymptotic expansion. The details are lengthy and



you can find a discussion in Chapter 7 of GFD or in Pedlosky and Frenzen (1980, J. Atmos.
Scai. 37, 1177-1196). The final equation for A becomes,
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S0 that the equation for the mean field correction becomes smply,
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It should be clear from (14.2.16a) that nonlinearity will be of the same order asthe linear
destabilization term (the third term on the left hand side of the equation) if e = O(D"?) . Indeed,
by choosing e wisdy and dightly rescaing the dow time we could diminate nearly dl
parameters in the above equations except g and a2 The rescaing for the time involves writing
T =s _D"’t and choosing s o to make the inviscid growth rate unity so that in (14.2.178) and

(14.2.17b) (below) g = % it istruly the ratio of the growth time for the inviscid
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disturbance to the spin-down time.
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The details of that exercise will be |€ft to the sudent. Before doing so however it is
important to note that the first three terms on the left hand side of (14. 2. 16 @) aonewould
reproduce the equation for the growth rate seen in (14.1.3). We shall concentrate on the
qualitative aspects of the resulting dynamics and so carrying out the rescaling indicated above
we end up with, after aintegration by partsin the last termin (14.2.16 &) with

d’A 3 _dA ' T
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s0 that we have rescaed the dow time so that the growth rate for the inviscid problem is exactly
oneif g iszero. The nonlinear system we have to ded with is then the coupled system (14. 2.
17 a, b) in which the growing wave interacts with the mean flow correction. It isthat interaction
that will affect the growth of the wave and it is that interaction that will dlow the growth to halt.
Note aso that the correction to the mean flow is going to be of order of the square of the wave
amplitude so for smdl amplitudes linear theory will be valid, as we have assumed in the course
to this point. When the amplitude becomes large the mean flow changes and that change enters

the equation for the wave amplitude modifying the linear dynamics. Let’s see how that works.
14.3 The viscous equilibration

When g islarge, the second term in (14.2.17 b) will dominate the first term and we are
tempted to drop the first term. We recognize that this will be a singular perturbation that will not
dlow usto satidy initid conditions on both A and dA/dT. However, we can ded with that in the
usua way by defining new time varigbles to ded with the short time interva near T=0. We will
skip that subtle part of the problem and concentrate on the ultimate fate of the growing
disturbance. From (14.2.17 @) the dominant balance for the mean flow correction is.

2
T e =2|A’sn2mpy (14.3.19)

2

s0 there is aingtantaneous rel ation between the wave amplitude and the mean flow correction.

Inserting thisinto:
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yieldsthefirst order evolution equation for A,

Without loss of generdity we have assumed A isredl. (Check the case of complex A). Note that
the steady solution 0 f(14.3.2) issmply A=+1. It isnot difficult to find the full solution of
(14.3.2) anditis

49T

203

A = Abé — (1433)
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Here A ,istheinitid vaue of the amplitude. For small T this gives exponentia growth with the
linear growth rate 2g / 3 (inthislimit of large g). But for large T the amplitude asymptotes to
plusor minus one as shown in the figure and isindependent of the initial condition. The

disspation has diminated the memory of theinitid data
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A(T) in large y limit, AO = 0.031623
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Figure 13..1 Thetime higtory of the amplitude for thelarge g case.

The solution starts with an exponentiad growth but then equilibrates at a steady amplitude. At
that amplitude the energy extracted from the basic flow just balances the energy dissipated by
friction just asin the margina sability case for the linear problem. The same holds true here for
the supercritica flow but the nonlinearity has hdted the growth at a completely steedy vauein

which the energy baance occurs. Thereis no oscillation of the wave amplitude.

14.4 Theinviscid limit

Now let's congder the other extreme limit in which friction is so small that we can let g go

to zero. In that limit the equation for the mean flow correction is
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and this can be integrated in time immediately to yield,

TF e _ (a2 2\
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whereagain Ao istheinitid vaue of the anplitude. Note that again there is an instantaneous
relation between the wave amplitude and the mean flow correction but that now the initid vaue
of the wave amplitude remains an important parameter of the problem. In addition, the solution
of (14.4.2) iny will yidd aform that is exactly the same as the Sructure we obtained in
examining the nonlinear correction to the mean flow in the Eady problem (compare with (7.2.3,
7.2.4) except for the crucidly important difference that where in the iterative solution we had A
dready exponentidly growing in time. Now we have been able to find the reation between F
and A without specifying the time behavior. The solution of (14.4.2) is,

A Al e
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S0 that the correction to the mean verticd shear has the same profileiny asin the Eady case.

The amplitude equation for g=0 can then be rewritten intermsof A doneusng (14.4.3) in

d’A ' T
- A+ A/gin2 —F dy=0,
to obtain,
dZA 2 2 _
=7 A NA(A| - |A) ) 0 (14.4.4 3, b)
Where
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Note that the amplitude equetion is now reversblein time, it is unchanged by the
transformation T--> -T.
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It is easy to see the quditative nature of the solutions from the form of the equation. It is
the equation for afunny kind of mass spring oscillator. For smal amplitude displacements the
“goring congant” is—1 so the “spring” rather than being a restoring force accel erates the mass
away from the origin (thisis the linear ingtability). For large amplitude the nonlinear spring
becomes restoring and the mass will be brought back to the origin. It is easy to develop this
andogy quantitatively by multiplying (14.4.4) by A. Inthe case when A isred the resulting
equation can be put in the form:

1a0A8
B0 L V(A= E,
28dT )

(14.4.5)

V(A) = - %A2(1+ NA2) + NA*/ 4

where E is a congant of the motion depending on the initid conditions. Figure 14.4.1 shows the
potential and the energy leve for the case where at time T=0 dA/dT =kc A.
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Figure 14.4.1 The “potentid wel” for the inviscid problem,
The solution will perpetudly oscillate back and forth between the limits defined by the
“energy”, E which is determined by initid conditions. Thereis amaximum amplitude of the

order of «/(kc,z)/ N but in andogy with the oscillator the solution does not asymptote to that
limit. Rather it oscillates back and forth between those limits. Figure 14.4.2a shows an example.

In the case shown we have given the initid rate of change of the amplitude equd to the linear
growth rate times the amplitude only the unstable mode isinitiadly excited. We see that the
amplitude oscillates back and forth, without changing Sgn sinceit is capture in the * negative’

energy part of the potentia well.
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A[t) for inviscid equilibration A{0YN"? = 1dAT = keiA
2 T T T T T T T

Figure 14.4.2 aThe amplitude vs. time for g =0. The oscillation is perpetud and depends
on theinitia data

We can dso examine the oscillation in the phase plane of dA/dT vs. A and that is shown

in Figure 14.4.2b.
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phase plane dAMT vs. A

15 T

Figure 14.4.2b Theinviscid “ negative energy” oscillation viewed in the phase plane (A,
dA/dT).

If ingead we make theinitid vaue of dA/dT larger, the “energy’ will be positive and the
solution will pass through zero as shown in the Figure 14.4.3a, b .

A(B) for inviscid equilibration A{0)YN"Z = 1dAMT = kciA
T T T T T T
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Fgure 14.4.3 aThe oscillation of the amplitude when the initid vaue of dA/T islarge

enough to render the energy postive.

phase plane dA/T wvs. A
T T T

Figure 14.4.3 b The phase plane for the oscillation in Figure 14.4.3 a

The amplitude oscillation in Figure 14.4.3 has a large enough energy to pass through the
zero point. In each of these cases the long term behavior of the finite amplitude solution depends
ontheinitia amplitude and theinitid rate of change of the amplitude. The laiter, as we see from
(14.2.12) is equivaent to specifying theinitid vertica phase of the wave. We might expect that
this dependence on initia data would be expunged if we consdered even asmal amount of
friction for then, with time, the syssem’s memory would be dissipated. So, let’s return to our
initid system (14.2.17 a, b) and restore g different from zero but not large enough to dominate
the amplitude development.

14.5 The appear ance of chaos
Now let us consider the full equation (14.2.17 a, b). If gis nather zero nor very large we
can not integrate the equation for the mean field correction directly so that our system remains

third order in time. In the large friction limit and in the zero friction limit the system is ether first

order (large friction) or second order (zero friction). In elther case fundamentd theorems from
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differentid eguations (e.g. Poincare -Bendixon) the solutions must ether eventudly converge to
adeady date or alimit cycle, a periodic solution whose portrait in the phase planeislike
figures 14.4.3b or 14.4.4b. What the appearance of moderate friction doesisto maintain the
third order nature of the problem.

To solve (14.2.17 a) we expand in asine series for the derivative of F | i.e.

F o .
- %:auj(T)anpy (14.5.1)
j=1

snce this automatically satisfies the boundary conditionsony =0 and 1. It turns out to be
necessary to include only the odd integersin (14.5.1) because of the symmetry around the mid-

point of the channd. It dso turns out to be convenient to write

8jm L2 \
U- = +V d
i (jz_ 4m2)(j2p2+a2)8A i
(14.5.2 ab)
B=dA/dT +gA
which leads to the following set of ordinary differentid equations;
dA
— =B-gA
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= k- 05 +a“/2p“}- (k- 0.5V, g,
dT g(k-o.5)2+a2/4p2g@A{( ) P - SH
where
j=2k-1

(14.5.3 a,b,C)
In the above equations Jyex ( aound 30) is the upper limit used in the calculation.
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Y ou should check the following important points.

1) If theseriesfor U; istruncated after the first term then the set (14.5.3 a,b,c)
becomes equivalent to the Lorenz equations ( Pedlosky and Frenzen. 1980,
J.Atmos. Sci. 37,1177-1196)

2) If the seriesistruncated after a singletermit is also equivalent to the model
problem we studied in the first lectures of this course.

In the above cited JA.S. aticleaseries of caculations were done for selected vdues of alp
and g. Here we will briefly review the behavior found.

For very smdl g the solution obtained resembled one of the periodic inviscid solutions.
However, the solution ends in alimit cycle, an oscillation independent of initid  conditions.
Instead of initid datathe “energy” is selected by an integral over one period of the solution of
(14.2.17 &, b). Inthe limit of small friction the solution isindependent of the friction but exists
only because gis not zero. An andytic representation of the limit cycles can befound in
(Pedlosky 1972, JAtmos. Sci., 29, 53-63). The phase plane for the solution is shown in
Figure 14.5.1 for g=0.12 and a/p = (2)"* (i.e. for k=1).

[
-2.40

X=0.1200

Y=4_.1uz28
3 A =

F1G. 4a. The phase plane trajectory of the asymmetric limit
cycle v = 0.12, a/m7r — 2.

Figure 14.5.1 a The phase plane of the nearly inviscid limit cycle
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The osallation itsdlf is shown bdow

3.50

2.50

B e

X=0.1200

Y=4.u428
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FiG. 4b. The time history of the periodic solution.

Figure 14.5.2b The amplitude as afunction of time for theinviscid limit cycle.
Asg isdightly increased the form of the oscillation barely changesuntil g reaches acritica
vaue 0.1295. Now the oscillation must go through two periods before its amplitude repedts, or

more accurately, the period of the oscillation has suddenly doubled. This can be seen most
clearly in the phase plane portrait.
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FiG. 5a. As in Fig. 4a except vy = 0.1295.

Figure 14.5.3 The double period limit cycle

The oscillation has adightly different vaue of the maximum amplitude on each of the two swings
around the limit cycle varying between dightly larger and smdler vaues of the maximum
amplitude. Thiscydeismantained until wereachg = 0.1305 where a second period

doubling occurs (thisisredly hard to see but is obvious examining the numerica output in
detail).
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FiGg. 7a. As in Fig- 4a except y = 0.1305.

Figure 14.5.4 The quadruple period limit cycle.

Thereis abeautiful theory developed by J.J. Feigenbaum (J. Statistical Physics 1978, 19, 25-
52) for the period doubling sequence for the logigtic, or population map
N, =aN, (1- N,), a<4. (14.5.1)

that serves as asimple mode for population variation from the k™ to the k+1% generation.
Studies of that smple system reved oscillations of the population and the number of generations
required to return to the same population level vary with the parameter a in (14.5.1). Itisan
interesting system to play with and you may enjoy seeing the remarkable behavior asa is
increased from 2 to 4. Feigenbaum predicted that the intervals between values of the control
parameter required for period doubling would shrink for the higher doublings according to a

universd rdaion:
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95) - 9G-1
9+ - 90

=4.669201...° 1/e (14.5.2)

In principle (14.5.2) is supposed to hold asymptoticaly, for large j. However if we think of it as

adifference equation for g j we can solve to obtain,
— 0,-0 n-1
g,=g,+ i—el(l ") (14.5.3)

50 that these threshold valuesreach a limit point asn-—> ¥

Oy =0, + gi_'—gl (14.5.4)

If weuse g ; =0.12295 and g , =1.305, we obtain the limiting vaue for g of 1.307725.
Assuming thet is true, what happensfor dightly larger g ? At g = 0.133 we obtain the

amplitude evolution shown below.
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F1G. 8a. As in Fig. 4a except y = 0.133.

3.50

2.50

S0

0

«
0 | 200.00

X=0.1330

-0.50

-1.50
h

SO

-2.

Y=4.4u28
b

-3.50
L

Fi1G. 8b. As in Fig. 4b except y = 0.133.

Figure 14.5. 4 a, b The phase plane and the time hitory of the amplitudefor g =0.133
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The motion observed is gperiodic, i.e. it never exactly repeats and in the common
definiion it ischaotic. That is, it is not possible to predict with accuracy the amplitude a a
much larger time unless your initid vaues of A and dA/dT _and the method of calculation are
perfectly without error. Any departure from the true state will amplify with time.

At larger g the solution becomes even more chaotic, as shown below for the case

whereg =0.17

o
w
s

2.50
h

R

0.50 1.5
S R—
R
[=——

—
200.00

_——
—

fub’y]p 1o ,ulr ]

o X=0.1700

Y=U.uy28

FIG. 11. The aperiodic solution at y = 0.17, a/mw = V2.

Figure 14.5.5 The gperiodic solutionat g =0.17

For larger g the solution appears chaotic for alengthy period of time but eventualy
equilibrates at one of the steady solutions of (14.2.17 a, b). Note that the steady solutions are
identicd to the solutions obtained at large g ,
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F1G. 12. At ¥ = 0.19 eventual equilibration to a steady wave occurs.

Figure 14.5. 6 A temporarily gperiodic solution converging to a steady solution at

g =0.19

At other values of a Smilar behavior occurs, eg. a g 0.21 but at a/p =6 the solution is

strongly aperiodic.
s N LV,
e TV I VTN Y W?’Wm
Figure 14.5.7 The chaotic solution a g =0.21, a/p =6"2.
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For even larger vduesof g we return to the rgpid equilibration without oscillation as we found

in Section 14.3. A rough regime diagram showing the behavior of the numericdly calculated

behavior is shown beow

y o e a3k Jas
=3 215 £q 12200
- .2 Ap
418 €q B
A9 4475 ap
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1439 A5 Ap 15
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FIG. 3. A tabulation of the results of numerical integrations of (2.6a,b). Note that the entries along each line of constant a/ are not
entered linearly with . The number of each entry (e.g., 0.1305 on the a/w = V2 line) refers to the corresponding value of y. The entry
LC refers to a simple *‘dog-bone’’ limit cycle. Entries labeled 2T, 4T or 8T LC refer to limit cycle solutions with two, four or eight times
the fundamental period. Aperiodic solutions are so labeled. Periodic solutions whose phase plane trajectories are not derived by
period doubling of the fundamental are also noted with a crude representation of the phase space cycle. The odd cycleat y = 0.1395,
alm = V17 is also noted and discussed in the text. An inviscid case at y = 0, a/w = V17 is entered as one test case for the numerics.
Diamonds indicate the four cases reported by Smith and Reilly (1977), while the solid line is a rough rendering of their linear stability -
curve for the steady solutions.

Mixed in with the gperiodic solutions there are “idands’ inthe g interva  with degant periodic
solutions of character that are different than those obtained by direct period doubling of the
basic low-g oscillation. An exampleis shown beow a g =0.14 and a/p=2"2.
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Fic. 10b. As in Fig. 4b except y = 0.14,

FIG. 10a. As in Fig. 4a except y = 0.14.

Figure 14.5.7 ab The phase plane and the time history of the amplitude oscillation . The
solution a g =0.14 is perfectly periodic and is an isolated periodic solutioninthe g intervd in
which chaotic solutions are found.

Thisinteresting behavior shows us that the dynamics of the linear ingtability problem is
just apeek into the richness of the dynamics of ungtable systems when finite amplitude effects
are consdered. It isimportant to note that here we have considered only weakly non linear
ingabilities. That is, we have redtricted attention to dightly supercritical states. Nevertheless,
the amplitude equation for A isstrongly nonlinear. The weekness of the nonlinearity has
enabled us to separate the problem for spatia structure from the tempora evolution of the
amplitude. At larger supercriticaity that is no longer possible and we must consider afully
turbulent flow in which the spatial structure becomes asrich as the tempora behavior.

It isaso important to recall that we obtained these amplitude equations by an asymptotic
andysisand not by abrute force truncation of the equations of motion in afinite series of
arbitrarily chosen representation functions ( like asine series). The latter method isthe
traditional one and the one used to originaly obtain the Lorenz set. We have not had to make

such atruncation here.
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