
 
 
Chapter 13 Instability on non-parallel flow. 

 
13.1 Introduction and formulation 

 

We have concentrated our  discussion on the instabilities of parallel, zonal  flows. 

There is the  largest amount of literature on that subject and, in addition to its obvious 

meteorological applicability, it is also true that many of the strongest ocean currents 

exhibit their major instabilities as they flow zonally, e.g. the Gulf Stream or Kuroshio. 

Nevertheless, there are major regions of the ocean where the flow is non-zonal, largely 

meridional and non-parallel. The nature of instabilities in such situations is less well 

understood but we can make certain a priori observations. Consider, for example, a 

meridional flow, independent  of horizontal coordinate (or nearly so on the scale of a 

deformation radius) which has a vertical shear. Because of the β effect such a flow 

requires a driving mechanism, i.e. an input of potential vorticity such as a wind stress 

curl. Once that flow is set up  we can see right away that it will be baroclinically unstable 

since  a disturbance wave with crests running east-west will have fluid trajectories across 

the jet, capable of releasing the available potential energy while at the same time not 

feeling at all the stabilizing influence of planetary β  since the motion is strictly east west. 

This simple example can be generalized to describe the instability of such a horizontally 

uniform baroclinic flow which is directed in any non-zonal direction. A disturbance with 

crests oriented east-west will always have some component of the velocity which crosses 

the basic horizontal density gradient while not sensing β. The details of such a 

calculation can be found in Chapter 7 of GFD.  

The problem becomes more interesting (and complex) when the flow is not only 

non-zonal but not rectilinear. For example, suppose we have a large scale, steady, 

meandering current. Will such a flow be unstable? Are there a priori conditions to 

determine whether it can be? Is there a stability threshold that must be exceeded for the 

instability to be manifested? The answers to questions like these are not completely in 

hand but there are limited examples and theoretical ideas worth examining. 
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Consider first a quasi-geostrophic flow, which is a continuous function of z which 

has the property that its horizontal boundaries are isopycnal (or isentropic for the 

atmosphere). The generalization to include temperature or density variations  on the 

boundary is straightforward and can also be found in chapter 7 of GFD. 

Let us suppose that the basic state streamfunction, Ψ and potential q0 satisfy, 

 

  qo = Q Ψ ,z( )  (13.1.1) 

On each horizontal level the potential vorticity is constant on streamlines in the basic 

state so that J Ψ,qo( ) = 0. This can occur if the flow is unforced and inviscid so that this 

condition is, in fact, the equation of motion describing the flow. Or, as sometimes 

happens, the flow is forced and dissipative but the end state resonates with the steady 

state flow given by (13.1.1). The first example might be the Fofonoff solution for the 

barotropic ocean circulation, (figure 13.1.1) while in the  second case, numerous 

numerical  models with slip boundary conditions can end up in a state like (13.1.1) in a 

final steady state. Are such flows stable?  
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Figure 13.1.1 A Fofonoff mode . 
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The solution of figure 13.1.1 certainly contains strong  shears in the boundary layers and 

one would be forgiven for believing that such a flow must support at least barotropic 

instability. However, an important theorem which we will not prove but only state (its 

proof is in Chapter 7 of GFD) says that a necessary condition for the instability for flows 

satisfying (13.1.1) is that  

 

  
∂qo
∂Ψ

< 0.  (13.1.2) 

 

somewhere in the flow. For the Fofonoff mode qo = a2Ψ,          a2 >  0 , so that the 

condition (13.1.2) is not satisfied so the flow, appearances to the contrary, must be stable. 

Note that for parallel zonal flows for which Ψ =Ψ(y,z), we can write, 

 

 
∂qo
∂Ψ

=
∂qo ∂y
∂Ψ ∂y

= −
∂qo ∂y

Uo
<  0   (13.1.3) 

 

or, 

 

  Uo
∂qo
∂y

> 0   (13.1.4) 

 

This condition is equivalent to the Fjörtoft condition (4.3.15) we derived for zonal flows. 

On the other  hand let�s consider the  stationary Rossby wave. In the presence of a 

uniform zonal flow U. Steady solutions can be found in the form, 

 

 Ψ = −Uy + A cos(kx + ly), K2 = k 2 + l2 =
β
U

  (13.1.5 a,b) 

Now for this barotropic Rossby wave the total potential vorticity is, 
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qo = ∇2Ψ + βy = −K2 A cos(kx + ly) − β
K2 y

 
 
 

 
 
 

= −K2Ψ

  (13.1.6) 

 

such that ∂qo ∂Ψ <  0. The necessary condition for instability is satisfied no matter how 

weak the shears are in the wave i.e. no matter how small the wave amplitude, or the 

wave�s vorticity gradient is compared to the planetary vorticity gradient. Is, in fact, the 

wave unstable for arbitrarily small amplitudes if (13.1.6) is true? That example is the one 

we shall examine more closely. To make our analysis more pertinent to real 

oceanographic situations we will  examine the baroclinic version of the Rossby wave in 

the context of the two-layer model. Large scale Rossby waves are observed in the Pacific. 

Their scales are large compared to the  deformation radius and they are baroclinic (1st 

baroclinic mode). Are they baroclinically unstable? Is there a stability threshold? 

 

13.2 The two layer baroclinic model for the wave instability 

 

If we return to the two-layer equations of chapter 10, in particular (10.1.14) and for 

the time being, ignore the effect of bottom topography and friction, we can rewrite the 

equations  in terms of the baroclinic and barotropic stream functions, i.e. if we define, 

 
ψb = h1ψ1 + h2ψ2,

ψT =ψ1 −ψ2,

hn = Dn
D1 + D2

   (13.2.1 a,b,c) 

then the two layer equations can be rewritten, 
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∂
∂t

∇2ψb + J(ψb,qb) + βψbx + h1h2J(ψT ,qT ) = 0,

∂
∂t

∇2ψT − FψT[ ]+ βψTx
+ (h1 − h2)J(ψT ,qT ) +

J(ψb,qT ) + J(ψT ,qb) = 0,

qb = ∇2ψb,          qT = ∇2ψT − FψT ,     F = F1 + F2 = fo
2L2(D1 + D2)

g'D1D2

 (13.2.3. a.b.c) 

 

Recall that in this nondimensional system time has been scaled with  the advective time 

L/U  while the parameter  β is the ratio of the planetary vorticity gradient to the relative 

vorticity gradient, namely β = βdimL2 U  where U  is the scale of the horizontal  velocity 

in the basic  state. We are particularly interested in the system when, for the large  scale 

Rossby wave, β is a large  parameter. That is when we would  expect the wave to be the 

most stable. 

The solution for the basic wave  baroclinic wave is, 

 

 
ψT =ΨT = Aei (kx+ly−ωt) +*

ω = − βk
k 2 + l2 + F

   (13.2.4 a,b) 

 

For large β this yields a rapid  oscillation on the advective time  scale used  to 

obtain the nondimensional  equations (13.2.3 a,b). This is the time scale on which the 

(nearly)  linear Rossby waves will  propagate. On the other hand, if the  wave is unstable 

we anticipate its growth rate will be on the advective time scale. If β is large these two 

time scales are well separated and we should take advantage of that. We do so by 

explicitly introducing a new �fast� time, 
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 t* = β t    (13.2.5) 

and we consider each variable a function of both  t* and t such that the local time 

derivative in (13.2.3) is transformed to , 

 

 
∂
∂t

→
∂
∂t

+ β ∂
∂t*

   (13.2.6) 

 

Inserting this into the equations  and dividing by  β, we obtain , 

 

 

( ∂
∂t*

+ 1
β

∂
∂t

)∇ 2ψb + 1
β

J (ψb,qb) +ψbx + 1
β

h1h2J (ψT ,qT ) = 0,

(
∂

∂t*
+

1
β

∂
∂t

) ∇ 2ψT − FψT[ ]+ψT x
+ (h1 − h2)

1
β

J(ψT ,qT ) +

1
β

J (ψb,qT ) +
1
β

J (ψT ,qb) = 0,

  (13.2.7) 

 

Note that if β were small the basic wave would just be a large scale flow of the cosine 

type  Kuo examined (since β is zero there would be no difference between a zonal and 

meridional flow) and instability would be assured. That is why the large β  case is of 

greatest conceptual interest. 

We now expand each function in an asymptotic series in the small parameter β −1, 

e.g. 

 

ψb =ψb
(o) + β −1ψb

(1) + O(β −2) + ...

ψT =ψT
(o) + β −1ψT

(1) + O(β −2) + ...

   (13.2.8) 

At lowest order we obtain the linear Rossby wave equations on the fast time variable. 
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∂
∂t*

∇2ψb
(o) +

∂ψb
(o)

∂x
= 0,

∂
∂t*

∇2ψT
(o) − FψT

(o)[ ]+
∂ψT

(o)

∂x
= 0

  (13.2.9 a,b) 

 

As a solution, we will consider a triad of waves, and at this order they are independent 

linear solutions. For reasons that  will be clear shortly the triad will be made up of 1) the 

baroclinic wave whose  stability we are interested to investigate,2) a second  baroclinic 

wave and  3) a barotropic wave. The need for the barotropic wave  will  also become 

clearer below but it is related to what we have discovered in the discussion of the Eady 

eigenfunctions, i.e. that there is a barotropic portion of the unstable wave amplitude.  For 

our triad then, 

 

 

ψb
(o) = A1(t)e

i (k1x+l1y−ω1 t* )
+ *

ψT
(o) = A(t)e

i (kx−ωt* )
+ *

+Aoe
i (kox+loy−ωot* )

+ *

   (13.2.10) 

 

The amplitudes of each wave are as yet unknown functions of the slow advective time.  

We have  taken the basic wave to be independent of  y (although this is not essential) and 

each wave satisfies its appropriate dispersion relation for the frequency on the fast time  

scale, i.e. 
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ω1 = − k1
k1

2 + l1
2 ,    (barotropic)

ω = −
k

k 2 + F
,         (baroclinic  basic  wave)

ωo = − ko
ko

2 + lo
2 + F

  (baroclinic  wave)

  (13.2.11 a,b,c) 

 

At the next order in the expansion, 

 

∂
∂t*

∇2ψb
(1) +

∂ψb
(1)

∂x
= −

∂
∂t

∇2ψb
(o) − J(ψb

(o),qb
(o)) − h1h2J(ψT

(o),qT
(o) ),

∂
∂t*

∇2ψT
(1) − FψT

(1)[ ]+
∂ψT

(1)

∂x
= −

∂
∂t

∇ 2ψT
(o) − FψT

(o)[ ]

−J(ψb
(o),qT

(o) ) − J(ψT
(o),qb

(o)) − (h1 − h2)J (ψT
(o),qT

(o) )

(13.2.12 a,b) 

            

So, at this order the small correction to the streamfunction is forced by the nonlinear 

quadratic interactions of the three waves in the triad. The interaction of any two  of the 

waves will yield  a wave with the wavenumber and frequency of the sum and difference 

of the two interacting waves. That is to say suppose the basic wave and the other 

baroclinic wave interact via the nonlinearity of the last term in (13.2.12a). That quadratic 

interaction will yield a forcing term on the right hands side that has the form of a plane 

wave with wavenumber and frequency, ko + k,    lo,     ωo +ω  . 

The first term on the right hand side of (13.2.12 a,b) has the wavenumber and 

frequency of the operator on the left hand side and if  it were the only such term on the 

right hand side it would produce  a resonance with that operator and a solution growing 

like t*  unless the forcing term is zero, that is, unless, 
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dA1
dt

= 0   (13.2.13) 

The same would clearly hold true for the other two amplitudes as well. The waves would 

not change their amplitude  on the advective time scale, i.e. the basic wave would exhibit 

no instability and the  only effect of the other nonlinear forcing would be to produce  a 

small, O(β −1) correction to the wave field. Not of much interest. If, however, it should 

happen that, in (13.2.12 a) the two baroclinic waves should interact such that the  sum♦ 

of their wavenumbers was equal to the wavenumber of the barotropic wave and the sum 

of their frequencies was equal to the frequency of the barotropic wave�s frequency, then 

the forcing on the right hand side would produce a resonance with the left hand side and 

a linear growth on the fast time scale for the solution of the ψb
(1)  solution. This would 

render the expansion invalid on when β −1t* = t = O(1), i.e. on the time  scale for which 

we expect to see an instability. To preserve our expansion for at least that long we 

balance those  secular nonlinear terms with  the  time derivative term on the right hand 

side. This  will yield an evolution equation for  A1(t)  on the advective time scale. 

Similarly, the interaction between the barotropic  mode and either of the two baroclinic 

modes will yield a resonance in (13.2.12b) unless a similar balance is  struck. 

Thus, if the three wavenumbers and frequencies of the quasi-linear waves satisfy the 

following resonance conditions the waves will  form a resonant triad. A bit of algebra in 

which the resonant terms are thus balanced and removed from the forcing leads to the 

following amplitude  equations, 

 

  

K 2 + F( )dA
dt

= −A1Ao
* " 

K 1 ×
" 
K o[ ]Ko

2 + F − K1
2[ ]

Ko
2 + F( )dAo

dt
= −A1A* " 

K o ×
" 
K 1[ ]K 2 + F − K1

2[ ]

K1
2( )dA1

dt
= h1h2AoA

" 
K 1 ×

" 
K o[ ]Ko

2 − K 2[ ]

  (13.2.14 a,b,c) 

                                                 
♦ With the proper attention to signs this could be the  sum or difference of the 
wavenumbers and frequencies. There is no change in the final result. 
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Here,   
" 

K ,
" 

K o,
" 

K 1 are the wave vectors for the basic wave, the  second baroclinic wave and 

the  barotropic wave respectively, the same symbols without the arrows are the 

magnitude of the vectors  and  

 

   
" 

K 1 =
" 

K o +
" 

K   (13.2.15) 

 

as shown in the figure  13.2.1. 

 

 

 

 

 

 

 

 

Figure 13.2.1 The  resonant triad of two  baroclinic waves and a barotropic wave. 

 

We have also used the following elementary result  
" 

K 1 ×
" 

K o =
" 

K ×
" 

K o .  

Before discussing the solutions of the triad equations let�s pause to consider the 

resonance conditions in more detail. We have to be sure  such resonant triads can actually 

exist.  The resonant conditions are three algebraic equations, i.e. 

 
k + ko = k1,

l + lo = l1,

k
k2 + l2 + F

+ ko
ko

2 + lo
2 + F

= k1
k1

2 + l1
2

   (13.2.16 a,b,c) 

 

The first two equations just algebraically state the condition shown in figure 13.2.1. The 

third equation is the condition that the frequencies of the two baroclinic waves add to 

  
" 

K  

 
" 

K o  
" 

K 1
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yield  the barotropic frequency. Note that the wavenumber components can be negative. 

In the case of greatest interest we will  consider  the basic wave to be propagating in a 

purely westward direction so that l is zero. This implies that l1 = lo . For a given value of 

k can find  k1 in terms of k and ko from (13.2.16a) . Then, (13.2.16c) becomes an 

algebraic equation that yields lo in terms of ko. We  therefore, for a  given k get a family 

of possible triads and for each member of that family we can test the stability of the basic 

wave to the disturbance provided by the other two components of the triad. Note that it is 

a  simple  matter to prove, using the triad  equations and the triad resonance conditions 

that, 

 

 K2 + F[ ]A 2 + Ko
2 + F[ ]Ao

2 + K 2[ ]A1
2 = Ε = const.   (13.2.17) 

so that the total energy in the triad is conserved on the long time  scale. If energy is 

released to the perturbations consisting of the other two members of the triad it must 

come  from the energy stored in the original basic wave. 

To examine the possible instability of the basic wave we can write the wave 

amplitudes of the triad as the basic wave plus an amplitude  perturbation, namely, 

 

A = A + a,

Ao =      ao,

A1 =      a1.

   (13.2.18 a,b,c) 

where the small a�s are in fact small perturbations of the basic wave amplitude A = A . 

When this is inserted into (13.2.14), the first  equation has a right  hand side that is O(a2)  

while linearization of the right hand side of the other two equations  leads to the linear 

system, 
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K 2 + F( )da
dt

= −a1ao
* " 

K 1 ×
" 
K o[ ]Ko

2 + F − K1
2[ ]= O(a2)

Ko
2 + F( )dao

dt
= a1A *

" 
K o ×

" 
K 1[ ]K 2 + F − K1

2[ ],

K1
2( )da1

dt
= −h1h2aoA 

" 
K 1 ×

" 
K o[ ]Ko

2 − K 2[ ]

 (13.2.19a,b,c) 

 

 

 

 

Working with the last two equations yields , 

 

 
  
Ko

2 + F[ ]aott = aoh1h2 A 
2

(
" 

K 1 ×
" 

K o)2 Ko
2 − K2[ ]K 2 + F −K1

2[ ]/K1
2(13.2.20) 

 

Solutions of the form ao = ao(0)eλ t  yield the  growth rate , λ , i.e. 

 

 

  

λ2 =
h1h2 A 2(

" 
K 1 ×

" 
K o)2 Ko

2 − K 2[ ]K 2 + F − K1
2[ ]

K1
2 Ko

2 + F[ ]   (13.2.21) 

 

A positive value of the right  hand side  of (13.2.21), i.e. a real growth rate and an 

instability requires that, 

 

 Ko
2 + F > K 2 + F > K1

2   (13.2.22) 

Which can be interpreted as saying that for the basic  wave to be  unstable to two other 

members of the triad its total wave number, including the two-layer equivalent of the 

vertical wavenumber, must  be intermediate to the  wavenumbers of the other two 

members of the triad. It must lose energy to  both larger and smaller scales.  
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We have been talking about the triad and the triad instability in the subjunctive. Can 

we in fact find unstable triads that satisfy the resonance conditions (13.2.16 a,b,c) and 

yield real growth rates. Recall that we are particularly interested in cases where F is 

large, i.e. when the wavelength of the basic  wave is large compared to a deformation 

radius. Figure 13.2.2 shows the value of lo  which completes the resonant  triad as a 

function of ko for a given value of k (solid line).  The dashed line  shows the growth rate. 

The meridional  wavenumber has been scaled with F1/2 i.e. with the deformation radius. 

For large  F the meridional wavenumber which completes the triad is large compared to 

the O(1)  x-wavenumbers. The scale of the disturbance in y is much  smaller than in x 

and this we anticipated from the Eady or two layer  version of the problem if β is 

rendered weak by the wave orientation. With a large y wavenumber and a small x 

wavenumber the perturbation acts very much like  a f-plane perturbation on a meridional 

shear flow with no beta effect. Indeed for very large F it is easy to show that with the y  

wavenumber of the order of the deformation radius  and the  x wavenumbers of O(1) the 

equation for the growth rate simplifies t 
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Figure 13.2.2 The meridional wavenumber and the growth rate (dashed curve). 

 

Indeed, for large F  a very simple  approximation to the growth rate yields, 

 

 λ / F1/2 = h1h2
� l oV

1− � l o
2[ ]

1+ � l o
2[ ]

 
 
 

 
 

 
 
 

 
 

1/2

   (13.2.23) 

 

where � l o = lo / F1/2,              V = kA . 
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In  this form the growth rate is  reminiscent of the growth rate for the Eady problem for 

an f-plane flow of magnitude  V. It is not exactly the same except in the case when the 

two  layer thicknesses are equal. The third term on the right  hand side of (13.2.12b) will 

obviously not lead to a contribution to a resonant term while it does enter the Eady 

problem. Nevertheless, the result (13.2.23) shares some similar properties. The short 

wave cut-off is of the order of the  deformation radius and the growth rate is of the order 

of VF1/2 or, in dimensional units, Vdim / Ld .  As a function of y  wavenumber the 

maximum growth rate occurs  for � l o = 0.64359, very close to the maximum value for the 

Eady problem. Corresponding to that meridional wavenumber ko = −0.8284k  while 

k1 = 0.1716  k   so that the barotropic mode is very nearly x-independent (remember the y 

wavenumber is O(F1/2). 

It is important to keep in mind the remarkable feature of the result, namely that the flow 

in the basic wave is unstable to the perturbations represented by the two remaining 

members of the triad no matter how large the parameter β is, or equivalently, no matter 

how weak the vertical and horizontal shear is in the wave. The further nonlinear 

evolution of the wave amplitudes can be calculated by direct integration of the amplitude 

equations (13.2.14) 

Figure 13.2.3 shows the amplitude evolution for the most unstable triad for the same 

parameter values as in figure 13.2.2. 
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Figure  13.2.3 Amplitude  evolution of the wave triad. 

 

We  see that initially both of the perturbation waves grow exponentially but then saturate. 

The  amplitude  of the original basic wave is nearly constant during the period of initial 

exponential  growth  in accordance with (13.2.19a) but when the parasitic waves reach a 

large amplitude  the amplitude of the basic wave diminishes as energy is passed from the 

large  scale wave to the perturbations (whose horizontal wavenumber puts their scale at 

the deformation radius). Since the amplitude  equations are reversible with  time in the  

absence of dissipation, the solutions are periodic in time and, in principle, will execute an 

endless repetitive nonlinear oscillation as shown in Figure 13.2.4. 
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Figure 13.2.4 The periodic, nonlinear oscillation which  continues the solution of Figure   

13.2.3. 

 

In fact, once the amplitudes of the other two waves become large the triad will be able to 

share energy with other triads that can be linked to any one of the members of the 

original triad and a turbulent cascade to fill out the wavenumber spectrum begins. 

 

 

 

 

13.3 General considerations of Enstrophy. 

 

In addition to the energy constraint (13.2.17) for the triad  it is possible to also show 

that the enstrophy of the triad is conserved, that is, 

 

K2 + F( )2
A 2 + Ko

2 + F( )2
Ao

2 + K1
4 A1

2 =V = const.   (13.3.1) 
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which is the triad version of the conservation of mean squared perturbation potential  

vorticity or enstrophy.  If we define the energy of each component of the triad as, 

 

 

E = (K2 + F) A 2,

Eo = (Ko
2 + F) Ao

2,

E1 = (K2) A1
2

   (13.3.2 a,b,.c) 

then the  combination of t energy and enstrophy conservation yields, 

 

 

 
(K2 + F) Ý E + (Ko

2 + F) Ý E o + (K1
2) Ý E 1 = 0,

Ý E + Ý E o + Ý E 1 = 0

  (13.3.3 a,b) 

 

where an over-dot stands for a time  derivative. If we define the total wavenumber as, 

 

 κ j
2 = K j

2 + pF   (13.3.4) 

where j is an index pertaining to any of the  three  waves and p =0 for a barotropic wave 

and p = 1 for the baroclinic wave in the two-layer model then (13.3.3 a,b) is just 

 

 
(κ 2) Ý E + (κo

2) Ý E o + (κ1
2) Ý E 1 = 0,

Ý E + Ý E o + Ý E 1 = 0

   (13.3.5 a,b) 

 

From these two equations it is easy to show that, 

 

 
Ý E 

(κ1
2 −κo

2)
=

Ý E o
(κ 2 −κ1

2)
=

Ý E 1
(κo

2 −κ 2)
  (13.3.6) 
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Since, in our case κo
2 >κ 2 >κ1

2 it follows that  energy must go to scales larger and 

smaller than the basic wave in order to conserve energy and enstrophy in the triad and 

this is consistent with the results of our instability calculation. 

 

 

  


