
Chapter 12 

 
 

Chapter 12. Barotropic Instability 

 
12.1 Formulation 

We have concentrated on the baroclinic  instability problem in which the source of 

energy is the potential energy made available by the horizontal density gradients in the 

fluid. There is a second source of energy for instabilities manifested in the horizontal 

shear of the current which may be released by the Reynolds stresses. This kind of 

instability is called barotropic instability because it can occur in a non stratified or 

barotropic fluid. However, the process can also occur in a stratified fluid and can coexist 

with baroclinic instability. However, to study its properties in the purest and simplest 

form first consider a basic current which has horizontal but  not vertical shear. That is, let 

 

Uo = Uo(y)   (12.1.1) 

 

We will also consider only a flat bottom. The normal mode equation  (5.1.4)  for such a 

basic flow simplifies to, 
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 (12.1.2a,b,c,d) 

 

In the absence of topography the simple boundary condition on the lateral boundaries 

allows a separation of  vertical and horizontal structure of the problem. Consider the  

Sturm-Liouville  problem, 
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= 0, z = 0,D

  (12.1.3.a,b) 

 

This standard eigenvalue problem generates a complete set of eigenfunctions and 

eigenvalues Z j ,λ j{ } which can be used to represent an arbitrary vertical structure for the 

perturbation. That is, we could write any perturbation as, 

 

 Φ = Re Aj (y)Zj (z)e
ik(x−c j t)

j=0
∑   (12.1.4) 

 

and for  each term in the sum the governing equation is 

 

 

Uo − c[ ] d2A
dy2 − (λ + k2)A
 

 
 
 

 

 
 
 + β −Uoyy( )A = 0,

A = 0, y = y1, y2

  (12.1.5 a,b) 

 

where we have suppressed the subscript j on A, λ and c. Note that the lowest eigenvalue 

for the problem (12.1.3) is always λ =0 corresponding to an eigenfunction independent of 

z (and without loss of generality we may take it as 1). This is furthermore independent of 

the structure of N(z). 

We define the total wavenumber as κ 2 = k2 + λ . It is clear from  (12.1.5a) that the 

phase speed c will be a function only of κ. On the other hand, the growth rate is 

 

ωi = kci (κ )   (12.1.6) 

 

For a given κ the growth rate will be largest for the maximum possible k at that κ and that 

clearly takes place for the eigenvalue corresponding to λ =0. For a stratified fluid subject 
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to the boundary condition (12.1.2b) a basic flow which is independent of z will be most 

unstable to perturbations that are also independent of z.  We will henceforth consider 

only barotropic disturbances. 

The necessary condition for instability for the barotropic flow is simply, 

 

 ci A 2 (β −Uoyy )

Uo − c 2 dy
y1

y2
∫ = 0  (12.1.7) 

Therefore, the potential vorticity gradient ∂qo /∂y  must change sign. A weak shear 

will always be stabilized by β. If the perturbations  are independent of z there is no 

density anomaly produced and no vertical motion. In particular, there is no x-averaged 

ageostrophic meridional  velocity and the x-averaged momentum equation reduces to, 
∂
∂t

u = −
∂
∂y

u'v ' = v 'q'   (12.1.8) 

at each z level. Similar to our argument in the baroclinic case we can relate the potential 

vorticity perturbation to the meridional displacement η, 

 

 

 

q'= −η ∂qo
∂y

= − A
Uo −c

∂qo
∂y

  (12.1.9 a, b) 

 

 

so that since 

 

 
v '=

ik
2

Aeiθ − A *e−iθ*[ ],
q'= 1

2
− A

Uo − c
eiθ − A *

Uo −c *
e−iθ* 

 
 
 

 

 
 
 

∂qo
∂y

 (12.1.10 a,b) 

it follows that, 
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 v 'q' = −
kci
2

A 2

Uo −c 2
∂qo
∂y

e2kci t   (12.1.11) 

 

Therefore (12.1.8) becomes, 

 

 
∂u 
∂t

= −
kci
2

A 2

Uo − c 2
∂qo
∂y

e2kci t   (12.1.12) 

 

the integral of which, over the y domain must  vanish if momentum is conserved, leading 

to (12.1.7). The implication for the instability of thin barotropic jets is immediate as 

Figure 12.1.1 shows. 
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Figure  12.1.1 The thin jet is barotropically unstable and as a result becomes broader. 

 

 

At the jet center the profile curvature Uoyy  < 0 and so , from (12.1.2) a growing 

disturbance must produce an Reynolds  stress momentum flux  divergence which reduces 

the  jet velocity at the core. On the flanks of the jet where Uoyy  changes sign the 

potential vorticity gradient becomes positive and the local zonal momentum increases 

(the total, after all must remain unchanged). The effect of the barotropic instability is to 

broaden , and weaken the jet, qualitatively analogous to the action of momentum 

diffusion. We recall that for the baroclinic problem, where the energy source was the 

potential energy of the basic state, an instability would generally sharpen the jet profile. 

The two mechanisms can be thought of as providing a balancing scheme. A jet which is 

very broad  but with vertical shear will become unstable and reduce the vertical shear but 

sharpen the jet. A sharp jet becomes barotropically unstable producing a broader jet. 

Consider the limit as ci ! 0 from above. That is, consider a neutral mode that is 

contiguous to a barely unstable mode. The Reynolds stress gradient , 

 

−
∂
∂y

u'v ' = −
kci
2

A 2

Uo − c 2 = −
k
2

Im
A 2

Uo −c( )
  (12.1.13) 

 

As ci ! 0 the Reynold stress convergence goes to zero  except where Uo −c → 0, i.e. at 

the critical layer at y=yc. If we integrate (12.1.13) across that value of y, using the second 

form of (12.1.13) the calculus of residues yields a jump in the momentum flux at the 

critical level. 
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Figure 12.1.2 The singularity in the complex  y plane at the critical level y=yc. For ci > 0 

the singularity lies  slightly above the real y line.  The dashed line  shows the branch cut 

associated with the logarithmic  singularity at the critical point. 

 

The integral of the momentum flux, as ci ! 0 must  make a detour  below the singularity 

and this picks up half  the residue of the simple pole as a contribution. Thus there is a 

jump in the Reynolds stress, 

 

 δ −u'v '( )= −kπ
A 2

2Uo
'

∂qo
∂y

 

 

 
 
y= yc

   (12.1.14) 
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Figure 12.1.3 The jump in the Reynolds stress as the critical level is passed in the limit 

ci!0. 

 

If u'v'  vanishes at the end points, y = y1, y2 there is clearly a contradiction (although if 

one of these  points is at infinity and radiation  is allowed there may be a way out of this 

contradiction). For finite regions in which the  Reynolds stress must vanish at each 

boundary it follows that the only way we can have a neutral mode that is contiguous  to 

an unstable mode is if the  potential vorticity gradient vanishes at the critical layer. Since 

the potential vorticity gradient must vanish for instability this implies that  the marginally 

stable wave, contiguous  to an unstable wave, must have its critical layer at the zero of 

the pv gradient. In other words we can find the phase speed of the important  marginally 

stable wave by identifying it with the basic flow velocity at the point yc where 

∂qo /∂y = 0 , i.e. 

−u'v '  

y=yc 
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c =Uo(yc ),    

∂qo
∂y

(yc ) = 0
  (12.1.14) 

 

This, is we shall  see yields a regular  eigenvalue problem for the wave number of the 

marginally unstable mode. 

Define, 

 

 K(y) =
β −Uoyy
Uo − c

  (12.1.15) 

and we suppose that for the marginally stable wave K is positive (this is a version of the 

Fjörtoft theorem). The condition (12.1.14) implies  that K(y) is everywhere finite (recall 

that  c is known for the marginally stable wave).This yields a standard Sturm-Liouville 

eigenvalue problem for the wave number k, i.e. from (12.1.5 a) 

 

 Ayy + K(y) − k2( )A = 0   (12.1.16) 

Note that for the neutral mode A can be taken to be real without loss of generality. If one 

multiplies (12.1.6) by A, and integrates over the whole y interval, an integration by parts 

and the use  of the boundary conditions (12.1.5b) yields, 

 

 k2 =
K(y)A2dy − Ay

2dy
y1

y2
∫

y1

y2
∫

A2dy
y1

y2
∫

  (12.1.17) 

It is easy to show, and is a standard result of Sturm-Liouville  theory that the  differential 

equation (12.1.16) is equivalent to the variational  problem that arise from the condition 

that k2 be stationary with respect to variations in A. This provides us with a useful 

approximation method to determine the  wavenumber of marginal stability. However, it 

also yields an important bound on the instability. Since A vanishes at the  end points  of 

the interval, our earlier results of Chapter 4, namely, 
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 Ay
2dy

y1

y2
∫ ≥

π 2

(y1 − y2)2 A2dy
y1

y2
∫   (12.1.18) 

 

so that, (12.1.17) implies, 

 

 k2 ≤ Kmax − π 2 (y1 − y2)2[ ]  (12.1.19) 

 

Thus, 

 Kmax ≥
π 2

(y1 − y2)2   (12.1.20) 

 

is a condition for the existence of a marginally stable wave, and by  implication, of 

instability. Even if the potential  vorticity gradient vanishes in the y-interval, a too 

narrow interval will render the flow stable. (Reminiscent of the result of the Eady 

problem). 

 

Suppose K is large enough to  satisfy  (12.1.20)  and imagine that we  have  found 

the marginally stable solution corresponding to ci just  equal to zero at a k = ko as the  

solution to (12.1.16). Consider a perturbation of the solution for slightly different wave 

number, such that, 

 

k = ko +εk1,  ⇒ k2 = ko
2 + 2εkok1 + O(ε)2 (12.1.21a) 

 

We similarly expand A  and c, 

 
A = Ao +εA1 + ...

c = co +εc1 + ...
  (12.1.21 b,c) 

Insertion into (12.1.5a) leads at lowest  order to (12.1.16). At O(ε) we obtain, 
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(Uo − c) A1yy − ko
2A1[ ]+ K(y)A1(Uo − c) =

c1 Aoyy − ko
2Ao{ }+ 2k1ko(Uo −co)Ao

= −c1KAo + 2k1ko Uo −c( )Ao

 

 

    (12.1.22) 

 

If we multiply (12.1.22) by Ao (Uo − c) , integrate over the y interval an integration by 

parts shows that the left hand side integrates to zero, leaving as a condition for solution, 

 

 c1
KAo

2

(Uo − co)
dy

y1

y2
∫ = 2k1ko Ao

2dy
y1

y2
∫   (12.1.23) 

If K >0 there is a singularity in the integral on the  left hand side at the critical layer. We 

interpret the integral in the same way we did the integral in (12.1.13) that is,  

 

  
Uo −co = lim

ci→0
" Uo −co − ici  so that the integral on the left hand side consists of two 

terms, 

 

ℜ+ iℵ[ ],       ℜ = Ρ KAo
2

(Uo −co)
dy,     ℵ=

πK yc( )Ao
2(yc )

Uo '(yc )
∫   (12.1.24 a,b) 

 

here ℜ  is real and is the Cauchy principal part of the singular integral while ℵ is the 

magnitude of the imaginary part which derives from the residue of the singularity of the  

integral at the critical point.  Then (12.1.23 ) implies that, 

 

 

 Imc1 =
−2k1ko Ao

2dy
y1

y2
∫

ℜ2 +ℵ2
πK(yc )Ao

2

Uo '(y c )

 

 
 
 

 

 
 
  (12.1.25) 
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If, as supposed K is positive, then if the critical layer occurs at a point of positive shear, 

the imaginary part of ic1 will be positive (instability) if k1 < 0, i.e for slightly longer 

wavelengths. Thus ko is a critical wavenumber bounding unstable modes at longer 

wavelengths. The situation, as we shall  see becomes more complicated if the region is 

not finite so that the Reynolds stress need not vanish on one of the (infinite) boundaries. 

 

12.2 The cosine jet example 

 

H.L. Kuo examined (1973, Advances in Applied Mechanics. Vol. 13, 247-331) the 

barotropic instability of the �cosine� jet. To facilitate the discussion we introduce 

dimensionless variables. The  jet is contained in a channel defined by −L ≤ y ≤ L , so L  is 

used to scale all horizontal  lengths. The maximum value of the jet velocity is U and it is 

used to scale the velocity while the ratio L/U is used  to scale the time. The resulting 

equation for the perturbation streamfunction is again (12.1.5) except that now all 

parameters are nondimensional and β = βdimL2 U  while −1≤ y ≤1. In these units the 

basic velocity Kuo examined is 

Uo =
1+ cosπy

2
= cos2(πy /2)   (12.2.1) 

and is shown below. 
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Figure 12.2.1  The cosine  jet velocity profile. 

 

The potential vorticity gradient  

 

 qoy = β −Uoyy = β +
π 2

2
cosπy    (12.2.2) 

 

If β ≥ π 2 2 the flow is stable. Note the absolute value  sign for β. Negative 

nondimensional  β , corresponds to an eastward jet with the same profile. The potential 

vorticity gradient vanishes at  y =  yc where, 

 

 cosπyc = −2
β
π 2    (12.2.3) 

 

i.e. where  

 

 Uo =
1
2

−
β
π 2    (12.2.4) 
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which is the average of the basic flow diminished by an amount reminiscent of the 

Rossby wave formula. However, (12.2.4) is not a dispersion relation but gives us the 

basic flow velocity at the position of the vanishing of the pv gradient and hence the phase 

speed of the marginally stable disturbance. Note that if β were zero, this point occurs at 

yc = ±1/2. As β increases the value of yc increases until at the critical value of β = π 2 2 

it moves to the boundary and then out of the domain. 

 The ratio, 

 

 K(y) =
β −Uoyy
Uo − c

=
β + π 2

2
cosπy

cosπy
2

+ (1
2

−c)
= π 2   (12.2.5) 

 

for  

 

 c =Uo(yc ) =
1
2

−
β

π 2    (12.2.6) 

 

This reduces the amplitude equation to a very simple problem for the wavenumber of the 

marginally stable disturbance, i.e.  

 

 Ayy + π 2 − k 2( )A = 0   (12.2.7) 

 

whose  solution, 

 

 A = cos πy 2( )    (12.2.8) 

 

yields, for the wavenumber,  

 

 k = 3π 2   (12.2.9) 
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Kuo rather ingeniously♦ was able  to find another neutral solution. In this solution c =0 

and  

 

 A = cos(πy 2)[ ]r    (12.2.10) 

 

where r = 1− k π( )2[ ]1/2
   (12.2.11) 

 

and  

 

 
β

π 2 =
9

16
− 1−

k2

π 2

 

 
 
 

 

 
 
 

1/2

−
1
4

 
 
 

 
 

 
 
 

 
 

2

   (12.2.12) 

which is in the  nature of a neutral curve. The curves (12.2.12) and (12.2.9) [independent 

of β] bound the region of instability in the k,β plane. The contours of growth rate within 

those boundaries were calculated numerically by Kuo and are shown in Figure 12.2.2. 

 

 

 
 

Figure  12.2.2 Contours of growth rate as calculated by Kuo (1973) for the cosine jet. 

 

                                                 
♦ This is a generalization of the classical result  for the zero β  problem where  there is 
always a solution c=0, k=0, A=Uo(y) to which (12.2.10) reduces in the case β =0. 

k/π 

β 
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Note that easterly flows (negative β) are more unstable than westerly flows. The upper 

boundary of the unstable domain is given by(12.2.9) and the right  hand boundary by 

(12.2.12). 

 

12.3 �Broken line� velocity profiles 

 

The complexity of the barotropic stability equation and the existence of critical  

levels has  led to the introduction of a class of simpler problems aimed at avoiding these 

difficulties. In the classical fluid mechanics case  when β =0 this has led to the so-called 

�broken line� velocity profiles. The velocity field is represented by a profile in which 

Uo(y) is either piece-wise linear in y or constant.  For zero β this leads to an equation for 

which the pv gradient is everywhere zero. The equation reduces  to  

 

Ayy − k2A = 0    (12.3.1) 

 

and all the dynamics of the instability is contained in the correct matching conditions at 

the points where either the velocity or the shear is discontinuous. It is therefore vitally 

important to get those conditions correctly. To do so we return to the original equation, 

  

Uo − c( ) Ayy − k2A[ ]+ β −Uoyy( )A = 0   (12.3.2) 

 

Imagine a velocity profile which is continuous but which in the  neighborhood of a 

point yo will  become increasingly steep such that in the limit either the shear or the 

velocity itself will become discontinuous. What conditions does (12.3.2) place on the 

solution A in the neighborhood of that point?  We rewrite (12.3.2) as, 

 
∂
∂y

Uo − c( )Ay −Uoy A{ }− k 2 Uo − c( )A + βA = 0   (12.3.3) 

 

Now consider the integral of (12.3.3) across a small region containing the point yo as 

shown in the figure below. 
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Uo 

 

 

 

 

 

                                                       yo 

Figure 12.3.1  The  velocity profile varying rapidly around the point yo. 

 

If we integrate (12.3.3) in a small, O(ε) neighborhood around the point where the velocity 

may become discontinuous in the limit, we obtain, with errors of O(ε) (which go to zero 

as ε! 0) 

 

 Uo − c( )Ay −Uoy A =Y1(y)   (12.3.4) 

 

where Y1(y) is a continuous function at yo even in the limit where the  velocity becomes 

steep. We understand the each term on the left hand side can be evaluated just before and 

just after the point, i.e. on either side of any discontinuity in shear or velocity so that the 

sum of the terms on the left hand side  is the same on both sides. A second condition is 

obtained by noting that (12.3.4) itself can be written, 

 

 
d
dy

A
Uo − c

 

 
  

 

 
  =

Y1(y)
Uo − c( )2

   (12.3.5) 

 

As long as the velocity field remains finite the integral of (12.3.5) implies that  

 

 
A

Uo −c
=Y2(y)   (12.3.6) 

where Y2(y) is a continuous function. Note that  as long as c is complex the integral in 

(12.3.5) is guaranteed to be finite.  

2ε 
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a) The Helmholtz shear layer. 

As an example  of the use of the broken line profiles, consider the instability of the 

flow, 

 

 Uo =
1,         y > 0
−1, y < 0

 
 
 
     (12.3.7) 

This may be thought of as a (heavily) idealized model of a shear layer, in this  case 

with infinitesimal width separating two streams of different constant velocity. Keep in 

mind that we are using the non-dimensionalization introduced in 12.2. To keep matters 

simple to begin with, we will take β to be zero (i.e. small horizontal scales). Then the 

solution for A is, 

 

 A =
a1e−ky   y > 0

a2eky     y < 0

 

 
  

 
 
 

   (12.3.8) 

 

The matching conditions (12.3.4) and (12.3.6), applied at y =0 yield, 

 

 
−a1k(1−c) = −a2k(1+ c)

  a1
(1−c)

= − a2
(1+ c)

   (12.3.9 a,b) 

 

Eliminating a1  and a2 between (12.3.9 a,b) yields a quadratic equation for c, 

 

 
1+ c( )2 + (1− c)2 = 0,
⇒
c = ±i

   (12.3.10, a,b) 

 

The phase speed is always complex, i.e. there is instability for all wavelengths. The real 

part of the phase speed is just the average zonal flow (here  zero) and the growth rate for 

the unstable mode is =  k so that the  shortest waves grow the fastest, in fact they have 
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unbounded growth  rates as k gets larger. One might justifiably object that the shear layer 

model (12.3.8) is unrealistic for very short waves whose small scales would become  

increasingly aware of the detailed structure of the shear layer which we  have in (12.3.8) 

collapsed into a discontinuity. Clearly, that idealization should be valid only for scales 

large compared to the transition region between the two streams. To check that 

presumption let us reexamine the problem with a somewhat more realistic profile, shown 

in figure 12.3.2.  

 

 b) Finite width shear layer. 

We have moved the velocity fields by a  Galilean transformation so that its  average  

velocity is now zero. The transition region occurs over a scale 2L. If we take L  as our 

length scale for the nondimensional coordinates x and y we obtain the profile as shown, 

 

 

                                                                               y=1 

 

                                                                                                                           Uo(y) 

  

 

 

 

 

Figure 12.3.2 The shear layer with a finite width. 

 

The basic velocity profile is now, 

 

 

 Uo =
1,     y ≥1,
y       −1 ≤ y ≤1,
−1      y ≤ −1

 
 
 

 
 

  (12.3.11) 

In our scaling, with the  use of L ,  half the shear layer width as our length scale, the 

nondimensional wavenumber k is related to the dimensional wavenumber as, 

y=-1 
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 k = kdimL   (12.3.12) 

 

The limit as L! 0 will then correspond, for fixed kdim to k ! 0. Or, equivalently, for 

fixed L, the limit k ! 0  corresponds to very long wavelengths  compared to the shear 

layer thickness. It is in that limit that our previous calculation is relevant, certainly not for 

large k. The solutions  for A can be written, 

 

 A =

A1e
−k(y−1),                             y ≥1,

A2e−k (y−1) + B2ek (y+1),           −1≤ y ≤1,

A3ek (y+1)                                 y ≤ −1

 

 

 
  

 

 
 
 

 (12.3.13) 

 

Applying (12.3.6) on y =1 and y =-1 yields, 

 

               
A1 = A2 + B2e2k

A3 = A2e2k + B2

  (12.3.14 a,b) 

 

while applying (12.3.4) at the same points yields, 

 

 

A1 1+ k(c −1)[ ] = (c −1)k A2 − B2e2k[ ],

A3 1− k(c +1)[ ] = (c +1)k A2 − B2e2k[ ]
 (12.3.15 a,b) 

 

The condition for non trivial solutions of these four linear, homogeneous algebraic 

equations yields the  eigenvalue c as the solution of a quadratic equation, i.e. 

 

 c 2 =
1−2k[ ]2 − e−4k( )

4k2   (12.3.16) 
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As k ! 0, which should recover our earlier, zero width shear layer results, both the 

numerator and denominator vanish and, in fact, in that limit,c → ±i  just like our earlier  

result. However, for large k the exponential term can be ignored  and it is clear that c  is 

real. Thus for small enough wavelengths the two kinks in the shear layer are so far apart 

(compared to a wavelength which is the decay scale of the solution) that they are 

independent and the flow becomes  stable to such small scales (this should  be both 

mathematically and physically reminiscent to you of the small scale stability in the Eady 

problem). Figure 12.3.3 shows the solution for c and kci as a function of wavelength. The 

critical  (dimensionless) wavenumber for instability is approximately k = kdimL =  

0.6272. 
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Figure 12.3.3 The real and imaginary (positive root only) for c for the shear layer. The 

growth rate is shown with the  heavy circles. 

 

c) Shear layer with β 
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Let�s examine the effect of β on the stability properties of the shear layer. We will 

start with the simpler model in which the shear layer thickness is zero. We will do this 

for two reasons. The principal one is that the  problem for the finite layer thickness 

becomes very complex. Indeed, you can see that it is mathematically similar to the 

Charney problem, only harder (two boundaries). The second reason is to see whether β 

is able to stabilize the shear layer zero-thickness shear layer even for long wavelengths.  

We examine again the profile given by (12.3.8) but with nonzero β .The equations 

for A become, 

 

Ayy − k2A +
β

Uo − c
A = 0  (12.3.17) 

 

The solution can be written, 

 

 
A =

a1e−ly              y > 0

a2el2y,             y < 0

 

 
  

 
 
 

  (12.3.18) 

where now,  

 

 

 

l2 = k2 + β
c −1

,

l2
2 = k 2 + β

c +1

  (12.3.19 a,b) 

 

The application of the jump conditions at y =0 yield, 
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a1
1− c

= −
a2

1+ c
,

−l 1− c( )a1 = −l2(1+ c)a2,
⇒

l 1−c( )2 + l2(1+ c)2 = 0

  (12.3.20 a,b,c) 

 

Since both l and l2 depend on c the dispersion relation (12.3.20 c) is rather complicated. 

A bit of algebra yield a cubic equation for c,  

 

 c 3 +
3β
4k 2 c2 + c +

β
4k2 = 0.  (12.3.21) 

 

For very small β the  solutions  are simply c = ±i  and c =0. The first two roots are the 

solutions previously found for the shear layer. The third root is a spurious root. Notice 

that if c =0 the wave amplitudes must be zero and hence the solution is trivial. This 

spurious root arises because we have squared up the form (12.3.20 c) to deal with the 

square root implied by (12.3.19)  in order to obtain (12.3.21). We must be aware of this 

in examining the roots for nonzero β. There will be only two legitimate roots. For very 

large β the two roots  asymptote to c = ±i / 31/2 so that although  the growth rate is 

reduced β  is unable to stabilize the flow. It is possible to find an analytical solution for 

the cubic (12.3.21) but the complexity of the solution makes it not very revealing. It is 

easy to find the roots of (12.3.21) numerically as a function of B= β/k2 . Figure 12.3.4 

shows the positive roots for  c  and for the parameters l  and l2 (each scaled by k).  
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Figure 12.3.4 The upper panel shows the real and imaginary parts of c  and the lower 

panel shows the real and imaginary parts of the  decay parameters l and l2. 

We can see the roots for  c  approaching their proper asymptotic values for large and 

small values of B. Note that for small B the  decay scales in y are simply k and the decay 

is equal on both sides of the shear region. For larger B the effect of β changes the 

structure asymmetrically. The decay is more rapid for y < 0 than for y > 0. For larger B 

the decay in the negative y direction is rapid. On the other hand the imaginary part of the 

decay parameters, which represents an oscillatory behavior in y is larger for the positive y 

region. Indeed, since li >> lr  we interpret the region y > 0 as containing a wavelike 
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behavior. It is damped in y but only after several wavelengths. We will investigate this 

phenomenon more closely in the next section. The eigenfunction structure at t=0 is 

shown below, 

 

-8 -6 -4 -2 0 2 4 6 8
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 eigenfunctions  at t=0 for Helmholtz shear layer with β  β/k2 =4  
 

Figure 12.3.5 The form of the  eigenfunction for B=4. Note the  rapid  decay for y < 0 and 

the oscillation for y >0. 

 

12.4 The continuous shear layer and wave radiation. 

 

We noted in section 12.1 that if the perturbation must vanish at the end points of the 

y interval a neutral disturbance contiguous to an unstable disturbance must have its phase 

speed equal to the basic flow velocity at the point where the potential vorticity gradient 

vanishes. This allows us, in those cases, to find the neutral curve in the β ,k plane as the 

locus of points corresponding to such modes. However, if the perturbation does not 

vanish on the boundary there could be a marginally neutral  solution whose phase speed 

is not coincident with the basic flow velocity at the zero of the pv gradient. Such modes 

would  have a singularity at the critical layer. This behavior is possible when the domain 
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is infinite in y and the flow can support neutral, radiating waves at infinity. The purpose 

of this section is to explore how this changes the stability problem. The example is the 

instability of the shear layer with the continuous velocity profile, (again in length units 

scaled on the shear layer thickness and velocity scaled on the maximum velocity). 

 

Uo =
1
2

1+ tanh(y)( ), − ∞ ≤ y ≤ ∞   (12.4.1) 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5

 
 

 

Figure 12.4.1 The tanh velocity profile. 
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For large,positive y the velocity asymptotes to 1  while for large, negative y the 

velocity asymptotes to zero. Therefore at large positive y the solution of (12.1.5) 

(assuming λ  =0) is  

 

A = const.eily    (12.4.2) 

 

where 

 

 l2 + k 2 =
β

1− c
   (12.4.3) 

If the solution is a marginally neutral solution the semi-circle theorem tells us that c 

<1, the maximum basic flow speed. Therefore it is possible for l to be real. On the other 

hand, for large negative y the solution of the form (12.4.2) would have an l that satisfies, 

 

l2 + k 2 = −
β
c

   (12.4.4) 

 so that  no real solutions for l can be found. Thus we would anticipate that if we are 

going to observe radiation from weakly unstable disturbances the  radiation will be found 

for positive y. This is qualitatively what we have already seen in the discontinuous 

velocity case of the last section. 

 

If there is a disturbance with a small imaginary part to  c, or more precisely , if 

 

 ci << 1−cr    (12.4.5) 

 

Then if we write, 

 

 l = lo +εl1 + ...,          ε = O(ci )   (12.4.6) 

 

then from (12.4.3) at large y, 
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 lo
2 + k 2 =

β
1− cr

,    (12.4.7a) 

 

and 

 

 2εl1lo = ici
β

(1−cr )2 = ici
k 2 + lo

2[ ]2

β
  (12.4.7b) 

   

Therefore the form of the solution for large y  will be 

 

 

φ = Ae−ikct+ikx = const. ei (kx+loy−kcr t)[ ]exp(kci t −ciy
(k2 + lo

2)2

2βlo
)

= const. ei (kx+loy−kcr t )[ ]exp −
ci (k 2 + lo

2)2

2βlo
y −

2βklo
(k2 + lo

2)2 t
 

 
 
 

 

 
 
 

 
 
 

  

 
 
 

  

 (12.4.8) 

 

So that the  disturbance, as y ! infinity, consists of a plane wave with an envelope of 

decay whose amplitude propagates outward at the group velocity  of that wavenumber. 

The behavior is shown in the figure below.  
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propagation of envelope 
 
increasing tA

y

 
 

Figure 12.4.2 The amplitude of the disturbance  at large y exponentially decreases with y 

but increases with time. 

 

 

The reason for the decay in y is that the disturbance is  radiating outward from its source  

in the region of the  shear where its amplitude is increasing exponentially with time. By 

the time it reaches large y moving with the  group velocity the disturbance at smaller y 

has grown larger. The exponential decay is not a sign that the disturbance is trapped, only 

that the source amplitude is increasing with time so that the amplitude at large y is a 

measure of its amplitude at an earlier time. All of this assumes that a radiating 

disturbance with a small ci exists that will radiate to large y. Even if such modes have 

small growth rates they can be very important due to their ability to radiate energy to 

great distances from the shear zone. The disturbance is self excited and could influence 

the field of motion far from the source, again, if such disturbances are possible.  

The stability of the tanh profile was studied in great detail by both Kuo in the 

reference already given and by Dickinson and Clare ,( 1973. J. Atmos. Science, 30, 1035-

1047). We shall follow the latter reference.  

The potential vorticity gradient corresponding  to (12.4.1) is  
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qoy = β +
tanhy

cosh y2 = β + tanh y − tanh3 y   (12.4.9) 

 

The last two terms in tanh y  have a minimum value  of �0.3849 where tanh y =-

0.577. ( Just find  the stationary points of z-z3). Thus instability requires β< 0.3849. For 

positive β the zeros of the potential vorticity will occur for y < 0. Figure 12.4.3 shows a 

graph of the pv gradient for β = 0.2, for example. 
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Figure 12.4.3 The potential vorticity gradient for the tanh profile for β  =0.2 

 

We can find non singular  neutral  solutions by the methods of the earlier sections 

by looking for solutions  whose  phase speeds correspond to the basic flow velocity at the 

points where the  pv gradient vanishes. Skipping the details, the  solution can be found in 

the form, 

 

A = eµy /cosh y    (12.4.10) 

 

if, 

 

qoy=0 
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µ = 1− k 2( )1/2
,

c =1 2 −µ /2,

β = k2µ = k 2 1− k 2( )1/2

→ c = 1
2

− β
2k 2

  (12.4.11 a,b,c,d) 

 

This implies that  for positive β the disturbance has its critical layer for y < 0. 

Combining (1.2.4 a) and (12.4.c) we obtain the curve in the β,k plane on which the 

marginal disturbance exists. That curve is shown in figure 12.4.4 
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Figure 12.4.4 The curve defining the locus of nonsingular neutral solutions. 

 

 

From the perturbation method  of section 12.1 one can demonstrate that unstable 

modes exist within the domain enclosed by the curve in figure 12.4.4. The important 

question is whether in this case that curve is truly the boundary of unstable solutions or 

whether there are unstable solutions outside that curve which may be radiating and, by 

necessity be singular. This is the problem discussed both by Dickinson and Clare. In the  

their paper they present the results of a very careful and detailed numerical study. The 

numerical  problem is delicate since one is looking for solutions with small ci and a 

singularity which is therefore just off the real y line. Great care must be taken to resolve 

the rapid variations of the solution in the vicinity of the critical point.  You are referred to 

their paper for a detailed discussion of their methods. Suffice it to say they used two 

independent methods as a check. In one method they discretized the problem making it a 

matrix eigenvalue problem for c. In the other  case they used a �shooting� method to 

solve the ODE iteratively adjusting c until boundary conditions at large positive and 

negative y were satisfied. Here, their results are presented. The figures come from their 

paper and they use the notation α in place of k for wavenumber. 

Figure 12.4.5 shows  the  contours of growth rate and phase speed within the 

boundary traced out by the neutral curve of the nonsingular mode. However, the curve is 

shown only for wave numbers such that k2 > 0.13. For such wavenumbers the curve given 

by (12.4.4) is the stability boundary.  
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