Chapter 12. Barotropic Instability

12.1 Formulation

We have concentrated on the baroclinic  instability problem in which the source of energy is the potential energy made available by the horizontal density gradients in the fluid. There is a second source of energy for instabilities manifested in the horizontal shear of the current which may be released by the Reynolds stresses. This kind of instability is called barotropic instability because it can occur in a non stratified or barotropic fluid. However, the process can also occur in a stratified fluid and can coexist with baroclinic instability. However, to study its properties in the purest and simplest form first consider a basic current which has horizontal but  not vertical shear. That is, let
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(12.1.1)

We will also consider only a flat bottom. The normal mode equation  (5.1.4)  for such a basic flow simplifies to,
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(12.1.2a,b,c,d)

In the absence of topography the simple boundary condition on the lateral boundaries allows a separation of  vertical and horizontal structure of the problem. Consider the  Sturm-Liouville  problem,
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(12.1.3.a,b)

This standard eigenvalue problem generates a complete set of eigenfunctions and eigenvalues 
[image: image4.wmf] which can be used to represent an arbitrary vertical structure for the perturbation. That is, we could write any perturbation as,
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(12.1.4)

and for  each term in the sum the governing equation is
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(12.1.5 a,b)

where we have suppressed the subscript j on A,  and c. Note that the lowest eigenvalue for the problem (12.1.3) is always  =0 corresponding to an eigenfunction independent of z (and without loss of generality we may take it as 1). This is furthermore independent of the structure of N(z).
We define the total wavenumber as 
[image: image7.wmf]. It is clear from  (12.1.5a) that the phase speed c will be a function only of . On the other hand, the growth rate is
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(12.1.6)

For a given  the growth rate will be largest for the maximum possible k at that  and that clearly takes place for the eigenvalue corresponding to  =0. For a stratified fluid subject to the boundary condition (12.1.2b) a basic flow which is independent of z will be most unstable to perturbations that are also independent of z.  We will henceforth consider only barotropic disturbances.

The necessary condition for instability for the barotropic flow is simply,
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(12.1.7)

Therefore, the potential vorticity gradient 
[image: image10.wmf] must change sign. A weak shear will always be stabilized by . If the perturbations  are independent of z there is no density anomaly produced and no vertical motion. In particular, there is no x-averaged ageostrophic meridional  velocity and the x-averaged momentum equation reduces to,


[image: image11.wmf]

(12.1.8)

at each z level. Similar to our argument in the baroclinic case we can relate the potential vorticity perturbation to the meridional displacement ,
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(12.1.9 a, b)

so that since
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(12.1.10 a,b)

it follows that,
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(12.1.11)

Therefore (12.1.8) becomes,
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(12.1.12)

the integral of which, over the y domain must  vanish if momentum is conserved, leading to (12.1.7). The implication for the instability of thin barotropic jets is immediate as Figure 12.1.1 shows.
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Figure  12.1.1 The thin jet is barotropically unstable and as a result becomes broader.

At the jet center the profile curvature 
[image: image17.wmf] < 0 and so , from (12.1.2) a growing disturbance must produce an Reynolds  stress momentum flux  divergence which reduces the  jet velocity at the core. On the flanks of the jet where 
[image: image18.wmf] changes sign the potential vorticity gradient becomes positive and the local zonal momentum increases (the total, after all must remain unchanged). The effect of the barotropic instability is to broaden , and weaken the jet, qualitatively analogous to the action of momentum diffusion. We recall that for the baroclinic problem, where the energy source was the potential energy of the basic state, an instability would generally sharpen the jet profile. The two mechanisms can be thought of as providing a balancing scheme. A jet which is very broad  but with vertical shear will become unstable and reduce the vertical shear but sharpen the jet. A sharp jet becomes barotropically unstable producing a broader jet.

Consider the limit as ci ( 0 from above. That is, consider a neutral mode that is contiguous to a barely unstable mode. The Reynolds stress gradient ,
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(12.1.13)

As ci ( 0 the Reynold stress convergence goes to zero  except where 
[image: image20.wmf], i.e. at the critical layer at y=yc. If we integrate (12.1.13) across that value of y, using the second form of (12.1.13) the calculus of residues yields a jump in the momentum flux at the critical level.
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Figure 12.1.2 The singularity in the complex  y plane at the critical level y=yc. For ci > 0 the singularity lies  slightly above the real y line.  The dashed line  shows the branch cut associated with the logarithmic  singularity at the critical point.

The integral of the momentum flux, as ci ( 0 must  make a detour  below the singularity and this picks up half  the residue of the simple pole as a contribution. Thus there is a jump in the Reynolds stress,
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(12.1.14)
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Figure 12.1.3 The jump in the Reynolds stress as the critical level is passed in the limit ci(0.

If 
[image: image22.wmf] vanishes at the end points, y = y1, y2 there is clearly a contradiction (although if one of these  points is at infinity and radiation  is allowed there may be a way out of this contradiction). For finite regions in which the  Reynolds stress must vanish at each boundary it follows that the only way we can have a neutral mode that is contiguous  to an unstable mode is if the  potential vorticity gradient vanishes at the critical layer. Since the potential vorticity gradient must vanish for instability this implies that  the marginally stable wave, contiguous  to an unstable wave, must have its critical layer at the zero of the pv gradient. In other words we can find the phase speed of the important  marginally stable wave by identifying it with the basic flow velocity at the point yc where 
[image: image23.wmf], i.e.
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(12.1.14)

This, is we shall  see yields a regular  eigenvalue problem for the wave number of the marginally unstable mode.

Define,
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(12.1.15)

and we suppose that for the marginally stable wave K is positive (this is a version of the Fjörtoft theorem). The condition (12.1.14) implies  that K(y) is everywhere finite (recall that  c is known for the marginally stable wave).This yields a standard Sturm-Liouville eigenvalue problem for the wave number k, i.e. from (12.1.5 a)
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(12.1.16)

Note that for the neutral mode A can be taken to be real without loss of generality. If one multiplies (12.1.6) by A, and integrates over the whole y interval, an integration by parts and the use  of the boundary conditions (12.1.5b) yields,
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(12.1.17)

It is easy to show, and is a standard result of Sturm-Liouville  theory that the  differential equation (12.1.16) is equivalent to the variational  problem that arise from the condition that k2 be stationary with respect to variations in A. This provides us with a useful approximation method to determine the  wavenumber of marginal stability. However, it also yields an important bound on the instability. Since A vanishes at the  end points  of the interval, our earlier results of Chapter 4, namely,
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(12.1.18)

so that, (12.1.17) implies,
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(12.1.19)

Thus,
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(12.1.20)

is a condition for the existence of a marginally stable wave, and by  implication, of instability. Even if the potential  vorticity gradient vanishes in the y-interval, a too narrow interval will render the flow stable. (Reminiscent of the result of the Eady problem).

Suppose K is large enough to  satisfy  (12.1.20)  and imagine that we  have  found the marginally stable solution corresponding to ci just  equal to zero at a k = ko as the  solution to (12.1.16). Consider a perturbation of the solution for slightly different wave number, such that,
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(12.1.21a)

We similarly expand A  and c,
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(12.1.21 b,c)

Insertion into (12.1.5a) leads at lowest  order to (12.1.16). At O() we obtain,
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(12.1.22)

If we multiply (12.1.22) by 
[image: image34.wmf] , integrate over the y interval an integration by parts shows that the left hand side integrates to zero, leaving as a condition for solution,
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(12.1.23)

If K >0 there is a singularity in the integral on the  left hand side at the critical layer. We interpret the integral in the same way we did the integral in (12.1.13) that is, 


[image: image36.wmf] so that the integral on the left hand side consists of two terms,
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(12.1.24 a,b)

here 
[image: image38.wmf] is real and is the Cauchy principal part of the singular integral while 
[image: image39.wmf] is the magnitude of the imaginary part which derives from the residue of the singularity of the  integral at the critical point.  Then (12.1.23 ) implies that,
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(12.1.25)

If, as supposed K is positive, then if the critical layer occurs at a point of positive shear, the imaginary part of ic1 will be positive (instability) if k1 < 0, i.e for slightly longer wavelengths. Thus ko is a critical wavenumber bounding unstable modes at longer wavelengths. The situation, as we shall  see becomes more complicated if the region is not finite so that the Reynolds stress need not vanish on one of the (infinite) boundaries.

12.2 The cosine jet example

H.L. Kuo examined (1973, Advances in Applied Mechanics. Vol. 13, 247-331) the barotropic instability of the “cosine” jet. To facilitate the discussion we introduce dimensionless variables. The  jet is contained in a channel defined by 
[image: image41.wmf], so L  is used to scale all horizontal  lengths. The maximum value of the jet velocity is U and it is used to scale the velocity while the ratio L/U is used  to scale the time. The resulting equation for the perturbation streamfunction is again (12.1.5) except that now all parameters are nondimensional and 
[image: image42.wmf] while 
[image: image43.wmf]. In these units the basic velocity Kuo examined is
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(12.2.1)

and is shown below.
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Figure 12.2.1  The cosine  jet velocity profile.

The potential vorticity gradient 
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(12.2.2)

If 
[image: image47.wmf] the flow is stable. Note the absolute value  sign for . Negative nondimensional   , corresponds to an eastward jet with the same profile. The potential vorticity gradient vanishes at  y =  yc where,
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(12.2.3)

i.e. where 
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(12.2.4)

which is the average of the basic flow diminished by an amount reminiscent of the Rossby wave formula. However, (12.2.4) is not a dispersion relation but gives us the basic flow velocity at the position of the vanishing of the pv gradient and hence the phase speed of the marginally stable disturbance. Note that if  were zero, this point occurs at 
[image: image50.wmf]. As  increases the value of yc increases until at the critical value of 
[image: image51.wmf] it moves to the boundary and then out of the domain.


The ratio,
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(12.2.5)

for 
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(12.2.6)

This reduces the amplitude equation to a very simple problem for the wavenumber of the marginally stable disturbance, i.e. 
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(12.2.7)

whose  solution,
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(12.2.8)

yields, for the wavenumber, 
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(12.2.9)

Kuo rather ingeniously( was able  to find another neutral solution. In this solution c =0 and 
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(12.2.10)

where 
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(12.2.11)

and 
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(12.2.12)

which is in the  nature of a neutral curve. The curves (12.2.12) and (12.2.9) [independent of ] bound the region of instability in the k, plane. The contours of growth rate within those boundaries were calculated numerically by Kuo and are shown in Figure 12.2.2.
[image: image60.wmf]
Figure  12.2.2 Contours of growth rate as calculated by Kuo (1973) for the cosine jet.

Note that easterly flows (negative ) are more unstable than westerly flows. The upper boundary of the unstable domain is given by(12.2.9) and the right  hand boundary by (12.2.12).

12.3 “Broken line” velocity profiles
The complexity of the barotropic stability equation and the existence of critical  levels has  led to the introduction of a class of simpler problems aimed at avoiding these difficulties. In the classical fluid mechanics case  when  =0 this has led to the so-called “broken line” velocity profiles. The velocity field is represented by a profile in which Uo(y) is either piece-wise linear in y or constant.  For zero  this leads to an equation for which the pv gradient is everywhere zero. The equation reduces  to 
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(12.3.1)

and all the dynamics of the instability is contained in the correct matching conditions at the points where either the velocity or the shear is discontinuous. It is therefore vitally important to get those conditions correctly. To do so we return to the original equation,
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(12.3.2)

Imagine a velocity profile which is continuous but which in the  neighborhood of a point yo will  become increasingly steep such that in the limit either the shear or the velocity itself will become discontinuous. What conditions does (12.3.2) place on the solution A in the neighborhood of that point?  We rewrite (12.3.2) as,
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(12.3.3)

Now consider the integral of (12.3.3) across a small region containing the point yo as shown in the figure below.

Uo


                                                       yo

Figure 12.3.1  The  velocity profile varying rapidly around the point yo.

If we integrate (12.3.3) in a small, O() neighborhood around the point where the velocity may become discontinuous in the limit, we obtain, with errors of O() (which go to zero as ( 0)
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(12.3.4)

where Y1(y) is a continuous function at yo even in the limit where the  velocity becomes steep. We understand the each term on the left hand side can be evaluated just before and just after the point, i.e. on either side of any discontinuity in shear or velocity so that the sum of the terms on the left hand side  is the same on both sides. A second condition is obtained by noting that (12.3.4) itself can be written,
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(12.3.5)

As long as the velocity field remains finite the integral of (12.3.5) implies that 
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(12.3.6)

where Y2(y) is a continuous function. Note that  as long as c is complex the integral in (12.3.5) is guaranteed to be finite. 

a) The Helmholtz shear layer.

As an example  of the use of the broken line profiles, consider the instability of the flow,
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(12.3.7)

This may be thought of as a (heavily) idealized model of a shear layer, in this  case with infinitesimal width separating two streams of different constant velocity. Keep in mind that we are using the non-dimensionalization introduced in 12.2. To keep matters simple to begin with, we will take  to be zero (i.e. small horizontal scales)Then the solution for A is,
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(12.3.8)
The matching conditions (12.3.4) and (12.3.6), applied at y =0 yield,
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(12.3.9 a,b)

Eliminating a1  and a2 between (12.3.9 a,b) yields a quadratic equation for c,
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(12.3.10, a,b)

The phase speed is always complex, i.e. there is instability for all wavelengths. The real part of the phase speed is just the average zonal flow (here  zero) and the growth rate for the unstable mode is =  k so that the  shortest waves grow the fastest, in fact they have unbounded growth  rates as k gets larger. One might justifiably object that the shear layer model (12.3.8) is unrealistic for very short waves whose small scales would become  increasingly aware of the detailed structure of the shear layer which we  have in (12.3.8) collapsed into a discontinuity. Clearly, that idealization should be valid only for scales large compared to the transition region between the two streams. To check that presumption let us reexamine the problem with a somewhat more realistic profile, shown in figure 12.3.2. 


b) Finite width shear layer.

We have moved the velocity fields by a  Galilean transformation so that its  average  velocity is now zero. The transition region occurs over a scale 2L. If we take L  as our length scale for the nondimensional coordinates x and y we obtain the profile as shown,


                                                                               y=1

                                                                                                                           Uo(y)

 


Figure 12.3.2 The shear layer with a finite width.

The basic velocity profile is now,
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(12.3.11)

In our scaling, with the  use of L ,  half the shear layer width as our length scale, the nondimensional wavenumber k is related to the dimensional wavenumber as,
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(12.3.12)

The limit as L( 0 will then correspond, for fixed kdim to k ( 0. Or, equivalently, for fixed L, the limit k ( 0  corresponds to very long wavelengths  compared to the shear layer thickness. It is in that limit that our previous calculation is relevant, certainly not for large k. The solutions  for A can be written,
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(12.3.13)

Applying (12.3.6) on y =1 and y =-1 yields,
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(12.3.14 a,b)

while applying (12.3.4) at the same points yields,
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(12.3.15 a,b)

The condition for non trivial solutions of these four linear, homogeneous algebraic equations yields the  eigenvalue c as the solution of a quadratic equation, i.e.
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(12.3.16)

As k ( 0, which should recover our earlier, zero width shear layer results, both the numerator and denominator vanish and, in fact, in that limit,
[image: image77.wmf] just like our earlier  result. However, for large k the exponential term can be ignored  and it is clear that c  is real. Thus for small enough wavelengths the two kinks in the shear layer are so far apart (compared to a wavelength which is the decay scale of the solution) that they are independent and the flow becomes  stable to such small scales (this should  be both mathematically and physically reminiscent to you of the small scale stability in the Eady problem). Figure 12.3.3 shows the solution for c and kci as a function of wavelength. The critical  (dimensionless) wavenumber for instability is approximately 
[image: image78.wmf] 0.6272.
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Figure 12.3.3 The real and imaginary (positive root only) for c for the shear layer. The growth rate is shown with the  heavy circles.

c) Shear layer with 
Let’s examine the effect of  on the stability properties of the shear layer. We will start with the simpler model in which the shear layer thickness is zero. We will do this for two reasons. The principal one is that the  problem for the finite layer thickness becomes very complex. Indeed, you can see that it is mathematically similar to the Charney problem, only harder (two boundaries). The second reason is to see whether  is able to stabilize the shear layer zero-thickness shear layer even for long wavelengths. 

We examine again the profile given by (12.3.8) but with nonzero  .The equations for A become,
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(12.3.17)

The solution can be written,



[image: image81.wmf]

(12.3.18)
where now, 
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(12.3.19 a,b)

The application of the jump conditions at y =0 yield,
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(12.3.20 a,b,c)

Since both l and l2 depend on c the dispersion relation (12.3.20 c) is rather complicated. A bit of algebra yield a cubic equation for c, 
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(12.3.21)

For very small  the  solutions  are simply 
[image: image85.wmf] and c =0. The first two roots are the solutions previously found for the shear layer. The third root is a spurious root. Notice that if c =0 the wave amplitudes must be zero and hence the solution is trivial. This spurious root arises because we have squared up the form (12.3.20 c) to deal with the square root implied by (12.3.19)  in order to obtain (12.3.21). We must be aware of this in examining the roots for nonzero . There will be only two legitimate roots. For very large the two roots  asymptote to 
[image: image86.wmf] so that although  the growth rate is reduced  is unable to stabilize the flow. It is possible to find an analytical solution for the cubic (12.3.21) but the complexity of the solution makes it not very revealing. It is easy to find the roots of (12.3.21) numerically as a function of B= /k2 . Figure 12.3.4 shows the positive roots for  c  and for the parameters l  and l2 (each scaled by k). 
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Figure 12.3.4 The upper panel shows the real and imaginary parts of c  and the lower panel shows the real and imaginary parts of the  decay parameters l and l2.

We can see the roots for  c  approaching their proper asymptotic values for large and small values of B. Note that for small B the  decay scales in y are simply k and the decay is equal on both sides of the shear region. For larger B the effect of  changes the structure asymmetrically. The decay is more rapid for y < 0 than for y > 0. For larger B the decay in the negative y direction is rapid. On the other hand the imaginary part of the decay parameters, which represents an oscillatory behavior in y is larger for the positive y region. Indeed, since 
[image: image88.wmf] we interpret the region y > 0 as containing a wavelike behavior. It is damped in y but only after several wavelengths. We will investigate this phenomenon more closely in the next section. The eigenfunction structure at t=0 is shown below,

[image: image89.wmf]
Figure 12.3.5 The form of the  eigenfunction for B=4. Note the  rapid  decay for y < 0 and the oscillation for y >0.

12.4 The continuous shear layer and wave radiation.

We noted in section 12.1 that if the perturbation must vanish at the end points of the y interval a neutral disturbance contiguous to an unstable disturbance must have its phase speed equal to the basic flow velocity at the point where the potential vorticity gradient vanishes. This allows us, in those cases, to find the neutral curve in the  ,k plane as the locus of points corresponding to such modes. However, if the perturbation does not vanish on the boundary there could be a marginally neutral  solution whose phase speed is not coincident with the basic flow velocity at the zero of the pv gradient. Such modes would  have a singularity at the critical layer. This behavior is possible when the domain is infinite in y and the flow can support neutral, radiating waves at infinity. The purpose of this section is to explore how this changes the stability problem. The example is the instability of the shear layer with the continuous velocity profile, (again in length units scaled on the shear layer thickness and velocity scaled on the maximum velocity).
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(12.4.1)
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Figure 12.4.1 The tanh velocity profile.

For large,positive y the velocity asymptotes to 1  while for large, negative y the velocity asymptotes to zero. Therefore at large positive y the solution of (12.1.5) (assuming   =0) is 
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(12.4.2)

where
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(12.4.3)

If the solution is a marginally neutral solution the semi-circle theorem tells us that c <1, the maximum basic flow speed. Therefore it is possible for l to be real. On the other hand, for large negative y the solution of the form (12.4.2) would have an l that satisfies,
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(12.4.4)

 so that  no real solutions for l can be found. Thus we would anticipate that if we are going to observe radiation from weakly unstable disturbances the  radiation will be found for positive y. This is qualitatively what we have already seen in the discontinuous velocity case of the last section.

If there is a disturbance with a small imaginary part to  c, or more precisely , if
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(12.4.5)

Then if we write,
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(12.4.6)

then from (12.4.3) at large y,
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(12.4.7a)

and
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(12.4.7b)
Therefore the form of the solution for large y  will be



[image: image99.wmf]
(12.4.8)

So that the  disturbance, as y ( infinity, consists of a plane wave with an envelope of decay whose amplitude propagates outward at the group velocity  of that wavenumber. The behavior is shown in the figure below. 

[image: image100.wmf]
Figure 12.4.2 The amplitude of the disturbance  at large y exponentially decreases with y but increases with time.

The reason for the decay in y is that the disturbance is  radiating outward from its source  in the region of the  shear where its amplitude is increasing exponentially with time. By the time it reaches large y moving with the  group velocity the disturbance at smaller y has grown larger. The exponential decay is not a sign that the disturbance is trapped, only that the source amplitude is increasing with time so that the amplitude at large y is a measure of its amplitude at an earlier time. All of this assumes that a radiating disturbance with a small ci exists that will radiate to large y. Even if such modes have small growth rates they can be very important due to their ability to radiate energy to great distances from the shear zone. The disturbance is self excited and could influence the field of motion far from the source, again, if such disturbances are possible. 

The stability of the tanh profile was studied in great detail by both Kuo in the reference already given and by Dickinson and Clare ,( 1973. J. Atmos. Science, 30, 1035-1047). We shall follow the latter reference. 

The potential vorticity gradient corresponding  to (12.4.1) is 
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(12.4.9)

The last two terms in 
[image: image102.wmf] have a minimum value  of –0.3849 where 
[image: image103.wmf]=-0.577. ( Just find  the stationary points of z-z3). Thus instability requires < 0.3849. For positive  the zeros of the potential vorticity will occur for y < 0. Figure 12.4.3 shows a graph of the pv gradient for  = 0.2, for example.
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Figure 12.4.3 The potential vorticity gradient for the tanh profile for   =0.2
We can find non singular  neutral  solutions by the methods of the earlier sections by looking for solutions  whose  phase speeds correspond to the basic flow velocity at the points where the  pv gradient vanishes. Skipping the details, the  solution can be found in the form,
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(12.4.10)

if,
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(12.4.11 a,b,c,d)

This implies that  for positive  the disturbance has its critical layer for y < 0. Combining (1.2.4 a) and (12.4.c) we obtain the curve in the ,k plane on which the marginal disturbance exists. That curve is shown in figure 12.4.4

[image: image107.wmf]
Figure 12.4.4 The curve defining the locus of nonsingular neutral solutions.

From the perturbation method  of section 12.1 one can demonstrate that unstable modes exist within the domain enclosed by the curve in figure 12.4.4. The important question is whether in this case that curve is truly the boundary of unstable solutions or whether there are unstable solutions outside that curve which may be radiating and, by necessity be singular. This is the problem discussed both by Dickinson and Clare. In the  their paper they present the results of a very careful and detailed numerical study. The numerical  problem is delicate since one is looking for solutions with small ci and a singularity which is therefore just off the real y line. Great care must be taken to resolve the rapid variations of the solution in the vicinity of the critical point.  You are referred to their paper for a detailed discussion of their methods. Suffice it to say they used two independent methods as a check. In one method they discretized the problem making it a matrix eigenvalue problem for c. In the other  case they used a “shooting” method to solve the ODE iteratively adjusting c until boundary conditions at large positive and negative y were satisfied. Here, their results are presented. The figures come from their paper and they use the notation  in place of k for wavenumber.

Figure 12.4.5 shows  the  contours of growth rate and phase speed within the boundary traced out by the neutral curve of the nonsingular mode. However, the curve is shown only for wave numbers such that k2 > 0.13. For such wavenumbers the curve given by (12.4.4) is the stability boundary. 

[image: image108.wmf]
Figure 12.4.5a The contours  of growth rate  
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Figure 12.45.b Contours of real phase  speed.

For smaller values of k this  is no longer true. For very small values of k Dickinson and Clare found one root, as shown in the following figure,

[image: image110.png]B 1 M |
04 ]
o3t ' a2=00! .
, NEUTRAL BOUNDARY
I AT 8=000995

* 04 i -

Cr

03 ’- -

0.2 ] L 1
~ 0.05 0.10 0.15 020

Fi1c. 3. Imaginary and real phase speed vs 8 at a?=0.01. The
neutral boundary is at 8=0.00995.




Figure 12.4.6  a,b the imaginary and real parts of c as a function of  for k2=0.01

For small values of the curves are exactly what one would find from consideration of the nonsingular  mode.  Note especially that the real part of c  asymptotes to the value given by  (12.4.11d).  For larger  the curve for cr dips but does not reach zero. Instead it briefly rises and then slowly decreases producing a critical layer in the region y  < 0. At the same time the imaginary part of c, while decreasing, extends well beyond the neutral curve given by (12.4.11). At this  value of k the neutral boundary for the nonsingular mode is at  =0.00995 and we see that there is growth for values of   considerably larger. For intermediate values of k such that 0.05< k2< 0.13 two modes are found. One mode is contiguous to the nonsingular neutral mode while  the other generally exists on both sides of that neutral boundary as shown in figure 12.4.7
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Figure 12.4.7 The imaginary and real parts of c for k2 =0.1.

Note that the mode contiguous to the neutral mode does have its ci going to zero on the neutral boundary at  =0.09487 while the second mode is weakly unstable for  beyond that neutral curve (in all cases instability still occurs for less than the maximum critical value of 0.3849. The form of the eigenfunction is very revealing. For large enough wavenumber such that all the unstable modes are connected to the nonsingular neutral mode, the structure of the unstable disturbance is similar to that of the neutral mode (12.4.10). The  mode exponentially decays away from the shear layer. On the other  hand for the modes the extend beyond the neutral curve  of the nonsingular mode, the  structure is quite different. Figure 12.4.8  shows , in the upper left panel the magnitude of the eigenfunction for the case when  is 0.15 and k2 =0.1. 
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Figure 12.4.8 The eigenfunction for  = 0.15 and k2 =0.1.

The disturbance amplitude rapidly decays for large negative y but becomes a constant for large positive y. If the amplitude is written,
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(12.4.12)

we see that the phase of the eigenfunction linearly increases for large positive y. This implies a nearly constant, positive wavenumber l for the disturbance in the domain north of the shear layer. With the product k l > 0, this would imply a positive radiation of Rossby wave energy from the shear layer to plus infinity.  It implies that the possibility for radiation destabilizes flows which for the same values of wave number and  would otherwise be stable. The structure of the wave yields more evidence of the connection. The Reynolds stress  
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(12.4.13)

where the last equality holds only where the perturbation appears wavelike. It emphasizes the connection between the existence of the Reynolds stress (an energy releasing mechanism) and the wave energy flux. Recall, that our proof that the neutral mode had to correspond to a nonsingular mode whose phase speed was equal to the mean flow at the point where the pv gradient vanished assumed that the Reynolds stress vanished at the y boundaries of the region. If radiation relaxes that condition we can have a singular mode, with a jump in the Reynolds stress at the critical point without a contradiction.

We can also write the eigenfunction is a suggestive way. Suppose A  has a real and imaginary part and imagine that we have  calculated it derivative. We can further write the derivative as a part that is in phase with A and a part that is out of phase, i.e.
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(12.4.14)

where  and  are real functions. If we now use (12.4.13) to calculate the Reynolds stress, we obtain,
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(12.4.15)

so that the Reynolds stress is proportional to the out of phase portion of the derivative.  In the limit of small ci the method  of Frobenius implies that the in phase part of the derivative will be proportional to 
[image: image117.wmf] while the out of phase part will have a step function behavior at the critical layer, e.g. 
[image: image118.wmf] as shown in (12.1.14). This jump is due to the abrupt change in phase  of the logarithm as the critical point is passed. The two panels on the right of figure 12.4.8 show the in and out of phase components. Since ci is not zero the singularity in the eigenfunction on the real line  is smeared out but the upper panel for the in phase derivative is approaching the logarithmic singularity (note in negative y) while the out of phase component is approaching as step function behavior. The possibility of radiation has allowed the existence of a singular mode, extracting energy from the shear layer and radiating it to great distances north of the shear layer. In the region of northward wave radiation the Reynolds stress is negative. For very large negative values of y the Reynolds stress is zero since the eigenfunction rapidly decays for as y (  - infinity. The jump in  the Reynolds stress at the critical layer , by (12.1.14) is
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(12.4.16)

The jump in Reynolds  stress provided by the singularity at the critical layer is exactly what is required to produce a positive outgoing  radiation since the critical layer occurs in y  < 0 where the pv gradient is negative.
Original profile





The result of the instability
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( This is a generalization of the classical result  for the zero   problem where  there is always a solution c=0, k=0, A=Uo(y) to which (12.2.10) reduces in the case  =0.
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