
Chapter 10 

Chapter 10 The two �layer model 
 

10.1 Formulation of the quasi-geostrophic equations for the two-layer model. 

 

The complexity of the Charney model shows just how difficult it can be to examine 

the nature of the baroclinic  stability problem when even the smallest step is made 

towards a realistic model, e.g. by including the β effect. Questions involving the role of 

friction, topography, variable stratification, or nonlinearity will be even more of a 

challenge. It is therefore important to find a model in which the basic process of 

baroclinic  instability can take place and yet which, in the simplest case, is sufficiently 

easy so that we can confidently expect to make progress in situations where we include 

some of the physical process listed above. Such a model was introduced first by  Phillips 

(1951, J. Meteor. 8,381-394). It consists of two layers of fluid, each of constant density 

on the rotating beta plane. The interface between the two fluids is deformable and the 

entire baroclinicity of the system, i.e. the representation of a horizontal density gradient 

is represented by the slope of that interface. A detailed derivation of the quasi-

geostrophic dynamics of this system can be found in chapter 6  (section 6.16) of GFD. 

Here I will present only a heuristic derivation relying on some facts you should be 

familiar with from earlier courses. The physical model is shown  in figure 10.1.1 
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Figure 10.1.1 the two-layer model. 

 

 

We will  assume that the flow  in each layer is geostrophic and hydrostatic except in 

frictional Ekman layers which may be considered at the lower solid boundary and the  

upper boundary if it is solid also.  The external deformation is so much larger than the 

internal deformation radius based on the presumably small density difference, 

∆ρ = ρ2 − ρ1 that if the upper boundary is a free boundary it may be considered non 

deformable (it will produce negligible vortex stretching compared to the deviation of the 

interface). The undisturbed thickness of the upper layer is D1. The thickness of the lower 

layer in the absence of motion (and so in the absence of a deviation of the interface) is 

D2 − hb(x, y) and it is assumed that hb << D2. The  density of each layer is a constant so 

the geostrophic velocity within each layer must be independent of the height coordinate, 

z. As in our discussion in chapter 2 the ratio  of the vertical velocity to horizontal 

velocity is smaller than the simple geometrical  scale estimate D/L by a factor of the 

Rossby number so that the advection operator lacks the vertical velocity term ( and also 

because the horizontal velocity and vertical component  of vorticity are independent of z 
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within each layer). Thus, within each layer the equation for ζ, the vertical component of 

vorticity is, 

 

d
dt

ζn + f[ ]= fo
∂wn
∂z

,

f = fo + βy, ζn = vnx − uny

d
dt

= ∂
∂t

+ un
∂

∂x
+ vn

∂
∂y

   (10.1.1 a,b,c,d) 

 

The subscript n refers to the layer. Upper layer variables are denoted by n =1, lower layer 

variables by n=2.  

 

Integrate the vorticity equation  over the depth of the upper layer to obtain, 

 

D1 −η( ) d
dt

ζ1 + βy[ ] = fo wT − w1(D2 + η)[ ]  (10.1.2) 

If the upper boundary were rigid the vertical velocity imposed there by the Ekman layer 

compatibility condition would be 

 

 wT = −
1
2

2Av
fo

 

 
  

 

 
  
1/2

ζ1 + ws    (10.1.3) 

 

The first term on the right hand side is the vertical velocity pumped down from the upper 

Ekman layer assuming the boundary is solid. It is proportional to the upper layer 

vorticity. The second term ws is a representation of an applied forcing. If the upper 

surface were solid it might be due to a differential rotation of the upper surface. If the 

upper surface were a free surface the first term would be absent and the second term 

might be due to an applied wind stress curl. Context will determine the combination of 

terms we will accept. 

The kinematic condition at the interface yields, 
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w(D2 + η) =
dη
dt

   (10.1.4) 

 

It is straight forward to show by a simple scaling that the ratio of the interface 

deformation to the undisturbed layer thickness will be of the order of  

η
D1

= O foUL
g'D1

 

 
  

 

 
  = εF1,

ε =
U
foL

, Fn =
fo

2L2

g'Dn

   (10.1.5 a,b,c) 

 

The parameter Fn  is a key parameter for the stability problem and is the ratio of the 

length scale L of the motion to the layer�s deformation radius. The reduced gravity g� is 

just g multiplied by ∆ρ /ρo  where ρO is the mean density of the two layers. With these 

approximations (10.1.2) becomes, 

 

d
dt

ζ1 + βy + fo
D1

η
 

 
 

 

 
 = − Av fo

2D1
2

 

 
  

 

 
  

1/2

ζ1 + fo
D1

ws   (10.1.6a) 

 

 

A similar integration over the depth of the lower layer yields, 

 

 d
dt

ζ2 + βy − foη
D2

+ fohb
D2

 

 
 

 

 
 = − Av fo

2D2
2

 

 
  

 

 
  

1/2

ζ2  (10.1.6b) 

 

In both (10.6.1 a and b) we recognize the terms in the brackets on the left as the quasi-

geostrophic approximation to the layer representation of the potential vorticity. 

 

The hydrostatic approximation implies that we can write the total pressure in each 

layer as, 
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p1total = −ρ1g z − D2( )+ p1(x, y,t),

p2 total = −ρ2g(z − D2) + p2(x,y, t).
   (10.1.7a,b) 

The total pressure must be continuous at the interface z = D2 +η  so that, 

 

 η =
p2 − p1

ρog'
   (10.1.8) 

 

At the same time geostrophy implies   

 

 un =
−1
fo

∂pn
∂y

, vn =
1
fo

∂pn
∂x

⇒ ζ n = ∇2 pn fo   (10.1.9 a,b,c) 

Defining the geostrophic streamfunction, 

 

 ψn =
pn

ρo fo
   (10.1.10) 

 

allows us to (finally) write the quasi-geostrophic potential vorticity equation as, 

 

d
dt

∇2ψn + βy + fo
2

g'Dn
(−1)n ψ1 −ψ2( )+ fo

hb
D2

δn2
 

 
 
 

 

 
 
 

= − Av fo
2Dn

2

 

 
 
 

 

 
 
 

1/2

ζn + fo
D1

wsδn1 

    (10.1.11) 

 

Here we have used the kronecker delta function, 

 
δij =1, i = j

= 0, i ≠ j
  (10.1.12) 
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It will be convenient to introduce nondimensional variables. Let�s choose U to be  a 

scale for the horizontal velocity and L to be a scale for the horizontal coordinates x  and 

y. Then (temporarily) denoting nondimensional variables by a prime, let, 

 

ψ =ULψ ' , (x,y) = L(x ', y '), t =
L
U

t'   (10.1.13) 

 

The quasi-geostrophic equations for the two layer model then become in 

nondimensional units (and where we have dropped primes on the nondimensional 

variables), and n  =1,2. 

 

d
dt

∇2ψn + βy + Fn (−1)n ψ1 −ψ2( )+ ηbδn2[ ]= − rn
2

∇2ψn + Sn

Fn = fo
2L2

g'Dn
, rn = L

U
2Av fo
Dn

2

 

 
  

 

 
  

1/2

, Sn = wsL
UD1ε

δn1, ηb = fohb
D2

L
U

 (10.1.14) 

 

Note that, 

 
d
dt

• =
∂
∂t

•+J (ψn ,•)    (10.1.15). 

 

The constants rn  are the ratios of the advective time, L/U  to the spin down time  in each 

layer due to Ekman friction, Tnspin−down =
Dn

2Av fo[ ]1/2 . The function ηb  is the ratio of 

the change in the potential vorticity of the lower layer caused by topographic variations, 

compared to the characteristic relative vorticity and is analogous to the beta term in 

(10.1.5) which in dimensionless form is related to the dimensional beta by, 

 

 β =
βdimL2

U
  (10.1.16) 
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which describes the change in planetary vorticity over the length L compared, again, to 

the relative vorticity. The potential  vorticity in each layer is: 

 

 qn = ∇2ψn + (−1)n Fn ψ1 −ψ2( )+ βy +ηbδn2  (10.1.17) 

 

The principal simplification that has occurred is  that the system of equations 

contains only  x, y and t as independent variables. The vertical coordinate z is no longer a 

continuous variable and is replaced by the index n which takes on only two values. As we 

shall  see, the problem for the normal modes reduces to the solution of two  coupled 

ordinary differential equations and, in the case where the basic flow is independent of y, 

it actually becomes an algebraic problem, a considerable simplification over the Charney 

model. It remains to see how effective the two �layer model is in recovering the essential 

features of that problem. 

It is important to note that although the layer model can be thought of as a finite 

difference version of the continuous model, it  is also the correct description of a self-

consistent physical model consisting of n immiscible layers. Therefore no matter how 

few layers we consider the model is a correct one for the physical system described even 

when it is a poor representation of the continuous model. This important point implies 

that all the results to be described have physical validity even for the crudest model. 

 

10.2 The formulation of the stability problem for the two-layer model 

 

Consider now the  total field described by (10.1.14) split between the basic flow 

and a perturbation, 

 
ψn =Ψn + φn ,

qn = Qn + � q n

  (10.2.1 a,b) 

The basic state satisfies: 

 

 J Ψn ,Qn( ) = −
rn
2

∇ 2Ψn + Sn   (10.2.2) 
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and if the source  terms Sn are independent of the motion, the perturbation fields satisfy, 

 

 
∂ � q n
∂t

+ J(Ψn , � q n) + J(φn ,Qn ) + J (φn , � q n) = −
rn
2

∇ 2φn       (10.2.3) 

 

We will, for the time being, consider the basic state to be  a time-independent zonal flow, 

such that, 

 

 
Ψn =Ψn(y), ηb = ηb(y)

Un(y) = −
∂Ψn
∂y

, Qn = βy + Fn(−1)n Ψ1 −Ψ2[ ]+
d2Ψn
dy 2 +ηbδn2

(10.2.4 a,b,c,d) 

 

so that the equation for  the perturbations can be written, 

 

 
∂
∂t

+ Un
∂

∂x
 
 
 

 
 
 

� q n + φnx Qny + J (φn , � q n) = −
rn
2

∇2φn   (10.2.5) 

 

where 

 

 

� q n = ∇2φn + (−1)n Fn φ1 −φ2( ),

Qny = β − (−1)n Fn U1 −U2( )−Unyy + ηbyδn2

  (10.2.6 a,b) 

 

It would be useful at this point if you were to compare these equations with their 

continuous  equivalents in chapter 3. 

 

Along with the potential vorticity equation for the perturbations it is also useful, 

again, to examine the equation for the time rate of change of the x-averaged zonal flow. 

Repeating the same steps as in chapter 3, only now for the layer model (in 

nondimensional units) we obtain, 
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∂u n
∂t

+ v na = −
∂
∂y

un 'vn ' −
rn
2

u n    (10.2.7) 

The subscript a on vn reminds us that this term is the ageostrophic velocity (it is the 

Coriolis torque term) while the prime variables on the right hand side forming the 

Reynolds stress terms are geostrophic and directly given by the geostrophic 

streamfunction. Once again a useful relationship between the potential vorticity flux  and 

the Reynolds stress can be obtained (after several integrations by parts in x) 

 

 

v 'n � q n = v 'n v 'nx −u'n y( )+ (−1)n Fn φ1 − φ2( ){ }

= − ∂
∂y

u'n v 'n − (−1)n Fn φn φ1 − φ2( )x

 (10.2.8) 

Let  

dn = Dn D, D = D1 + D2  (10.2.9) 

 

Multiply (10.2.8) by dn and sum over n (equivalent to a vertical integration) to 

obtain, 

(note that  dnFn  is independent of n) 

  
v 'n � q n

n=1

2
∑ dn = − (v 'n u'n )y dn

n
∑ + dnFn

∂
∂x

φ1 −φ2( )
2

=0" # $ $ % $ $ 

 (10.2.10) 

 

or, 

 

 v 'n � q n
n=1

2
∑ dn = − (v 'n u'n )y dn

n
∑   (10.2.11) 

 

Using the fact that dnv na
n
∑ = 0 by mass conservation, the equation for the rate of change 

of the zonal mean flow becomes, 
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∂
∂t

dnu n
n
∑ + rnu ndn /2

n
∑ = v 'n � q n

n
∑ dn  (10.2.12) 

so that the rate of change of the vertical integral of the x-averaged zonal flow is directly 

related to the potential vorticity flux of the perturbations. Since v�n vanishes at the 

latitudinal  end points of the region, the integral of the right  hand side of (10.2.11) must 

vanish. Thus, 

 

 dy v 'n � q ndn
n
∑

y1

y2
∫ = 0   (10.2.13) 

and this just states the obvious fact that in the absence of friction the total mean 

momentum in the x-direction can not change with time because the momentum fluxes 

can only redistribute that momentum and not change its total. 

If we, for now, restrict our attention to small amplitude  perturbations effectively 

linearizing (10..2.5) by ignoring the Jacobian term, the potential vorticity perturbation 

can be related to the small Lagrangian y displacement in each layer. As in chapter  3, 

 

� q n = −ηn
∂Qn
∂y

  (10.2.14). 

so that (10.2.12) becomes, 

 

 
∂
∂t

dnu n
n
∑ + rnu ndn /2

n
∑ = −

∂
∂t

ηn
2

2n
∑

∂Qn
∂y

dn  (10.2.15) 

which allows us to relate the forcing of the  mean flow to the local dispersion of fluid  

elements in the y-direction  in the basic state�s potential  vorticity gradient. Either from 

the point of view of momentum conservation (ignoring friction) or  directly from 

(10.2.13) (which also assumes friction is unimportant)we obtain the  condition. 

 

 dy dn
1
2

∂
∂t

ηn
2

n
∑∫

∂Qn
∂y

= 0   (10.2.16) 
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 Thus if, as we would suppose, 
∂
∂t

ηn
2 > 0 in each layer, it follows that for 

(10.2.16) to be satisfied the  basic state potential  vorticity gradient must be both positive 

and negative in the meridional  cross section of the basic current. It is not necessary that 

the gradient be zero anywhere. It may be, say, positive in the  entire upper layer  and 

negative in the lower layer and still satisfy (10.2.16). What we can say is that if the  

gradients are of the same sign over each layer the flow must be stable. In particular, a 

large enough value of β will stabilize the flow in distinction to the result in Charney�s 

model and we will have  to discuss why this  is so. Clearly, we have restricted the vertical 

structure we are allowing to the perturbations and as a consequence the necessary 

condition for instability are stronger. 

If we look for normal modes, i.e. if 

 

φn = ReΦn(y)ei k(x−ct)  (10.2.17) 

 

the ordinary differential equations governing the amplitude functions  are, 

 

 

Un − c( ) d2Φn
dy 2 − k 2Φn + Fn(−1)n Φ1 −Φ2( )

 

 
 
 

 

 
 
 +

∂Qn
∂y

Φn = −
rn
2ik

d2Φn
dy2 − k 2Φn

 

 
 
 

 

 
 
 (10.2.18) 

 

where 
∂Qn
∂y

= β −Unyy − (−1)n U1 −U2[ ]+ ηbyδn2. 

In common with the continuous model there exists a very similar semi-circle 

theorem and other bounds on the growth rate. Details can be found in chapter 7 of GFD. 

 

10.3 The Phillips model of baroclinic instability. 

 

In the reference to Phillips given above, he introduced the two-layer model�s 

version of the Charney problem. Consider a zonal flow in which the basic velocity, Un is 

independent of y. This implies, by (10.1.8) and (10.1.9 a) that the interface slope is a 

constant as shown in the figure below. 
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Figure 10.3.1  The interface slope in the two-layer model with a constant zonal flow in 

the upper layer and a smaller constant zonal flow in the lower layer. The interface slope 

is constant. 

 

There is clearly potential energy in the sloping interface that can be released by the 

instability and we need to determine when that energy can be released and the structure 

of the perturbations responsible for the release. However, before executing the analysis of 

(10.2.18) recall that in the Charney model there is a characteristic vertical scale of the 

perturbation. When, as in the present model, the background density field is taken as 

constant that vertical scale is, (here the units are dimensional) 

 

dβ = fo
2

N2

Uoz
β

≈ fo
2∆U
g'β

  (10.3.1) 

 

where the last equality is a scaling approximation suitable to the layer representation in 

which 

Uoz ≈ U / D, N 2 = g∆ρ / ρ / D = g' /D    (10.3.2) 

 

Of course, should the scale given by (10.3.1) fall beneath the vertical scale resolved by 

the two layer model such perturbations could not be represented in the model. For weak 

shears Charney�s model achieves instability by reducing the vertical scale of the 

perturbation so that its trajectories still lie within the wedge of instability.  We must 

D2 +η 

U1 

U2 
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anticipate that for weak shears in the two layer model, when hβ < Dn , the flow will 

appear stable since the model can no longer represent the surface intensified 

perturbations that are responsible for the instability. The condition that  hβ = Dn  can then 

be written, 

 

∆U =
βdim

fo
2 g'Dn

(dimensional units)   (10.3.3) 

 

or in nondimensional units, 

 

 ∆Un =
β

Fn
   (10.3.4) 

 

We consider the Phillips  model with the  following slight variations. Including the 

beta-effect and  the possibility of a constant topographic slope in the y-direction, the 

potential vorticity gradients in the two layers are the constants, 

 
Q1y = β + F1(U1 −U2)

Q2y = β − F2(U1 −U2) + ηby

   (10.3.5 a,b)  

 

Recall, that the potential vorticity gradients must be both positive and negative for 

instability. Hence, since they are constants within each layer, one must be positive and 

the other negative for instability (at least in the absence of friction). If the flow has a 

positive shear, i.e. if U1 −U2 > 0 and if the bottom is flat, the necessary condition for 

instability tells us that  

Us =U1 −U2 > β F2    (10.3.6) 

 

for instability. We will have to check to see whether this necessary condition for 

instability is also sufficient, that is, whether the flow is really unstable as soon as the 

condition (10.3.6) is satisfied. Note that (10.3.6) has been anticipated by (10.3.4). The 
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flow is placed in a channel whose dimensional  width is L so that using L as the scaling  

length the position of the boundaries are at y =0,1 where the perturbation meridional 

velocity must vanish. 

Since the basic velocity and potential vorticity gradients are constant, the 

coefficients of (10.2.18) are independent of y. Therefore, solutions of the form, 

 

Φn = An sin ly    (10.3.7) 

will satisfy the differential equation and the boundary conditions y= 0,1 if  l = mπ  where 

m  is an integer. Substituting  (10.3.7) into the normal mode equation results in the 

following two homogeneous equations for the amplitudes, 

 

A1 (c −U1)(a2 + F1) + β + ir1a2

2k

 

 
 
 

 

 
 
 + F1 U1 −U2( )

 

 
 
 

 

 
 
 = A2 c −U1( )F1

A2 (c −U2)(a2 + F2) + β +ηby +
ir2a2

2k

 

 
 
 

 

 
 
 − F2 U1 −U2( )

 

 
 
 

 

 
 
 = A1 c −U2( )F2

(10.3.8a,b) 

   

where the total wave number is a , i.e. 

a2 = k 2 + l2 
 

Note that we have retained the effect of Ekman friction in the two layers.  

Since the algebraic equations for the perturbation amplitudes are linear and 

homogeneous a non trivial solution requires the determinant of the coefficients to vanish. 

This condition will yield a quadratic equation for the  phase speed c which we can 

consider a function of wavenumber a . This dispersion relation is generally complex 

because of the Ekman friction terms but even if they are ignored the phase speeds may 

themselves be complex and a positive imaginary part for c implies instability. It is useful 

to introduce the notation, 

 

Bn = β +
irna2

2k
+ ηbyδn2   (10.3.9) 
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After considerable algebra the quadratic equation for c which comes from the condition 

for nontrivial solutions of (10.3.8 a,b) yields as solutions, 

 

c = U2 + Us
2

a2 + 2F2
a2 + F1 + F2

− B2(a2 + F1) + B1(a2 + F2)
2a2(a2 + F1 + F2)

 
 
 

  

 
 
 

  

±

Us
2a4 (a4 − 4F1F2) + 2Usa2 (B2 − B1)(a4 − 2F1F2) + a2(B2F1 − B1F2)[ ]+

B2(a2 + F1) − B1(a2 + F2)[ ]2 + 4F1F2B1B2

 

 

 
 

 

 
 

 

 

 
 

 

 
 

1/2

2a2(a2 + F1 + F2)

 

    (10.3.10) 

where the shear, as in (10.3.6) is defined as, 

 

Us ≡U1 −U2. 

Once c has been found, the  ratio  A1 / A2. (the vertical structure) can be found from either 

(10. 3. a or b). The algebraic solution given in (10.3.10) is a complicated one and we 

shall examine some familiar special cases but first note how easily, in the two layer 

model, we have achieved a solution for the stability problem with beta, topography and 

friction. 

 

10. 4 Simple examples 

a) Frictional  spin down 

Consider first the case in which there is no basic velocity, no beta, and no 

topographic slope and in which F1 = F2 ≡ F . When F1 = F2  (i.e. H1 = H2)this is 

equivalent to saying that the stratification in the continuous system is independent of z 

(why?). Note that this also implies that r1 = r2 = r . With these restrictions Bn = ira2 2k  

and the two roots for  c are,  

 

c = −i
r

2k
1,

a2

a2 + 2F

 
 
 

  

 
 
 

  
   (10.4.1) 
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Both roots are decaying with decay rates, 

 

 kci =
1
2

−ir

−ira2 /(a2 + 2F )

 
 
 

  
   (10.4.2a,b) 

 

The first root −ir /2 is independent of wave length and, we shall see, represents the spin 

down of the barotropic mode. Indeed the time scale associated with this root is the 

classical spin down time of Greenspan and Howard (1963, J. Fluid Mech. 17, 385-404). 

The second root yields the spin down rate of a purely baroclinic mode. It does depend on 

the wavelength. When a2 >> 2F , or equivalently when the length scale is small 

compared to a deformation radius, the spin down time is equal  to the barotropic value. 

On the other hand, when the length scale is large compared to the deformation radius 

most of the potential vorticity is manifested in the stretching term (i.e. the layer 

thickness) and the elimination of the relative vorticity by the Ekman friction does little to 

alter the potential vorticity and so for small a the decay rate is small and goes to zero as a 

! 0. A little algebra shows that for the  first root, (10.3.8 a) yields A1 = A2 so, as 

expected, the corresponding motion is barotropic. For the second root the same equation 

(for H1 = H2) yields A1 = −A2  so that the mode decaying with this root is purely 

baroclinic. You should check how an arbitrary initial condition decays as a combination 

of these two modes. 

b) Rossby waves. 

Now let�s add the beta effect to the previous example, still keeping the shear zero and 

ignoring any effect of topography . We will also ignore topography but allow the two 

layer thickness to be different. In this case Bn = β  and the two roots for c are,  
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c1 = − β
a2 ,

c2 = − β
a2 + F1 + F2

   (10.4.3 a,b) 

The first root corresponds to the dispersion relation for barotropic Rossby waves. The 

second corresponds to the dispersion relation for baroclinic Rossby waves. If each root is 

substituted into  (10.3.8a) we obtain for the first root, again, A1 = A2 (barotropic). The  

second root yields,  

 
A1
F1

= −
A2
F2

⇒ A1D1 = −A2D2 

 

or a purely baroclinic (no net transport) mode. You should check in the simpler case 

when D1 = D2 that the addition of friction would add to each  of the roots of (10.4.3 a,b ) 

the corresponding decay rates of (10.4.2 a,b). 

c) The inviscid stability problem 

 

Now let�s consider the important case in which there is now a basic flow and a non 

zero vertical shear. Again we will ignore topography and temporarily Ekman friction. 

The solution for the phase speed reduces to, 

 

c =U2 +
Us(a2 + 2F2)
2(a2 + F1 + F2)

−β
2a2 + F1 + F2{ }

2a2 a2 + F1 + F2{ }

±
−Us

2a4 4F1F2 − a4[ ]+ β 2(F1 + F2)2 + 2a4Usβ (F1 − F2){ }1/2

2a2 a2 + F1 + F2{ }

 (10.4.4) 

The radicand of (10.4.4) may become negative in which  case the roots for c will be 

complex conjugates. This would yield instability. The  critical  condition where the 



Chapter 10 18 

radicand just vanishes gives us the curve of marginal  stability. This determines a critical 

shear from the condition that the radicand vanish or, 

 

Us
2a4 4F1F2 − a4( )− 2a4Usβ (F1 − F2) −β 2 F1 + F2( )2 = 0   (10.4.5) 

 

Traditionally, one asks for the shear required to satisfy (10.4.5) for a given value of β 

as a function of wavenumber. The value of shear which satisfies (10.4.5) is, 

 

Us =
β(F1 − F2)
4F1F2 − a4 ±

2β F1F2( )1/2 F1 + F2( )2 − a4[ ]1/2

a2 4F1F2 − a4( )   (10.4.6) 

 

If the layer depths are equal so that F1 = F2 ≡ F , the critical condition reduces to 

 

Us = ±
2βF

a2 4F 2 − a4( )1/2    (10.4.7) 

 

and is shown in Figure (10.4.1). 
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Figure 10.4.1 The marginal stability curves when both layer thicknesses are equal. 

 

When the  shear exceeds the value  given by the curves in Figure 10.4.1 the radicand 

in (10.4.4) becomes negative and c becomes complex with a non zero imaginary part. 

There is, by direct calculation  a minimum value of the  critical shear, 

 

 Usmin =
β
F

   at a2 = 2F    (10.4.8) 

It is important to note that in this case the necessary condition for instability, i.e. the 

condition that the  potential vorticity gradient be of opposite signs in the two layers is 

also the sufficient  condition for instability as established by direct calculation. For 

positive shear this occurs when the potential vorticity gradient in the lower layer, 

 

Q2y = β − FUs    (10.4.9) 

 

β/F

Unstable 

Unstable 

stable
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just vanishes. Note that there is a short  wave cut-off also, That is, independent of β there 

is always stability if a2 > 2F . This is qualitatively equivalent to the Eady short wave cut-

off. Just as we anticipated , for weak enough shears, where the Charney model would 

yield vertical scales less than the layer depth, the two-layer model is stable. One could 

either consider this a disadvantage of the layer model, i.e. its inability to describe small 

scale, low shear modes with small vertical scales, or as an advantage in the sense that it 

filters out those small scale weakly growing modes. 

The  real and imaginary parts of c and the growth rate, kci  are shown in  Figure 

10.4.2, 

2 2.5 3 3.5 4 4.5 5 5.5 6
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s
 = 0.4

imag c 
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Figure 10.4.2 The real and imaginary parts of the phase  speed and the growth rate σ. 

In the figure  we see the two real roots for c coalesce at the two boundaries of the 

unstable region inside of which the real part of the phase  speed is given by the first term 

on the right hand side of (10.4.6) and the imaginary part is given by the square root term.  

The growth rate σ is given by kci . In the figure the variables are plotted against the total 

wave number a  for the case in which l=π/10  at a value of the shear which is 0.4 whereas 

the minimum critical  value is 0.25. 

The situation becomes more complicated when the layer thickness are unequal. If we 

were to apply the model to the stability of an oceanic flow, like the Gulf Stream we might 

think of putting the current in a relatively thin upper layer and allowing the lower layer to 
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be considerably thicker, perhaps representing the ocean below the thermocline. The two 

potential vorticity gradients are then, 

 
Q1y = β + F1Us,

Q2y = β − F2Us

 

If the  shear is positive, i.e.  if U1 > U2 the minimum value  of the shear required for 

instability would be, 

 

 Us+ =
β
F2

   (10.4.10a) 

while for negative shear the critical  value is 

 

 Us− = −
β
F1

   (10.4.10b) 

 

If we suppose that D2 > D1 it follows that F2 < F1 so that  a larger positive, eastward  

shear is required for instability than for the case of westward, negative shear since, 

 

 
Us+
Us−

=
D2
D1

>1  (10.4.11). 

 

The stability diagram is shown in figure 10.4.3 and, again, the necessary conditions for 

instability turn out to be sharp ones in the sense that they are also sufficient  conditions. 
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Figure 10.4.3 The marginal stability curves for unequal layer depths in the case D1 < D2. 

 

In the figure particular wave numbers and shear levels are noted. Note that for the 

negative shear case not only is the minimum shear required for instability smaller, but the 

wavenumbers of unstable modes extend to much higher values. Indeed, in the limit as 

D1! 0 the �nose� of the curve extends to very large wavenumber and to very small 

values of the shear.  If the depth ratios were reversed, it would be the positive shear case 

that would have the small minimum value for the critical shear and be unstable at large 

wavenumber. In that case the result of the two layer model would increasingly resemble 

the critical curve for the Charney mode. Reducing  D2 allows us to represent the Charney 

mode for weak shear since for weak shear the perturbation was seen to be trapped to a 

thin region near the lower boundary. 

a2 = 2(F1F2)1/2

 
Us = β F2

a2 = F1(F1 + F2)[ ]1/2

Us = −β F1  

 
a2 = (F1 + F2)

a2 = F2(F1 + F2)[ ]1/2

Us =
β

F1 − F2
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The growth rate for the case of negative shear is shown in Figure 10.4.4a. A shear 

about 1 1/2 times critical has  been chosen. Note that the growth rate peaks at a rather 

large wavenumber (small scale) compared to the case for positive shear which is shown 

in Figure 10.4.4 b. 
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Figure 10.4.4 a The real and imaginary parts of c  and the growth rate σ  for the 

case of negative shear. The shear in nondimensional units is �0.4 whereas the minimum 

critical shear is �0.25. This should be compared with the case of positive shear shown in 

Figure 10.4.4b. There the minimum critical shear is 1.25 and the chosen shear, in the 

same proportion as in the negative shear example, is 2.0 
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  Figure 10.4.4b As in the previous figure except that the shear is positive. Note that the 

peak in the growth rate is at smaller wave number. 

 

When the shear is set at the minimum critical shear both roots for c are real and 

they coalesce at the point of marginal stability on the bottom of the neutral curve. Figure 

10.4.4c shows the case when, for the same parameters as figure 10.4.4a we choose the 

shear to be the critical value 1.25. We have (with a Galilean transformation) chosen the 

lower layer basic state velocity to be zero without loss of generality. Note that one root is 

always c = 0.The other root coalesces at that point at the wavenumber that is corresponds 

to the marginal curve a = {F2 F1 + F2[ ]}1/4  which in the present case is about 3.13. This 

implies that the whole lower layer becomes a critical point (or layer) in that U2 �c =0 in 

the layer at the minimum critical shear on the marginal curve. Thus both linear terms in 

the potential vorticity equation identically vanish there and we must expect that 

nonlinearity or friction would be especially important for such parameter values. 
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Figure 10.4.4 c. The two roots for c  as a function of a when the shear is positive and just 

equal to the minimum critical shear. Note the coalescence at c =0 the value of U2. 

 

d) The role of friction in the two-layer model. 

 The role of friction can be two-edged. On the one hand we expect friction to act as 

a dissipative mechanism and so imagine that it would be stabilizing. On the other hand in 

the inviscid problem with β the stabilization if provided by an inertial constraint 

(potential vorticity conservation)  that might  be weakened by friction. We shall see that 

friction can serve to both stabilize and destabilize the problem. To start simply, let�s first 

consider the case in which the layer thicknesses are equal so that 

F1 = F2 = F, r1 = r2 = r  and where we ignore the beta effect. Then from the inviscid 

dispersion relation (10.4.4) we would expect instability for all shears as long as the 

wavenumber a < 2F( )1/2 . When friction is considered (but not β) the dispersion relation 

becomes, 
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c =U2 +
Us
2

− i
r
k

a2 + F
a2 + 2F

± i
Us

2a4(4F 2 − a4 ) + F 2r2a4 / k2[ ]1/2

2a2(a2 + 2F)
 (10.4.12) 

Note that if the radicand is positive, the real part of the phase speed is always 

cr =
U1 + U2

2
  (10.4.13) 

 

The condition that the imaginary part of c vanish can be obtained by equating  the 

two final terms in (10.4.6). A little algebra leads to the critical condition, 

 

Us =
ra

k 2F − a2
  (10.4.14) 

 

Note that the condition depends on k and l  separately and not just on a. The marginal 

curve is plotted in figure 10.4.5a. 

 a = l
a = 2F
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Figure 10.4.5a The  neutral stability curve for the two layer model with friction but  no 

beta. 

The effect of friction introduces  a minimum critical  shear that must be exceeded before 

the energy release from the basic flow to the disturbance overbalances the energy of the 

perturbations lost to frictional dissipation. The imaginary part of c for large 

wavenumbers, where the flow is stable, is given by the first term in r on the right hand 

side of (10.4.6). When there is friction in the problem the coefficients of the differential 

equation are no longer real and so the complex solutions for c are no longer complex 

conjugates. Figure 10.4.5b shows the real and imaginary parts of the frequency as a 

function of wave number for a shear about 1/1/2 times the minimum critical value. 

 

 

a = 2F l2( )1/4
 

Us min =
r

(2F)1/2 − l{ } 
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Figure 10.4.5 b The real and imaginary parts of the frequency kc. 

The emergence of two roots for ci  occurs for negative values  of the growth rate. 

As the  wavenumber is decreased one root remains O(1) and negative while the other root 

goes through zero at the marginal curve. Note that in distinction to the inviscid case (e.g. 

figure 10.4.4b) the zero crossing of the growth rate is linear and does not have the square 

root behavior of the  inviscid  problem. For the viscous  problem the marginal curve does 

not correspond to a coalescence of roots. Correspondingly, the  region below the  

marginal curve in Figure 10.4.5a corresponds  to damped modes, with negative values of 

growth rate. This is in distinction to the inviscid case where the stable modes were 

neutral, neither growing or decaying. 

It is interesting to examine the energy balance in the perturbation. First note that 

from (10.3.8a) the amplitude ratio 
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A2
A1

=
a2 + F

F
+

U1 −U2
c −U1

+ ir
a2

2k(c −U1)F

=1+ a2

F
− Us

Us /2 − ici
+ ir a2

2k Us /2 − ici( )F

  (10.4.15) 

 

Note that the phase  shift between the layers is due both to the growth rate, i.e. to ci  

and to the dissipation r.  Even if there is no growth there must  be a phase shift to allow 

for the extraction  of energy from the basic flow  to balance dissipation. Let us examine 

that more carefully. At the marginal curve ci  =0 and the shear is related to the friction 

coefficient by (10.4.14). A little algebra shows that on the marginal curve, 

A2
A1

 

 
  
ci=0

= −1+
a2

F
− i 2F − a2( )1/2 a

F
   (10.4.16) 

In  particular  note that the magnitude of the amplitude ratio is unity on the marginal 

curve, that  is, 

 

 
A2
A1

2
=1−2

a2

F
+

a4

F 2 + (2F − a2)
a2

F 2 =1  (10.4.17) 

The magnitude  of the  amplitudes, at the marginal curve, is the  same in both layers and 

the amplitudes differ only by a phase shift. Thus, 

 A2 = A1e
iϕ    (10.4.18a) 

where 

 sinϕ = − 2F − a2( )1/2
a F    (10.4.18b) 
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so that the upper wave is shifted westward with height ( as we know  it must to release 

energy). To form the  energy equation we multiply (10.2.5) by φn  and integrate over the 

volume of the  fluid to obtain, 

 

∂
∂t

∇φn
2 /2

n
∑ + F φ1 − φ2( )2 /2
 

 
 
 

 

 
 
 
dy =Us Fφ1φ2x dy

0

1
∫ −

r
2

∇φn
2

n
∑ dy

0

1
∫

0

1
∫  (10.4.19) 

 

The first term on the right hand side is the baroclinic energy conversion associated with 

the horizontal buoyancy flux. At the marginal curve the phase speed is U1 +U2 which 

we may take to be zero with no loss of generality. Then, since 

 

φ1φ2x =
1
2

A1eikx + A1e
−ikx( ) ik

2
 
 
 

 
 
 A2eikx − A2e−ikx( )sin2 ly

=
ik
4

A1
*A2 − A2

*A1( )sin2 ly,

= ik
4

A1
2 eiϕ − e−iϕ{ }sin2 ly = −k

2
A1

2 sinϕ sin2 ly

  (10.4.20) 

the baroclinic energy conversion term is, using the identities valid  on the critical curve, 

 

F Us
2

k A1
2 (2F − a2)1/2 a F{ } sin2 ly dy

0

1
∫

= ra2 /4 A1
2

  (10.4.21) 

 

The last equality shows that  the  energy release by the baroclinic  instability exactly 

balances the dissipation of energy since the last term on the right  hand side of (10.4.19). 
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Above the marginal curve, where the flow is unstable there is an excess of energy 

released over that  which is dissipated and that excess provides the energy for growth. 

e) Instability with friction and β. 

The situation becomes a little surprising when we add both friction and the beta 

effect. Again, to keep matters as algebraically as simple as possible we will take the case 

of equal layer thicknesses and no topography. The dispersion relation (10.3.10) now 

becomes 

 

c = U1 + U2
2

− β (a2 + F )
a2(a2 + 2F)

− ir (a2 + F)
a2(a2 + F )

a2

F

±
Us

2a4 a4 − 4F 2( )+ 4F 2 β + ira2 /2k( )2 

 
 

 

 
 
1/2

2a2(a2 + 2F )

  (10.4.21) 

The dispersion relation is rendered difficult because of the imaginary term within the 

radical. In particular,  

ici = −i (a2 + F)
a2(a2 + 2F)

ra2

2k
+ iIm

−Us
2(4F 2 − a4 ) + 4F 2β 2 + i8βF 2 ra2 2k[ ]1/2

2a2(a2 + 2F)
(10.4.22) 

 

The radicand is of the form A + iB = Reiϑ  where  

A = −Us
2a4(4F 2 − a4 ) + 4F 2β 2 − r2F 2 a4 k2

B = 8βF 2 a2 2k

  (10.4.23 a, b) 

Since, R = A2 + B2( )1/2
 and A + iB = R1/2(cos(ϑ /2) + isin(ϑ /2), it follows that 
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Im(A + iB)1/2 = R1/2 sin(ϑ /2)

= A2 + B2( )1/4 1−cosϑ
2

 
 
 

 
 
 

1/2

= (A2 + B2)1/2 − A
2

 
 
 

  

 
 
 

  

1/2

   (10.4.24) 

With A and B defined by (10.4.23 a, b) it is straightforward to find the condition at the 

marginal curve for which ci  =0. Letting γ = ra2 /k , a little algebra yields the condition, 

 

4γ4 (a2 + F )4 + 4 Aγ 2(a2 + F)2 = B2   (10.4.25) 

 

With substitutions  for A,B and γ we obtain the equation for the marginal  curve, 

Us
2 =

4β 2F 2

a2(a2 + F )2(2F − a2)
+

r2a2

k 2(2F − a2)
   (10.4.26) 

 

which  should be compared to the equivalent curve for the completely inviscid case r =0 

obtained from (10.4.6). We denote that critical curve in the inviscid case by UsI , 

 

UsI
2 =

4β 2F 2

a4(4F 2 − a4)
   (10.4.27) 

If β =0 we recover the stability curve given by (10.4.14). On the other hand as r !0 the 

limiting form for (10.4.26) is not (10.4.27), the inviscid curve.  Indeed, the ratio, 
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Us

2

UsI
2 =1−

F 2

(a + F)2 +
r2a2

k2
a4(2F + a2)

4β 2F 2   (10.4.28) 

so that in the limit as r!0 Us UsI = 1− a2 F( )1/2
<1 ! This implies that for a small 

amount of Ekman friction will destabilize the inviscid problem by destabilizing shears 

below the inviscid curve that were stable in the absence of friction. This seems a 

paradoxical result because we would like to believe that if the dissipation is small enough 

we ought to be able to ignore it and yet here we find that in the limit of vanishing friction 

the neutral curve is moved to lower shears by an order 1 amount , i.e. an amount 

independent of r as r  goes to zero. Figure 10.4.6 shows the two marginal curves for a  

case of small r. 
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Figure 10.4.6 The inviscid and frictional marginal curves. For the frictional curve r 

=0.001. 

 

It is clear that there is a region of shear between the two curves which has been 

destabilized by  friction and this region, for small r is independent of the value of r. How 
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is this possible if we believe in the physical continuity of the dynamics? The paradox is 

easily resolved if we examine the growth rate as a function of shear in the intervening 

region. Figure 10.4.7 shows the form that curve takes ( a large value of r = 0.01)is used 

for the graph to make the plot clearer). 
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Figure 10.4.7 The growth rate as a function of shear, r =.01 

Figure 10.4.7 shows the growth rate as a function of shear for a fixed wavenumber. 

As expected from Figure 10.4.6 the growth rate becomes positive at the  threshold for the 

frictional curve first. In the intermediate region between the two thresholds the growth 

rate remains small O(r) and only becomes O(1) as the inviscid threshold is passed. The 

paradox is resolved by noting that the  growth rate is O(r)  in the intervening region and 

hence the growth rate goes to zero as r!0  even while that region is formally a region of 

Inviscid curve Frictional curve 
σ =O(r)

σ =O(1) 

Frictional  
threshold Inviscid 

th h ld
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weak instability. For larger shears the curves approach  one another although note that 

the growth rate of the frictional case is always slightly smaller than the inviscid theory. 

 The physical cause of this rather strange behavior is due to the double nature of the 

role of friction. On the one  hand friction, as we saw in the previous section, is 

responsible from providing a phase shift in the wave and that phase shift can liberate 

energy through that phase shifted structure of the disturbance. The friction also directly 

dissipates energy. When the friction is small, the amplitude variation provided by the β 

effect when phase shifted by the small friction releases more energy than is dissipated by 

friction. On the other hand, if the friction is large the dissipative effect is dominant and 

the friction is stabilizing as we would naively expect. Figure 10.4.8 shows the inviscid 

and frictional curves for a larger value of r. 
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Figure 10.4.8 The neutral curves for the inviscid  and frictional case when r =2. 

 

In this case, with r =2 it is clear that friction is large enough to stabilize the  flow. 

This situation frequently arises in stability theory. If a flow is rendered stable because of 

inertial constraints a small amount of dissipation can actually destabilize the  flow 

although as in the baroclinic case the resulting growth rates are usually small. For the 
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baroclinic problem the result was discovered by Holopainen (1961, Tellus, 13, 363-367) 

and extended to the finite amplitude problem by Romea (J. Atmos. Sci., 34, 1689-1695). 

The classical example is the instability of pipe flow where the parabolic profile has a 

vorticity gradient that is always positive and hence, according to inviscid theory is 

always stable but is observed to be unstable for small enough but non zero friction. That 

problem, of great mathematical subtlety,  is described by C.C. Lin in his monograph 

(Theory of Hydrodynamic Stability, Cambridge Univ. Press. 1955,  pp155) and 

reviewed in Drazin and Reid (Hydrodynamic stability, Cambridge Univ. Press,1981, pp 

527). 


