
Chapter 9 

 

 

 

Chapter 9 The Charney model of baroclinic instability 

 
9.1 Introduction 

 
Eady�s model of baroclinic instability is particularly simple mathematically because 

the basic state potential vorticity gradient is zero. This in turn implies that the 

perturbation potential vorticity is also zero for the normal modes, This, in turn,  allows a 

very simple ordinary differential equation to determine the vertical structure of the 

modes. In order for such a simple model to support baroclinic instability it was necessary 

to have two horizontal boundaries sufficiently close together so that they could interact. 

As (5.2.7) shows for a given mode it is necessary for the two boundary terms to cancel in 

the absence of an interior pv gradient. The perturbation must �reach� both boundaries. 

Indeed, if one of the boundaries were removed the flow would be stable to normal mode 

perturbations in spite of the presence of vertical shear in the basic state.  

The presence of two such boundaries is rather artificial. In the atmospheric case it is 

hard to justify an upper boundary and for the oceanic case, while an upper boundary is 

realistic, the small shears of currents at depth makes the contribution of the lower 

boundary to the required balance problematic. To move beyond that model we need to 

consider the potential vorticity gradient in the interior of the fluid. This is the principal 

feature of the Charney model and we shall see that when ∂qo ∂y  is not zero the problem 

changes in a striking way. Charney formulated his model without knowledge of Eady�s 

work and his interest in including a nonzero ∂qo ∂y  was connected to the work of 

Rossby who had, not long before, described the basic dynamics of what we now call the 

Rossby wave. It is hard to exaggerate the important effect of the Rossby wave on the 

meteorological community at that time and the importance of the beta effect was 

considered self-evident by the time of Charney�s thesis work (1946) especially among the 

group of Scandinavian meteorologists at UCLA where Charney did his work. At the 

same time, through kinematic and heuristic arguments there was an understanding of the 
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need of the phase shift of the baroclinic wave with height to produce amplification (the 

word used then was �deepening�) of the wave. The notion of the importance of the 

�upper air wave� and the beta effect were probably key in forming the ingredients of 

Charney�s approach. In his first notes on the problem of baroclinic instability 

(�development� as it was called), Charney intended to do a sort of initial value problem 

and show how the phase tilt with height was quantitatively required to produce growth. 

His alteration of the problem to a normal mode problem has an unclear history but it may 

be related to conversations he had with C.C. Lin  who was then visiting Cal. Tech, on the 

traditional shear flow instability problem. ♦ 

Charney�s model included the β effect, a finite density scale height and, in its final 

form, a current with a constant vertical shear which extended to infinite height. He 

reasoned that the modes of interest would decay with height and that the particular nature 

of the shear at very large z would be irrelevant to the problem. In this way he removed 

the upper lid from the Eady model and, with (5.2.7) in mind, we can see that this allows 

the interior pv gradient to balance the lower boundary term when the upper boundary 

term is removed. If the beta effect is positive and the shear is positive we will shortly see 

that ∂qo ∂y  > 0. In that case the necessary condition for instability will be satisfied if the 

vertical shear at the lower boundary (it is flat in Charney�s model) is also positive. Since 

∂qo ∂y  is present for all z, any perturbation, no matter how shallow in z might balance 

the interior integral in (5.2.7) against the lower boundary term. We can anticipate 

therefore that the short wave cut-off of Eady�s model, which is due to the requirement 

that the upper boundary perturbation reach the lower boundary will no longer be 

constraining for the instability. This has profound implications for the stability problem. 

Again thinking of the balance in (5.2.7) it follows that a positive beta term, balancing the 

lower boundary term is essential in allowing instability. This further implies in a counter-

intuitive way that the beta effect might have a destabilizing effect on the flow although 

we associate the beta term with providing a restoring mechanism allowing the 

oscillations of the pure Rossby wave. The fact that the absence of ∂qo ∂y  yields stability 

when there is a single horizontal boundary  even with the available potential energy 

                                                 
♦  A fascinating review of the relevant history can be found in: �The atmosphere�A 
challenge. The science of Jule Gregory Charney�, A.M.S. Monograph Series. 1990. Eds. 
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represented by the vertical shear and the possibly destabilizing effect of the beta term 

emphasizes that the instability is strongly governed by potential vorticity dynamics. 

The oceanographers among us should realize that if we turn Charney�s model 

around and put the boundary at the upper level, positive vertical shear and positive 

∂qo ∂y  will lead to stable solutions. The oceanographic instability problem, for eastward 

currents will thus require that ∂qo ∂y  somewhere change sign with depth. 

 

 

 

9.2 Formulation of Charney� s problem. 

In Charney�s model the basic current is a linear function of z, the buoyancy 

frequency is constant and the density scale height of the background is also a constant, 

i.e. 

 
Uo(z) = Uoz z,

− 1
ρs

dρs
dz

= 1
H

= const.

   (9.2.1) 

 

Under these conditions the normal mode stability equation is 

 

 

Uoz z − c( ) fo2

N 2 (Φzz − 1
H

Φz) +Φyy − k2Φ
 

 
 
 

 

 
 
 + β + fo

2

N 2
Uoz
H

 

 
 
 

 

 
 
 Φ = 0,

−cΦz −UozΦ = 0, z = 0.
 (9.2.2 a,b) 

 

Charney looked for solutions independent of y but since the basic state is independent of 

y we can find solutions satisfying homogeneous boundary conditions on y = 0 and y=L in 

the form,  

 

                                                                                                                                                 
Lindzen, Lorenz and Platzman 
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 Φ(z,y) = A(z)sin(ly), l = mπ /L   (9.2.3) 

so that (9.2.2) becomes, 

 

 

Uoz z − c( ) fo2

N 2 (Azz − 1
H

Az ) −K 2A
 

 
 
 

 

 
 
 + β + fo2

N 2
Uoz
H

 

 
 
 

 

 
 
 A = 0,

−cAz −Uoz A = 0, z = 0.

K 2 = k2 + l2

 (9.2.4 a,b) 

 

Note that an upper boundary condition is required. For all unstable modes it will be 

enough to insist on finiteness of the perturbation for z going to infinity. 

Before beginning an analysis of the mathematical problem let�s examine a few of 

its general features. Since ∂qo ∂y  is not zero, the equation is singular at all those points 

for which z = c Uoz . If c is complex the singularity will lie in the complex z plane while 

if c is real the singularity will lie on the real line and if c is real and positive it will lie 

within the domain of the problem z ≥0. Such points are called critical levels. This 

singularity renders the problem both difficult and physically interesting. 

In addition, no matter what the parameter values of the problem, the structure of the 

solution must be such to retain a balance between the second derivative of A and the term 

involving ∂qo ∂y . The absence of the second derivative would not allow us to satisfy the 

boundary conditions while the effect of the ∂qo ∂y  is required, as we have seen, for the 

mode to be unstable. We can use these considerations to get an a priori estimate of the 

depth scale of the perturbation, its wavelength and the accompanying growth rate. Keep 

in mind these are scaling estimates and not solutions of the problem. 

Suppose the depth scale of the disturbance is d. Balancing the second derivative 

term with the pv gradient leads to the scaling relation, 

 

Uoz d *
fo

2

N 2d2 A ≈ β +
fo2

N 2
Uoz
H

 

 
 
 

 

 
 
 A   (9.2.5) 
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If the β term dominates on the right hand side, this leads to an estimate for d, 

 

d = dβ =
fo

2

N 2
Uoz

β
  (9.2.6a) 

 

Note that with this estimate the larger is beta or the smaller the vertical shear, the 

smaller the vertical scale predicted for the perturbation. Since the perturbation must be in 

contact with the lower boundary for instability this implies that the perturbation becomes 

surface intensified as β increases ( in a nondimensional sense). No longer is the scale 

controlled by a geometric scale as in Eady�s problem. The scale is now internally 

determined. If we anticipate that baroclinic energy release will require horizontal scales 

of the order of the deformation radius based on the vertical scale of the motion, this 

yields an estimate of the horizontal scale in x , L, (not to be confused with the channel 

width) 

 

L ≡ Lβ =
Ndβ

fo
=

fo
N

Uoz
β

  (9.2.6b) 

 

Thus as the vertical scale shrinks, say for weak shear or strong beta, the horizontal 

scale also shrinks accordingly. We anticipate no short wave cut-off in Charney�s model. 

Similarly, we can now make an estimate of the growth rate to be expected. From 

the semi-circle theorem we can anticipate that the imaginary part of c will be of the order 

of the variation of Uo over the scale of the perturbation or, 

 
ci ≈Uoz d    

At the same time the growth rate will be of the order of kci  where k =O(1/deformation 

radius) or  

 

 σ = kci ≈ Uoz d
fo

Nd
=

fo
N

Uoz   (9.2.6c) 
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Note that the growth rate is independent of our estimate of d and only depends on the 

assumption that the horizontal scale is of the order of the deformation radius based in 

turn on the depth of the motion. 

These estimates have been based on the assumption that the density scale height H 

is large, or more precisely that, 

 

H >
fo

2Uoz
N 2β

= dβ   (9.2.7) 

so that the beta term in ∂qo ∂y  dominates the shear term. If the inequality in (9.3) is 

reversed our estimate for d from (9.2.5) would be simply, 

 

 d = H   (9.2.8.a) 

from which it would follow that , 

 

 L =
NH
fo

  (9.2.8.b) 

 

while the growth rate, of course, would still be given by (9.2.6c) since it is independent 

of d. 

 

Which vertical scale is pertinent in any particular problem? Clearly, is it the smaller 

of the two scales. If dβ < H  the scale is given by (9.2.6a). If the inequality is reversed the 

vertical scale is given by (9.2.8a). It is the smaller scale that determines the dominant 

term in the potential vorticity gradient. Similar scale estimates arise if we insist on a 

balance between the interior integral and the boundary term in (5.2.7). 

Another way to look at the same result focuses on the condition that, regardless of 

scale, there be significant motion within the wedge of instability. This suggests that, 

 

w
v

= O
ϑ oy
ϑ sz

 

 
 
 

 

 
 
 =

foUoz
N 2   (9.2.9) 

while for large β  the vorticity equation reduces to  
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βv = O fowoz( )⇒ w v = dβ fo   (9.2.10) 

 

Combining (9.2.9) and (9.2.10) leads again to the estimate (9.2.6a). So, even for very 

large β where we would expect stability the perturbation can still arrange to have 

perturbation trajectories within the wedge of instability with the consequent release of 

energy, i.e. instability. 

 

9.3 The critical level 

 

Before discussing Charney�s normal mode problem ,(9.2.4), in detail it is useful to 

deal with some general considerations of the normal mode equation in cases for which 

the potential vorticity gradient does not vanish but where for some z = zC  

 

Uo(zc ) − c = 0   (9.3.1) 

 

Points where (9.3.1) is satisfied are called critical points or critical levels of the problem 

and we see that the governing differential equation is singular there unless qoy  happens 

also to vanish at that point. Of course for the Charney model qoy  is a constant  so it is 

never zero. To understand the effect that has on the problem let�s consider the nature of 

the solution in the vicinity of the critical point. We will use the method of Frobenius and 

you may want to review that method which can be found in any book that discusses 

series solutions of ordinary differential equations. 

In the vicinity of the critical point we can write, 

 

 

  Uo −c =Uo(zc ) −c
=0" # $ % $ 

+ U 'o (zc )(z − zc ) + Uo
'' (zc )(z − zc )2 /2 + ...(9.3.2) 

 

It is convenient to introduce the variable, 

 

 Z = z − zc   (9.3.3) 
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so that in the vicinity of the critical level we can write (9.2.4) as 

 

Z + Uo
''

2Uo
' Z2 + ...

 

 
  

 

 
  Azz + Az

d
dz

log ρs fo
2

N 2

 

 
 
 

 

 
 
 
− K 2 N 2

fo
2

 

 
  

 

 
  +

∂qo
∂y

N 2

Uo
' fo

2 A = 0(9.3.4) 

 

Here, once again, for a basic flow dependent only on z, we have used for the solution the 

form Φ = A(z)sin ly . The terms in (9.3.3) involving the basic state velocity and its 

derivatives are understood to be evaluated at the critical level. The same is true for the 

potential vorticity gradient. These are the only terms required to reveal the solution 

structure in the vicinity of Z =0. 

The method of Frobenius searches for solutions of ordinary differential equations 

with regular singular points by employing the following series in the vicinity of that 

point, 

 

A(Z) = Z p ak Zk

k=0

∞
∑   (9.3.5) 

If (9.3.5) is inserted into (9.3.4) and like powers of Z are equated, the index p is 

determined and a recursion relation for a given p then follows relating the ak to the 

arbitrary values of aO and a1. The equation for the index p follows from isolating the 

most singular term in the resulting series and leads to the requirement for an equation like 

(9.3.4), 

 

 p( p −1) = 0  (9.3.6) 

 

As is well known when the two indices differ by an integer the form (9.3.5) does not lead 

to two independent solutions when the series for each p is worked out. Only the series for 

the larger p , in this case p=1 is valid. Its solution can be written in the form, 

 

A1(Z) = Z (1+ a1Z + a2Z2 + ...)   (9.3.7 a) 
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In the limit when ci !0, it is important to note that the recursion relation for the ak in 

(9.3.7a) will be real so that in that limit, which will be of particular interest to us, we can 

consider the solution in (9.3.7a) strictly real. The standard Frobenius theory tells us that 

the second solution consists of a series using the smaller value of p, here  p=0, plus a 

logarithmic term multiplying the first solution. That is, 

 

 A2(Z ) = −(1+ d1Z + d2Z2 + ...) +
qoy

Uo
'

N 2

fo
2 logZ

 

 
 
 

 

 
 
 A1(Z )  (9.3.7b) 

 

and it again important to note that in the limit where ci !0 the recursion relation will 

yield values for the dk which are real. 

If qoy  is different from zero at the critical level the second solution will contain a 

logarithmic singularity. For small values of ci  we can find its position by solving (9.3.1) 

for zC, 

 
zc = zc r + izci ,

Uo(zcr ) ≈ cr,

Uo
'zci = ci, ⇒ zci = ci /Uo

'

 

and its position is shown in the figure below. 

 

 

 

             *          

  

                                                                                                        z 

 

Figure 9.3.1 The position of the critical point in the (complex) z plane. It is displaced 

from the real line by a small amount if ci is small. The dashed line is the branch cut 

required to make the logarithmic term single valued. 

 

zC 

ci /Uo
'  

Z 

α 
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For cases like the Charney model for which the unstable waves have ci /Uo
' > 0  so that 

the singularity is in the upper half of the complex z plane, we note that since 

z − zc = z − zc eiα  

 

it follows that,  

 

log Z = log z − zc + iα    (9.3.8) 

 

and,   
z > zc α ≈ 0,

z < zc α ≈ −π
   (9.3.9 a,b) 

so that the logarithmic term in the second solution has a sharp change in phase with z as 

we pass through the critical level when ci is small. We know that it is the phase shift of 

the solution with height that leads to a nonzero buoyancy flux and an energy release 

required for instability and we can anticipate that the presence of a critical level will give 

rise to such a phase shift even in the limit as ci → 0  if the potential vorticity gradient is 

non zero at that value of z. Let�s calculate the buoyancy flux in the vicinity of the critical 

level. 

 

v 'b' = ikfo
4

Aeiθ − A*e−iθ* 

 
 

 

 
 Azeiθ + Az

*e−iθ * 

 
 

 

 
 sin2 ly

= ikfo
4

AAz
* − A*Az[ ]sin2 ly e2kci t

  (9.3.10) 

 

where we again have used the notation, θ = k(x − c t). Note that the bracket in the second 

form in (9.3.10) has been seen before in the Eady problem where it was shown to be a 

constant. There was no critical level in that problem (the potential vorticity gradient 

vanished everywhere , and in particular where Uo = c ). In the present case where the pv 

gradient is not zero and writing, 
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 A = A1(Z) + RA2(Z)   (9.3.11) 

 

where R is an arbitrary constant we can easily evaluate the right hand side of (9.3.10) in 

the limit where  ci → 0 . In that limit every term in the solutions will be strictly real 

except the contribution from the logarithm. A brief calculation then shows that, 

 

v 'b' = −
kfo
2

R 2α N 2

fo
2

qoy

Uo
' sin2 lye2kci t    (9.3.12) 

 

There is thus an abrupt change of the buoyancy flux across the critical level as α changes 

by 180o by (9.3.9). Note too, that as ci → 0  the buoyancy flux  at the critical level does 

not go to zero! 

An important consequence of this fact follows directly from the necessary condition 

for instability (5.2.7) which relates the integrated potential vorticity flux the to buoyancy 

fluxes on the boundary. Using (9.2.3) and restricting attention to flows independent of y, 

we can rewrite (5.2.7) in the case where the upper boundary is moved to infinity as, [for a 

flat bottom] 

 

kci ρs
A 2qoy

Uo −c 2 dz
0

∞
∫ = kci

A 2

Uo −c 2
fo

2

N 2

 
 
 

  
z=0

 (9.3.13) 

The integral on the left hand side can be written as, 

 

 

kci ρs
A 2qoy

(Uo − cr )2 + ci
2[ ]dz

0

∞
∫ = Im ρsk

A 2qoy
Uo − c[ ]

dz
0

∞
∫

 
 
 

  

 
 
 

  
  (9.3.14) 

 

In the limit ci → 0  the left hand side of (9.3.13) will go to zero except for the 

contribution from the pole singularity at the critical level. As ci → 0  that pole move to 

the real z line and the contour must be indented to pass underneath it in the limit as 

shown in the figure, 
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                                                                                      Integration contour 

  

 

 

Figure 9.3.2 the integration contour for (9.3.14) showing the indentation in the contour to 

pass under the singularity as ci → 0 . 

 

In passing under the pole we pick up the only contribution to the imaginary part of the 

integral and this is exactly 1/2 the value of the residue of the pole at the critical level. 

Thus, the left hand side of (9.3.13) becomes, 

 

 π kfo
Uo

' ρs(zc ) A(zc ) 2qoy (zc ) = kci
A 2

Uo −c 2
fo2

N 2

 
 
 

  
z=0

  (9.3.15) 

 

As ci → 0  the right hand side vanishes but the left hand side remains as long as qoy ≠ 0  

at the critical level. There is therefore a contradiction unless qoy  =0 there or if the critical 

level should move to the boundary, z=0. When that happens the pole in figure 9.3.2 no 

longer occurs within the domain. Note that  when β is nonzero the semi-circle theorem 

allows unstable modes with c outside the range of UO . However, even with β =0, the 

potential vorticity gradient will be positive for positive shears due to the finite density 

scale height. In that case c must lie in the range of the basic velocity for instability to 

occur. Thus, we anticipate, in Charney�s model, that the parameter values for which the 

flow is just unstable, the so-called marginally unstable modes, must correspond to phase 

speeds near the lower boundary velocity that in Charney�s model is zero. As the growth 

rate increases from zero we can expect the position of the critical level to move into the 

fluid although for ci  not equal to zero the singularity will not occur for real z. Another 

way of stating our result is that the presence of a critical level within the fluid guarantees 

z *
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that such a mode, if it exists, must be unstable. As we shall see this has important 

consequences for Charney�s model. 

 

9.4  The Charney eigenvalue problem. 

To analyze the eigenvalue problem (9.2.4) for the Charney model of baroclinic 

instability it is useful to introduce a vertical coordinate scaled with the characteristic 

scale dβ = fo
2

N 2
Uoz

β
. Let  

z'= z / dβ   (9.4.1) 

 

so then (9.2.4) becomes 

 (z'−c ')(Az'z ' −δ Az' − µ2A) + 1+ δ[ ]A = 0 (9.4.2) 

 

where  

 

c =Uoz dβ c' ,

µ = KLβ = KNdβ / fo

δ = dβ / H

  (9.4.3 a,b,c) 

 

The wavenumber is scaled with the deformation radius based on the vertical scale dβ  and 

the parameter δ is the ratio of dβ  to the density scale height H. For a fluid that is 

Boussinesq in density, e.g. the ocean, whose density scale height is much larger than the 

vertical scale of the motion, the parameter δ !0. The nondimensional complex phase 

speed has been scaled with the characteristic velocity variation experienced by the 

perturbation over its vertical extent, leading to a growth rate that will scale as (9.2.6c). 

Finally, to put the equation in standard mathematical form the following transformations 

are useful. Since the region in z� is infinite, for large z� the dominant term is the bracket 

multiplied by the factor (z�-c�). That suggests that for large z�  there will be an 

exponential decay of the solution, of the form, 



Chapter 9 14 

 eνz' , ν =
δ
2

− µ2 +δ2 4[ ]1/2
   (9.4.4) 

Note that ν  is always negative. In fact, if δ  is very small, the decay is just proportional 

to µ  exactly like the Eady model. We also note that if c=0, the eigenfunction, by (9.2.4) 

must vanish at z=z�=0. This suggests looking for solutions in the form, 

 

 A(z') = eνz' (z'−c ')F(z')    (9.4.5) 

 

where, of course, this form can be multiplied by an arbitrary constant. The final step is 

less intuitive but anticipating the simplicity that results we introduce a slightly rescaled 

vertical coordinate, 

 

 Z = (z'−c ') 4µ2 +δ2    (9.4.6) 

 

Inserting the form (9.4.5) and the transformation (9.4.6) into (9.4.2) results in the final 

equation for the function F(Z), 

 

 

 Z FZZ + (2 − Z)FZ − F(1− r) = 0,   (9.4.7) 

 

where the parameter r is defined by 

 

 r =
(1+ δ)

{4µ2 + δ2}1/2    (9.4.8) 

 

The boundary condition at z�=0, becomes, 

 

 Zo
2 FZ + ν

4µ2 + δ2
F

 

 
 
 

 

 
 
 

= 0, Zo ≡ −c' 4µ2 + δ2   (9.4.9) 
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The factor 
ν

4µ2 +δ2
= −1/2 +

δ

4µ2 + δ2
 so that in the Boussinesq limit δ! 0  and 

that coefficient in (9.4.9)  becomes �1/2 and independent of the parameters of the 

problem. In the same limit the parameter r ! 1/(2µ) so that in the Boussinesq (density) 

limit the only remaining parameter in the problem is the scaled wavenumber. That being 

the case we see that, in common with the Eady model there can not be a critical shear 

required for instability, only perhaps a critical wavenumber. That wavenumber may 

depend on the shear but, again, in the limit δ ! 0, any shear will be unstable if the 

problem is unstable for some  value of the shear. This is rather surprising because it 

indicates the inability of the β  effect to stabilize the flow. (Indeed, we argued that 

because of the critical level effect β could destabilize the flow). 

The final equation, (9.4.7) is the confluent hypergeometric equation. It�s properties 

are well known although the functions are rather complex. The resulting eigenvalue 

problem is a complex and delicate one requiring considerable mathematical analyis. The 

details of the problem can be found in Chapter 7 of GFD. Here we will only deal with the 

results of the main points of the analysis. 

The solutions of (9.4.7) have a different character depending whether the parameter 

r is an integer or not. This follows from considering the solution of the equation obtained 

by the method of Frobenius. According the theory of ordinary differential equations there 

will be  a regular singular point at Z =0 and an irregular singular point at infinity. Of the 

two independent solutions of the equation, one will be regular at Z=0, and that solution is 

defined as 

 

 

M(a,2,Z) =1+ aZ
2

+ a(a +1)Z2

2 ⋅ 3 ⋅ 2!
+ a(a +1)(a + 2)Z3

2 ⋅ 3 ⋅ 4 ⋅ 3!
+ ...

+
(a)n
(2)n

Zn

n!
+ ...,  (9.4.10) 

 

where we have used the notation, 



Chapter 9 16 

 
a = (1− r),

(s)n ≡ s(s+1)(s+ 2)...(s + n −1),
note,

(2)n = (n +1)!

   (9.4.11 a,b,c) 

 

When  r  is a positive integer, i.e.  r = n, the solution (9.4.10) will terminate (since a will 

be zero or a negative integer) and the solution will be an n-1st polynomial. This is a 

solution which, when the exponential factor in (9.4.5) is considered,  will satisfy the 

finiteness condition at infinity; indeed, it will exponentially decay. The second solution 

for integer r can be shown to be singular for large Z and even with the exponential factor 

of (9.4.5) is singular at infinity. (This must be the case because the original equation for 

A is singular for large z). The for integer r  the solution is a simple polynomial. 

On the other hand when  r  is not a positive integer one can show that the solution 

(9.4.10) leads to asymptotically unbounded solutions for large Z  and the solution instead 

is given by a rather complicated function whose standard name is U(a,2,Z ). Its definition 

can be found Abramowitz and Stegun� Handbook of Mathematical functions, (Nat�l 

Bureau of Standards) and is also described in GFD. The key feature of this function is 

that it contains a logarithmic singularity at Z=0 as we would expect from the discussion 

of the previous section. 

Consider first the solutions corresponding to integer r. We will find that for such 

values of r=n the polynomial solutions correspond to marginally stable solutions. That is, 

they define lines in the (δ, µ) plane on which the imaginary part of c� vanishes. We 

would normally associate such curves with stability thresholds but as we shall see, and 

have already anticipated, the problem is much more complex. If we use the condition 

r=n, we obtain the following equation for δ, 

 

 δ(K,n) =
fo

2

N 2
Uoz
βH

= n 1+ 4K2N 2H 2 / fo
2[ ]1/2

−1
 
 
 

 
 
 

−1
  (9.4.12) 
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The condition for the curves relates the vertical shear to the wavenumber, In (9.4.12) the 

wavenumber is scaled by the deformation radius defined in terms of the density scale 

height for the depth. If, instead, we were to consider the case where that scale height was 

large compared to the motion scale dβ , the condition that r =n would reduce to, 

 

 
foUoz
Nβ

K =1/(2n), for δ → 0   (9.4.13) 

 

Figure 9.4.1 shows the first four critical curves for the Charney model. Higher values of n 

give curves that lie closer to the zero shear axis. Note that the n=1 curve asymptotes to 

infinity as K! 0 while the other curves asymptote to δ → (n −1)−1. 
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Figure 9.4.1 The first four Charney critical curves. 

 

It has been traditional to present these same curves plotted against wavelength i.e. 2π /K . 

That figure is shown below, 
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Figure 9.4.2. The shear parameter δ  plotted against the scaled wavelength 

λ =
2π fo
KNH

. 

 

A historical note: When in 1946-47 Chaney was working on this problem he was 

simultaneously trying to solve the instability problem and formulate the quasi-

geostrophic equations for the problem (not a bad Ph.D. thesis). In his formulation of the 

quasi-geostrophic model he made a single slip and apparently did not notice that he had 

retained a term in the boundary condition at the ground that was of the order of the ratio 

of the internal deformation radius to the external deformation radius,  a term that for 

consistency should be neglected if we ignore the time derivative of the density in the 

continuity equation. That slip led to an unnecessary complexity in which the critical 

curves were no longer simply the curves r = integer. Charney was therefore forced to 

laboriously hand calculate (this is the era before computers, before Matlab, etc.) the roots 

of the dispersion relation involving the confluent hypergeometric functions on a 
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mechanical Marchand calculator. He worked for months to obtain the curve 

corresponding  roughly to the curve r= 1 in figure 9.4.2. He then slightly perturbed that 

solution to consider slightly larger shears and found that the region above  the curve was 

bounded by unstable solutions. Exhausted, he assumed that the region below the curve 

was stable. After all, it seemed sensible that if there were a critical curve on which the 

flow was stable, it would certainly be stable for smaller shears. He  and all subsequent 

readers believed that the curve r =1 then divided the plane into a stable and unstable 

region, the stable zone produced by the effect of β. It was unclear why short waves in his 

model were unstable, since for short waves the β effect should be negligible but the 

stabilization at large wavelengths seemed sensible. There was considerable surprise when 

Burger proposed in the early 6o�s that the Charney model was unstable everywhere in the 

δ,K plane except  on the lines of integer r . Burger�s proof (J. Atmos. Sci. 1962,19,31-38) 

is elegant but rather abstract, proving the flow must be unstable for all parameter values 

except integral r but there were few people who could follow the argument. 

Fundamentally, the argument hinges on the existence of the logarithmic term in the 

solution that enters for non-integer r, or from a physical point of view, from the critical 

level behavior we described in section 9.3. Finally, Miles in a series of papers in 1964 

(which are referenced in GFD) described a series of perturbation approaches to the 

problem near the r =n curves that clarified the behavior of the solutions. We will not go 

into that detail. As mentioned earlier, those details are presented in Chapter 7 of GFD. 

Here I will quote only the results. We will also discuss some numerical investigations of 

the problem. However, those investigation are of necessity dependent on certain analytic 

preliminary results which I will only outline. 

A useful starting point is to examine the nature of the eigenfunction on what is now 

called the Charney critical curve r =1. If r =1 the parameter a =0 and the polynomial 

series terminates after the constant term, i.e. F=1. Furthermore for r=1, 

 

4µ2 +δ2 =1+δ  

 

from the definition of r (9.4.8). This in turn yields, ν = −1/2 for all wavenumbers. Hence 

along the Charney curve r =1, 
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 A(z) = (z'−c ')e−z /dβ    (9.4.14). 

 

When F=1  is used to satisfy the boundary condition we obtain the condition, 

 

 Zo
2{−

1
2(δ +1)

} = 0    (9.4.15) 

 

Hence the only way to satisfy this condition is if Zo
2 = c '2 = 0 . As expected for this 

marginally stable solution the phase speed is equal to the basic flow velocity on the 

boundary eliminating any critical level within the fluid. Note also that this corresponds to 

a double root for the phase speed and we saw in the Eady problem that this coalescence 

of roots for the inviscid stability problem is a sign of contiguous unstable solutions. 

At higher values of integral r the situation is more complex. The boundary 

condition can be rewritten in terms of δ  and r as, 

 

Zo
2 FZ −

1
2

(1+δ(1− r))
(1+δ)

F
 

 
 

 

 
 = 0,   (9.4.16) 

 

Consider the case r=2 (a=-1). The solution for F is, 

 
F =1− Z /2,

A = (1− Z /2)Z exp(−z(1−δ) /4dβ )
   (9.4.17 a,b) 

 

 

Since δ <1 on the curve r=2 the exponential factor in (9.4.17b) ensures exponential 

decay. Inserting (9.4.17a) into the boundary condition (9.4.16) yields either a) again the 

double root at c�=0 or the condition (from the terms in the square bracket in (9.4.16), 
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 Zo = −c '=
4

1−δ
   (9.4.18) 

 

Thus since δ <1 the phase speed of the third solution is always retrograde with respect to 

the basic flow. Consider the two roots corresponding to zero phase speed. For those roots  

 

Z =
z

dβ

 

 
 
 

 

 
 
 
(1+ δ)

r
   (9.4.18) 

 

so the solution for the perturbation amplitude, (9.4.17b) has a node at the position 

 

 z dβ =
4

1+ δ
   (9.4.18) 

 

This pattern holds for all the higher modes that exist for larger integer r.  (These higher 

modes with internal nodes are called Green nodes in honor of John Green who first 

suggested their presence. [reference in GFD]) On each curve the eigenfunction, 

corresponding to the coalescence of two real roots at zero phase speed, has r-1 nodes. At 

those curves there also exist r-1 retrograde, neutral Rossby-type modes. Note that if one 

fixes the shear and increases the wave number one crosses (for finite H) a finite number 

of such critical curves. At the crossing of each curve the phase speeds are real and 

represent a coalescence of two roots in the same way as in the Eady problem the critical 

wave number identified a point where the phase speeds coalesced. 

If we move off the critical curves so that r is no longer an integer, the solution is no 

longer given by our simple polynomial solution and the solution referred to as U(2,a,Z) 

must be used to satisfy the boundary condition. This leads to a considerable analytical 

difficulty. This is the problem that Miles has unraveled so neatly in the series of papers 

referred to above. I will just outline the principal result. Imagine keeping the shear 

constant and crossing a particular curve r =n. As the wave number is decreased we move 

to higher values of r (see fig. 9.4.1) What Miles showed was that on the short wave side 

of the curve the imaginary part of the phase speed, ci , increased like (n − r)1/2 ,i.e. 

rapidly, in much the same manner as the increase in ci , as one crosses the marginal curve 
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in the Eady problem. However, rather than the other side of the curve corresponding to 

stability, he was able to show directly that ci , behaved like (r − n)3/2so that there was, 

weak growth in the vicinity of the critical curve. For example, this would yield weak 

growth below the Charney critical curve. The situation at each integral value of r  is 

illustrated schematically below. 

        ci 

 

 
Figure 9.4.3. The behavior of ci , as the integral curve r=n is crossed. 

As one moves to the next smaller integral value of r the left hand curve reaches a 

maximum and approaches the ci ,=0 axis with the square root singularity and the pattern 

is repeated for each higher r=n (see figure 9.5.1). Note that for finite H there are only a 

finite number of such crossings for each value of the shear. To go beyond this local 

analysis near each critical curve numerical investigation is necessary. Either a numerical 

evaluation of the dispersion relation obtained by explicitly evaluating the boundary 

conditions in terms of the hypergeometric functions or a direct numerical treatment of the 

original eigenvalue equation (9.4.2) is required. It should be evident that numerical 

methods will be especially tricky near the points where ci , vanishes because of the 

singularity in the equations, or if done by marching a time dependent approach because 

of the very weak growth rates. It is therefore essential to have both the analytical results 
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near the integral r curves as well as the numerical approach to discuss the solution when 

the growth rate is O(1). 

 

 

9.5 Numerical results for Charney�s model. 

 

Kuo (J. Atmos, Sci, 1979, 36,2360-2378) examined the Charney problem following 

the analysis we have presented and ended up, by applying the boundary conditions, with 

a transcendental dispersion relation that he solved numerically. He also considered other 

profiles for the basic flow but here we will discuss only his results for the classical 

problem of Charney. Although his notation is somewhat different than ours he introduces 

a parameter r which is the same as what we have used. His independent variable is η and 

it is precisely our Z and the its value on z=0, which we call ZO is called ηb . In either case 

it is minus the nondimensional phase speed. Thus its imaginary part yields ci  and its real 

part is cr . Kuo chose a finite scale height of about 9 km and otherwise standard values 

for the Coriolis parameter (10-4 sec-1) and buoyancy frequency, N, (1.2 10-2 sec-1) 

although he considered somewhat different values also for N. Figure (9.5.1) shows his 

calculation for the case where there are three crossings of the neutral curves for a 

particular value of shear. It is important to note that the y-axis in these figures runs over 

negative values.  
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Figure (9.5.1) The behavior of Zo  as a function of r from Kuo (1979). 

 

The neutral points where ηbi  =0  occur at  r =1,2, and 3. Note that approaching the 

integral values the curves for  ηbi  behave locally like (9.4.3), that is on the short wave 

side ( r  just less than an integer) the curves are steep reflecting the square root behavior 

while on the other side there is a slower increase in ηbi  moving away from the integral 

value of r. Note too, the behavior of the real part of ηb , in particular that it vanishes as 

the each critical line is approached. The largest value of ci  occurs to the left of the 

smallest value of r i.e. in the domain of the Charney mode while the higher Green modes 

have smaller values. Note that the growth rate, as opposed to ci  involves multiplication 

by the wavenumber. The wavenumber is larger in the domain of the Charney mode and 

this accentuates the dominance of that mode as far as the growth rates are concerned. 

In figure (9.5.2) we show the eigenfunctions corresponding to non integral values 

of r i.e. corresponding to unstable modes.  
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Figure 9.5.2 The eigenfunctions calculated by Kuo for a) r=0.5, b) r=1.3, c) r =1.7. 

 

 

Panel a shows a value r=0.5 right in the middle of the Charney mode domain and 

near to the most unstable wave. The absolute value of the perturbation is labeled ψ  in 

the figure and the dashed phase line ( for some reason Kuo defined the phase as the 

negative of the standard phase definition of a complex function so the apparent decrease 

of phase is really an increase).  Also shown (the dot-dash curve) is the temperature 

perturbation. Note that the perturbation, much like the neutral mode on the r =1 curve, is 

surface trapped. Moreover, the region where the phase is changing with height is also 

restricted to the lower surface (there is an artificial  phase shift at great height is 

irrelevant since the perturbation is essentially zero there). This implies that the energy 

conversion due to the buoyancy flux is strongly limited to the lower boundary. This is 

contrasted to the panels to the right of the first panel. The second and third  panels are for 

the cases r =1.3 and 1.7 both in the range between the first and second critical curves. 

Note that for these values of r the eigen function has it principal maximum at greater 
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heights, nearly at 20 or 25 km with the maximum increasing with height for the longer 

waves at larger r. Note that the phase shift is much larger, nearly 220o so that the solution 

has the structure, qualitatively, of a second mode in the vertical. Note too, that the phase 

shift is limited mainly to the lower part of the fluid, well below the amplitude maximum. 

These modes are much less efficient at releasing energy, Indeed, one might interpret the 

mode as a response to lower level forcing and the upward propagation of a neutral wave 

until it reaches an elevation where Uo −c  becomes so large that the amplitude must 

decay as foretold by the theory of Charney and Drazin on the vertical propagation of 

Rossby waves. (J.G.R., 1961, vo.66, 83-109). 

There is only one unstable wave for each x-wavenumber. Geisler and Garcia 

(J.Atmos. Sci. 1977, 34, 311-321) took advantage of this fact by finding the unstable 

modes by an time integration of the linear quasi-geostrophic potential vorticity equation 

forced at the ground by an imposed vertical velocity  with a wave-number, k,  and they 

chose a real frequency of the forcing close to what one would expect from the analytic 

problem. The problem is not sensitive to that choice since for a given k the linear 

solution, after sufficient time, will be dominated by the unstable mode at that k with the 

complex phase speed of the normal mode. This is a very straight forward way of finding 

unstable modes. It clearly has its weakness exposed for those values of k for which the 

growth rates are small for then one has to wait too long to see the dominance of the 

unstable mode. 

Figure 9.5.3 shows the e-folding times (inverse growth rates) for the Charney 

model. Note that the e-folding time has a minimum at zonal wave numbers around 6 (six 

waves around the earth at mid-latitudes ,45O,) corresponding to the interval of the first 

Charney mode. The peaks in the e-folding times correspond to the neutral, integral r 

curves. 

 

 

 

 

 



Chapter 9 28 

 
 

 

Figure 9.5.3 The e-folding times versus k for the Charney model from Geisler and 

Garcia (1977). 

 

a) 

 
 

 

 

 

 

 

 

 

 

b) 
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Figure 9.5.4 aThe amplitude and phase of the Charney mode. b) The Green mode. 

(Geisler and Garcia, 1977) 

 

Figure 9.5.4a shows the amplitude and phase of the Charney mode for wave number 

9, a typical Charney mode. Figure 9.5.4 b shows a Green mode at longer wavelength 

(wavenumber 2), while figure 9.5.5 shows as collection of wave amplitudes vs. height for 

a variety of different modes. The Green modes appear at larger x-wavelengths, penetrate 

further in to the atmosphere and have lower growth rates. 

 

 
 

Figure 9.5.5 Amplitude vs. height of unstable Green and Charney modes. (Geisler 

and Garcia, 1977) 
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The increase of the phase with height has an important kinematic consequence. If 

we write the wave as, 

 

ψ '= A(z) ei (kx−k cr t+α (z )) sinly    (9.5.1) 

 

the tilt of the wave in the x,z plane is given by, 

 

 
∂z
∂x
 
 
 

phase
=

−k
∂α ∂z

< 0    (9.5.2) 

displaying the expected westward tilt with height of the lines of constant phase. If we 

calculate the vertical phase velocity, 

 

 
∂z
∂t
 
 
 

phase
=

kcr
∂α ∂z

> 0    (9.5.3) 

 

In the regions where energy is being release the phase speed is upward. Note that this is 

the opposite of what we would expect of a stable Rossby wave whose energy source is at 

low levels in z. The vertical propagation of energy in a Rossby wave must be associated 

with a downward propagation of phase. 

 

There is an additional interesting reference of Lindzen and Rosenthal (J.Atmos.Sci, 

1981, vol 38, 619-629. in which they describe a WKB approach to the stability equation. 

Those calculations are compared with direct numerical calculations of the stability 

equation and they show an interesting dependence of the wave structure and the growth 

rate vs.k behavior that one could anticipate from our earlier results. (Note that their 

parameter r is actually our 1/δ.). Of particular interest is their suggestion to examine the 

equation for the wave amplitude recast in terms of the function G(z), by removing the 

density scale height term, i.e. write 
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A = ez / 2HG(m[z'−c '])
z'= z /dβ ,    (9.5.4) 

 

which results in the following equation for G, 
Z = z'−c',

m = δ2 + 4µ2( )1/2  

 

 G' '+
r
Z

−1/ 4
 
 
 

 
 
 G = 0.   (9.5.5) 

 

The point to be made is that for 0 < Z < 4r , the solution will be oscillatory. For larger Z it 

will decay and for smaller z�, such that the interval lies between the ground ZO and the 

critical level at Z=0, the solution will be exponential rather than oscillatory. 

 


