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Chapter 7. The Eady problem: Effect on the mean and a heuristic 

explanation of the instability. 
 

 

7.1 Introduction 

 

In this chapter we take up several fundamental questions and use the Eady model 

to illustrate those issues. First of all, we will use the mean fluxes calculated in the last 

chapter to discuss how the eddy field will affect the mean flow. Then we will develop 

two heuristic arguments to help clarify the physical nature of the baroclinic instability. 

Starting from the equations for the mean flow developed in chapters 3 and 4 we 

obtained the following for the change in the zonal mean flow ( not the basic flow which 

remains unchanged). From (3.2.10 a,b), 

 
∂u 
∂t

= −(v 'u')y + fov a

∂b 
∂t

= −(v 'b')y − w N 2

v ay + w z = 0.

   (7.1.1 a,b,c) 

 

It is clear that the perturbation fluxes of momentum and buoyancy will be of order 

of the square of the disturbance amplitude. What is not so clear is that both the x-

averaged meridional, ageostrophic velocity and the vertical velocity (x-averaged ) is 

also of order amplitude squared leading to changes of the mean zonal velocity and 

geostrophically balanced mean buoyancy. In fact, as we discussed in chapter 3, it is far 

more efficient to determine the changes in the mean flow by considering the potential 

vorticity equation for the mean. Since from (2.4.8) 
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q = −u y +
fo

ρsN 2 (ρsb )z    (7.1.2) 

we obtain for the mean field(3.2.21) or, 

 

 
∂q 
∂t

= −(v 'q')y    (7.1.3)  

 

 

The change in the mean flow has been denoted in chapter 3 as ψ '  which is an 

awkward symbol. Let�s call it instead Ψ (y,z, t)  so that  

u = −Ψy , b = foΨz    (7.1.4). 

From (7.1.3) it follows that Ψ will be of order amplitude squared and hence so 

will be the corrections to the mean velocity and buoyancy. 

For the Eady model in which qoy  =0, we see from (4.2.16) that the eddy flux of 

potential vorticity is zero. Hence the correction to the mean potential vorticity must be 

zero if it is initially zero. Hence the governing equation for Ψ is, 

 

Ψyy +
fo

2

N 2 Ψzz = 0   (7.1.5) 

 

We have used the fact that in the Eady model the background density is taken as 

nearly constant and that the buoyancy frequency, N is constant. 

The boundary conditions on z =0 and z =D are that w = 0  or, 

 

fo
∂Ψz

∂t
= −(v'b')y , z = 0,D    (7.1.6) 

while on y =0,L the condition that both the geostrophic and ageostrophic velocity 

vanish yields, from (7.1.1 a) that ∂u ∂t = 0, or 

 

Ψy = 0, y = 0,L    (7.1.7) 
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We know from our results of chapter 6 that the buoyancy flux appearing in (7.1.6) 

is independent of z and hence the same on each boundary. In terms of our results of 

chapter 6, 

 

v 'b' =
fo
4

kci ao
2Uoz sin2(ly)e2kci t    (7.1.8) 

where aO is an arbitrary amplitude related to the initial amplitude of the wave 

perturbation. 

Thus, (7.1.6) becomes, 

 

 foΨzt = −
fo
4

kci l ao
2Uoz sin2 lye2kci t , z = 0,D   (7.1.9) 

 

Integrating in t and using the condition that the correction to the mean flow is 

zero at the start of the perturbation�s growth, 

 

Ψz = −
l
8

sin2ly ao
2 e2kci t −1( ), z = 0,D   (7.1.10) 

 

Before proceeding to the solution of (7.1.5), (7.1.7) and (7.1.10) there are several 

important points to notice. 1) In this problem the entire alteration of the mean flow is 

forced by buoyancy fluxes at the boundaries. These are the only inhomogeneous 

forcing terms. This again emphasizes the dynamical character of the boundary 

conditions. 2) The mean flow correction will vanish if the wave is stable since if ci  =0 

the right hand side of (7.1.10) will vanish. 3) Even for unstable waves, the correction to 

the mean flow will vanish if the wave perturbation were independent of y. (l=0). If the 

channel were infinitely broad , the linear solution would then be an exact solution of 

the quasi-geostrophic nonlinear stability equations (check that the Jacobian term would 

be identically zero in that case). In quasi-geostrophic theory it is the cross stream 

structure that is vital in determining the nonlinear behavior of the perturbations. 
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7.2 Solutions for the change in the mean state 

 

There are several ways to solve the set of equations (7.1.5),(7.1.7) and (7.1.10). 

Since the derivative in z is given on z =0 and D, and since the coefficients of (7.1.5) are 

constant and the operator is a second derivative in z, it is appropriate to search for 

solutions in the form 

 

Ψ = Ψn(y,t)cosnπz / D
n=1
∑    (7.2.1) 

 

We must be very careful in deriving the equation for Ψn since the boundary conditions 

on z=0,D are not homogeneous for the derivative. Multiply the governing equation 

(7.1.5) by each cosine function and integrate by parts♦  noting that 

 

 

Ψzz cos(nπz /D)dz
0

D
∫

= cos(nπz /D)Ψz 0
D + nπ

D
Ψsin nπz /D( )

0

D
− nπ

D
 
 
 

 
 
 
2

Ψcos(nπ
D

z)dz
0

D
∫

= (−1)n Ψz (D) − Ψz (0)[ ]− nπ
D

 
 
 

 
 
 
2 D

2
Ψn

 (7.2.2) 

 

 

It is because we know the boundary condition on Ψz  at z=0 and D that allows us to use 

the cosine series. If we knew the function itself, it is clear from (7.2.2) we would have 

used a sine series instead. The last step in (7.2.2) follows from the standard 

orthogonality properties of the cosine functions. 

 

This yields an equation for each Fourier amplitude, 
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Ψnyy − fo
2

N 2
nπ
D

 
 
 

 
 
 

2
Ψn = 2

D
1− (−1)n[ ]Ψz (0) fo

2

N 2

= − 2
D

1− (−1)n[ ]l
8

fo
2

N 2 sin2ly ao
2 e2kci t −1( )

 (7.2.3) 

using the fact that the derivative is the same at z=0 and z=D. The solution which 

satisfies (7.1.7) is, 

 

Ψ = Ψo
1− (−1)n[ ]

4l'2 +[nπ ]2 F( ) e2kci t −1[ ]cos(nπz') sin2l' y '− 2l'
nπF1/2

sinhnπF1/2(z'−1/2)
cosh(nπF1/2 /2)

 

 
 
 

 

 
 
 n=1

∑

Ψo ≡ lfo
2L2

8DN 2 ao
2 fo, y '= y /L, z'= z /D,

F = fo
2L2

N 2D2

    (7.2.4) 

 

We have introduce nondimensional y and z variables for ease and to expose, once 

again, the parameter F, the square of the horizontal length scale to the deformation 

radius squared. Note that for instability we showed in the last chapter that F  must be 

greater than 1.722 and that the larger F is the greater the range of unstable 

wavenumbers and the greater the maximum growth rate. Now that Ψ is known we can 

calculate directly the correction to the mean zonal velocity and the buoyancy. 

u = −Ψo2l
1− (−1)n[ ]

4l'2 +[nπ ]2F( ) e2kci t −1[ ]cos(nπz') cos2l' y'− cosh nπF1/2(z'−1/2)
cosh(nπF1/2 /2)

 

 
 
 

 

 
 
 n=1

∑

 (7.2.5) 

 

                                                                                                                                                 
♦ Note that if you (incorrectly) just substituted the series into the differential equation 
and differentiated term by term, the inhomogeneous boundary conditions would not enter 
your problem for Ψn and you would obtain the silly answer Ψ=0. 
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This correction function is contoured in Figure 7.2.1 while Figure 7.2.2 shows the 

profile of the zonal flow correction near the upper surface (z/D =0.9). 
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Figure 7.2.1 The correction to the mean zonal flow in due to the perturbations. 

Positive values contoured in solid, negative values are shown with dashed contours. 
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Figure 7.2.2 The correction profile of the zonal velocity at z/D =0.9 

 

 

There are several interesting things to note. First of all, as we see from the contour 

plot the correction to the mean zonal flow is purely baroclinic. At each y the vertical 

averaged u  is unchanged. This follows from the absence of any Reynolds stress so that 

the change in the mean flow, from (7.1.1. a) must be due solely to the Coriolis force of 

the ageostrophic meridional flow. To conserve mass flux across each latitude circle the 

vertical average of that ageostrophic meridional velocity must be zero, Hence the purely 

baroclinic character of  u . Second, we see from both the contour plot and the profile that 

in the center of the channel the zonal velocity is reduced at upper levels and increased at 

lower levels (again this follows from the equal and opposite meridional velocities). Thus, 

in the center of the channel, where the perturbation eigenfunction has its maximum value, 

the vertical shear of the mean flow is reduced by the effect of the perturbation. This we 

might intuitively expect. Note however, that the zonal flow correction actually has the 

opposite sign in two narrow regions near the boundaries at y = 0 and  L. This is due to 

structure of the basic unstable mode which gives rise to a buoyancy flux  proportional to 

sin2ly  and a zonal flow correction proportional to cos2ly  whose structure is evident  in 

the figure. The homogeneous solution adds only a narrow boundary layer of width F−1/2 
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(deformation radius in dimensional units) to bring the correction to the zonal velocity to 

zero on the boundary. This homogeneous solution of the potential vorticity equation, 

giving rise to this term, is forced by the boundary condition of vanishing u  at the 

boundaries. The larger  is F the smaller these regions will be. So, fundamentally the 

action of the perturbations is to reduce the vertical shear. 

This becomes clear if we look at the profiles of the buoyancy correction. The 

buoyancy correction has a vertical structure that is, by the thermal wind, that of the 

vertical derivative of u  and hence is the same above and below the mid-level depth. The 

profile of the correction is shown in Figure 7.2.3. 
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Figure 7.2.3 The correction to the x-averaged buoyancy. 

 

If we think of the buoyancy as proportional to the temperature perturbation we see 

that the net effect of the eddy buoyancy flux is the warm northern latitudes and cool 

southern latitudes as the perturbations flux heat across the current to the north. If we add 

this alteration to the temperature profile that exists in the basic state we see clearly in 
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Figure 7.2.4 that the effect of the perturbation heat flux is to weaken the unstable 

temperature gradient in the middle of the domain. 
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Figure 7.2.4 The basic state temperature (buoyancy ) profile is shown as a dashed curve. 

When the effect of the perturbations is added the temperature profile shown by the solid 

curve results. 

 

 

The similarity of the instability to classical convection is suggested by Figure 7.2.4. 

Instead of the unstable temperature gradient being in the z-direction it is here a horizontal 

temperature gradient that drives the instability and the eddy flux, just as in the classic 

convection problem tends to smooth out the unstable temperature profile. That is one 

reason why baroclinic instability is often referred to as horizontal convection. We will 

return to that idea further on. 

Once u  is known we can calculate the x-averaged ageostrophic meridional 

velocity, v a  directly from (7.1.1.a) since the Reynolds stresses are zero. It is proportional 
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to the time derivative of u  and so will have its structure. However, since it is 

proportional to ∂u ∂t  its time factor is different, i.e. 

    (7.2.6) 

v a = −2kci tΨo(2l / fo)
1− (−1)n[ ]

4 l'2 +[nπ ]2F( ) e2kci t[ ]cos(nπz') cos2l' y'− cosh nπF1/2(z'−1/2)
cosh(nπF1/2 /2)

 

 
 
 

 

 
 
 n=1

∑

 

Note that while the correction to the x-averaged zonal flow and the buoyancy vanish at 

t=0, the ageostrophic meridional velocity (also of order amplitude squared as forecast) is 

immediately different from zero as long as the flow is unstable, i.e. as long as there is a 

non-zero growth rate. This is due to the fact that the perturbations, from the first instant, 

while growing, transport buoyancy northward and force a Eulerian meridional circulation 

in the y-z plane. Indeed, using (7.1.1 c) we can introduce a stream function for the x-

averaged meridional circulation, 

 

 v a = −
∂χ
∂z

, w = ∂χ
∂y

   (7.2.7 a.b) 

and from (7.2.6) we can immediately integrate to find χ , 

 

χ = 2kci tΨo(2l / fo)D
1− (−1)n[ ]

4 l'2 +[nπ ]2 F( )nπ
e2kci t[ ]sin(nπz') cos2l' y '− cosh nπF1/2(z'−1/2)

cosh(nπF1/2 /2)

 

 
 
 

 

 
 
 n=1

∑

 

(7.2.8) 

The streamfunction is plotted in Figure 7.2.5 
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Figure 7.2.5 The meridional streamfunction for the perturbation induced x-averaged flow 

in the meridional plane. 

Arrows have been added to the figure to show the sense of the circulation which 

you should be able to deduce from the sense of the change in the mean zonal velocity. It 

is important to realize that since the overall flow is time dependent the above 

streamfunction gives the pattern of the Eulerian overturning circulation. Fluid particle 

trajectories will not follow those isolines. Indeed, by using the theory of the Transformed 

Eulerian Mean equations discussed in 12.802 it can be shown that the particle trajectories 

are quite different. ( A particularly illuminating discussion of this is found in Shepherd 

1983, GAFD, vol 27. pp 35-72) in which it is shown that the actual particle trajectories 

rise in the south and flow northward in an upper Lagrangian branch of the circulation and 

sink at high latitudes before returning southward, a circulation much more in tune with 

our intuition of a �convectively� driven instability. Unfortunately, a full discussion of 

that feature is, for reasons of time, beyond the scope of this discussion. 

Overall, we note that the net effect of the instabilities is to drive the mean flow 

towards stability by reducing the storehouse of energy. Alternatively, recognizing that the 

necessary conditions for instability in this problem involve the meridional buoyancy 

gradients on the boundary, the effect of the instability is to reduce those gradients, again 
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driving the mean flow towards stability. Please note that throughout all this change the 

basic state remains the same. These changes form part of the perturbation field and are 

O(amplitude)2. 
 

7.3 A heuristic model 

 

We have the full results of the stability calculation but can we try to understand in a 

heuristic way some of the key features of the problem? In particular, the critical 

wavenumber for the instability and the reason for the phase shift with height of the 

disturbance (although we are aware the latter is necessary if we want to release energy). 

Note that the condition (6.2.14) that  the wavelength be of the same order as the 

deformation radius, or larger, can be restated by saying that the two boundaries of the 

fluid must be close enough so that each is aware of the other, The exponential character 

of the solutions of (6.2.10) implies that if D is too large the disturbance will be negligibly 

small at the other boundary, as if the other boundary were removed infinitely far away. 

The necessary conditions for instability tell us that for the Eady problem both boundaries 

must enter. We can try to sharpen these ideas a little by considering just that situation. 

Suppose we redo the Eady model but instead of having two boundaries we start with a 

single boundary at z=0 and insist that the solution by finite as z ! infinity. We can find 

solutions  of (6.2.10) for φ in the form, 

 

φ = Ae−kNz / fo cos(k[x −ct])  (7.3.1) 

 

where for simplicity we are considering perturbations independent of y in an region 

infinitely wide. The single remaining boundary condition (6.2.8a) ( the other condition 

has been replaced by finiteness at infinity that is already satisfied by (7.3.1)). Application 

of that boundary condition yields, 

 

 c =
foUoz

kN
  (7.3.2) 

 

so that the wave always moves to the right with respect to the lower boundary. 
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The buoyancy and meridional velocity perturbations associated with (7.3.1) are, 

 
b = −kNAe−kN / fo cos(k[x −ct])

v = −Ake−kN / fo sin(k[x − ct])
  (7.3.3 a,b) 

 

If we look instead at a model where there is an upper boundary at z=D and no lower 

boundary, we would look for solutions instead, of the form, (the subscript u for the upper 

wave), 

 

φu = AuekN (z−D) / fo cos(k[x −c t] + γ)

bu = kNAuekN (z−D) / fo cos(k[x − ct])

vu = −kAuekN (z−D) / fo sin(k[x − ct])

  (7.3.4 a,b,c) 

 

Note that the dependence on z is chosen so that the solution decays exponentially 

downward, The constant γ is an arbitrary phase chosen with respect to the lower wave. In 

particular, note the difference in the phase relation between the pressure field φ and the 

buoyancy field for the upper wave when compared to the lower wave. 

Now applying the boundary condition at z=D yields, 

 

 

c = DUoz −
foUoz

kN
  (7.3.5) 

so that the wave propagates against the mean flow (i.e.. the left with respect to the 

current). 

 In the figures the solid curves show the stream functions, the dashed curves are the 

buoyancy perturbations and the dotted curves are the meridional velocities. In each case 

the functions are evaluated on their respective boundary. 
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Figure 7.3.1 a,b, 

 

On the boundaries the buoyancy perturbation is advected directly with the meridional 

velocity. Note that v is 900 out of phase with b so that there is no net flux of buoyancy 

(the wave is stable). Examining figure 7.3.1a, for example, we see that the meridional 

velocity will shift the phase of the buoyancy wave to the right since v is phase shifted to 

the right of b. The opposite is true at the upper boundary so that the wave is speed shifts 

against the current to the left. In each case this is consistent with the phase speed 

relations (7.3.2) and (7.3.5). 

Now let�s suppose we try to just superpose these two waves to build a single mode 

in a domain with two lateral boundaries. The first condition that must be fulfilled is that 

the waves have a common phase speed. Equating the results of (7.3.2) and (7.3.5) yields, 

 
k = 2 fo / ND = 2 Ld ,

c = DUoz /2
  (7.3.6) 



Chapter 7 15 

The phase speed is exactly the phase speed of the marginally neutral Eady wave and 

the critical wave number is very close 2 /Ld   rather than 2.399 /Ld . We can�t expect to 

obtain the exact criterion since the sum of the two solutions fails to exactly match the 

boundary conditions at each boundary�but it�s close! 

Now suppose, we imagine that the upper wave�s geostrophic streamfunction is 

phase shifted to left (against the shear) on the upper boundary with respect to the lower 

boundary. One obtains a situation shown in Figure (7.3.2). 
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Figure (7.3.2 a,b) The waves on each boundary. The solid curves are the 

streamfunction. The dashed curves are the buoyancy perturbations and the dotted curves 

are the meridional velocity due to the wave at the other  boundary. 

 

In Figure 7.3.2 a,b we have plotted the φ  (solid curve) on each boundary and its 

corresponding buoyancy perturbation b ( dashed) and the meridional velocity due to the 

wave on the other boundary assuming that the boundaries are close enough together for 

the perturbation to �reach� the other boundary. From the solutions (7.3.1) and (7.3.4) this 

requires , 

 

kND / fo ≤1   (7.3.7) 
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which, roughly speaking is the Eady criterion for instability. Because of the phase shift 

with height of the pressure field there is now a contribution to the meridional velocity at 

each boundary by the perturbation at the other boundary that is in phase with the 

buoyancy perturbation and so will serve to enlarge the amplitude of the perturbation. 

Algebraically, if we have a buoyancy perturbation at the lower boundary of the form, 

 

 bL = α(t)cosk(x − ct)    (7.3.8)  

the equation, at that boundary for the perturbation is, 

 

 
dbL
dt

= −v ∂bo
∂y

   (7.3.9) 

where v is the total velocity. If we write, 

 

 
v =α( t) A cosk(x −ct) + Bsin k(x − ct)[ ]
= α(t)sin k(x − ct) + θ[ ]

  (7.3.10) 

it follows that, as anticipated by the figure, 

 

 
dα
dt

=αA −
∂bo
∂y

 

 
  

 

 
  =α sinθ −

∂bo
∂y

 

 
  

 

 
     (7.3.11) 

so that there will be an exponential increase in the amplitude of the buoyancy 

perturbation caused by the in-phase component of the meridional velocity which is due 1) 

the phase shift of the upper wave with respect to the lower wave and 2) the sufficient 

length of the wave so that the velocity perturbation on one boundary can reach the other 

boundary. 

It is important to keep in mind that this argument which looks only kinematic 

actually depends on two dynamical relations. The conservation of potential vorticity 

which determines the vertical �reach� of each boundary wave as a function of its 

wavelength and on the fact that the buoyancy on each boundary is advected by the 

velocity on the boundary as well as the hydrostatic relation between the geostrophic 

pressure and the buoyancy. You should check that the kinematic phase relations we have 

noted here for growth are equivalent to a requirement that there is a net buoyancy flux 

down the buoyancy gradient in the basic state. 
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7.4 Eady�s description of the instability 

 

There is another heuristic description of the instability which is very suggestive and 

illuminating and which was suggested by Eady himself and can be found in the 

discussion section of the Quarterly Journal of the Royal Meteorological Society 1948, 74. 

It is not free from difficulty and is not completely rigorous but it does, I believe capture 

the essence of the problem.  

As we noted in chapter 6 the vertical shear of the basic state, and the thermal wind 

equation implies that the buoyancy surfaces in the basic state are sloping at an angle α to 

the horizontal where, 

 

tanα = −
ρ y
ρz

=
foUoz
N 2    (7.4.1) 

for the case where the fluid is incompressible and the buoyancy perturbation is due to 

density anomalies advected by the perturbations. Consider Figure 7.4.1. 

                                                                                                       C 

                                        B 

                                              α 

 

 

        A 

    

Figure 7.4.1 The wedge opened by the thermal wind between the isolines of the basic 

state buoyancy and the horizontal surface. 

 

Consider moving the fluid element A from its position to some other position, say 

either B or C. Let the small distance it�s moved by represented by the virtual 

displacement vector   δ
" 
r = � j η + � k ζ . Then assuming that the density is conserved by the 

perturbation the density anomaly at any point, say B, will be the difference between the 

∇ρ  
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ambient density at B and the density of the fluid element which arrives from A carrying 

that value of the density. 

Thus, at any point near A, 

 

  

ρ(
" r +δ " r ) ≈ ρA +

∂ρ
∂y

η +
∂ρ
∂z

ζ ,

ρA − ρB ≈ −ηρ y −ζρz

   (7.4.2) 

 

Now let�s consider these small displacements such that ζ /η = tanϕ , 

 

 

 

 

 

                                                         #  

                                                   ζ 

 

 

 

Figure 7.4.2 the trajectory of a displacement of a fluid element within the wedge 

opened up by the vertical shear. 

 

If we calculate the gravitational buoyancy force along the path of the displacement, 

 

 

 
ρ=const. 

ϕ

η
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ρ A − ρB( )
ρs

gsinϕ = −
ηρy + ζρz

ρs

 

 
 
 

 

 
 
 
gsinϕ

= −g
ρz
ρs

1+
η
ζ

ρ y
ρz

 

 
 
 

 

 
 
 
ζ sinϕ = N 2 1−

zy)ρ
ζ η

 

 

 
 
 

 

 

 
 
 
ζ sinϕ

= N 2 1− tanα
tanϕ

 

 
 
 

 

 
 
 
#sin2ϕ

 (7.4.3) 

where   # = ζ /sinϕ  is the distance along the direction of displacement, The work done on 

the particle is by the buoyancy force is just the force times the displacement distance, or, 

 

 
  
Work done = N 2#2 1−

tanα
tanϕ

 

 
 
 

 

 
 
 sin2ϕ   (7.4.4) 

 

If the shear were zero, so that α were zero, there would be a net restoring force in 

the direction of the motion and the net work done would be simply  N 2#2. It would be 

positive and this would lead to an oscillation whose maximum frequency would be N. On 

the other hand, in the presence of the shear the angle between the density surface and the 

horizontal opens up. Thus, from (7.4.4) if tanϕ ≤ tanα  the work done on the fluid 

element is negative, that is the gravitational force will accelerate the fluid element away 

from its initial position rather than tend to restore it to its starting point. What we see 

then, because of the slope of the density surfaces is lighter fluid rising into heavier fluid. 

This is possible only if there is a  vertical shear of the current. Note that at displacement 

outside the wedge of instability opened up by the sloping density surfaces, e.g. a 

displacement from A to C would not release energy. It is a simple matter to show that the 

displacement angle which maximizes the energy release is one for which tan2ϕ = tanα  

or for small angles ϕ = α /2 . 

The condition for instability is thus, 

 

ζ
η

=
w
v

<
foUoz
N 2    (7.4.5) 
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From the vorticity equation we can estimate the size of w with respect to v by, 

 

 fowz ≈ O(Uovxx ) = O(vUo /L2)    (7.4.6) 

 

thus, the condition (7.4.5) is  

 

 

 w
v

= O Uo
foL

D
L

 

 
 

 

 
 <

foUoz
N 2 = O foUo

N 2D

 
 
 

 
 
   (7.4.7) 

 

or, 

 

 L >
ND
fo

= Ld    (7.4.8) 

This is qualitatively the condition for instability we derived directly from the Eady 

problem and its interpretation here is that the width L must be large enough to allow fluid 

trajectories to lie within the wedge of instability. If L is too small the trajectories must be 

tilted upward too much to stay within the wedge and the energy release mechanism will 

be lost. 

 

 

 

 

  
 

 


