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Chapter 4: Linear Stability Theory 

 
1. Introduction 

The governing equation for the perturbation geostrophic stream function (let�s call 

it φ  instead of ψ� to avoid the use of primes everywhere) is , 
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The nonlinear term   J(φ,q') =
& 
u '⋅∇q' represents the self-advection of perturbation 

potential vorticity by the perturbation velocity. If we could solve this nonlinear problem 

we would but it is just too hard although later we shall describe some approaches to the 

nonlinear problem that yield some useful insights. It would be interesting to test the 

stability of UO to perturbations of arbitrary size and to be able to follow the evolution of 

disturbances as their amplitudes increase. To some degree this can be done numerically 

by a direct numerical integration of (4.1.1) but even so problems remain. The numerical 

methods are often limited by resolution and it is especially difficult to use them to  find 

the thresholds for instability. It is also difficult to ask questions about the inviscid 

character of the instability in numerical models that possess some intrinsic numerical 

dissipation. For these and other technical reasons we are force to linearize the problem by 

neglecting the Jacobian term in (4.1.1). Since the term is O(amp)2 this means considering 

disturbances which, at least initially are small. There are some virtues in this approach 

(Always a good idea to find virtue in necessity). 

1) If small amplitude perturbations can be shown to grow spontaneously this 

provides a natural explanation for the existence of the observed finite amplitude 

fluctuations since small background fluctuations are always present to act as 

seeds for the instability. 
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2) Dealing with small perturbations reduces the question to the stability properties 

of the basic flow and not the amplitude level of the perturbations. If the 

perturbation is large, as large as the basic flow, it is a bit difficult to understand 

what we might mean by instability if we are perturbing the flow with another 

flow of the same energy level. 

3) Small amplitude perturbations must get their energy directly from the basic flow 

while larger amplitude perturbations could get energized by interacting with the 

ultimate energy source via other perturbations by interacting with one another. 

  

Let a  be a measure of the amplitude of the perturbations with respect to the basic 

flow then to O(a2) the stability equation (4.1.1) simplifies to, 
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The associated linear boundary condition on z =0 (the lower boundary) is from 

(3.1.9), 
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depending on the nature of the upper boundary  at z = zT condition  of the above type will 

enter as discussed in the previous chapter. The boundary condition on the lateral 

boundaries, say at y1 and y2 are simply that v� vanish or,  

 φx = 0, y = y1,y2   (4.1.4) 

If the disturbance can radiate energy to large meridional distances this boundary 

condition would have to be modified to consider the radiation properties of the waves. 

 

4.2 Necessary conditions for instability: formulation 

Consider the case first where we can ignore δΣ i  and δΗ  in the above equations. 

This is really a statement about relative time scales of inertial versus dissipative 

processes  for the perturbations. Dissipation and friction may still be essential, as 
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described in Chapter 2, in determining the structure of the basic state. We can now ask 

under what conditions can the perturbations grow in energy? What conditions does that 

place on the basic flow? Can we determine some structural requirement of the basic state 

that is necessary in order that it be unstable? 

Let us first form an energy equation by multiplying (4.1.2) by the  density ρS times 

the perturbation streamfunction φ  and rearranging terms. For example, 

 

ρsφ
∂
∂t

φxx + φyy +
1
ρs

ρs
fo

2

N 2 φz

 

 
 
 

 

 
 
 

z

 

 

 
 
 

 

 

 
 
 
=

= −
∂
∂t

ρs
2

φx
2 + φ y

2 + fo2

N 2 φz
2

 
 
 

  

 
 
 

  

 

 

 
 
 

 

 

 
 
 

+ ∂
∂x

(ρsφφxt ) + ∂
∂y

(ρsφφyt ) + ∂
∂z

ρs
fo

2

N 2 φφzt

 

 

 
  

 

 

 
  

 
 
 

  

 
 
 

  

  (4.2.1) 

 

We recognize the first term on the right hand side as (minus) the rate of change of 

the total energy (kinetic plus potential) in the perturbation field, 
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   (4.2.2) 

 

Carrying out the same process with the remaining terms from (4.1.2) yields an 

equation for the rate of change of perturbation energy in linear theory. After a 

considerable amount of algebra ( which you should do on your own) we obtain, 
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The flux vector   
& 
J  is a three dimensional vector and the divergence operator in 

(4.2.3) is the usual  three dimensional divergence operator, while: 
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(4.2.4) 

 

It would probably be helpful to the student at this point to go back to the discussion 

of energy propagation in Rossby waves and compare the energy flux vector in that 

problem, in which UO is a constant  and qOy is simply β  to see the connection and 

generalization to (4.2.4). 

Let�s integrate (4.2.3) over the domain of the fluid. At the boundaries at y1 and y2 

the geostrophic meridional velocity φx  must vanish. Using the linearized form of the 

zonal x-averaged zonal flow equation we can show that, 
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 φy = foφva    (4.2.5) 

 

and so this must vanish at the meridional boundaries where the ageostrophic meridional 

velocity must also vanish. Similarly, using the boundary condition at z = zT it is easy to 

show that, 
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 φz = 0, z = 0,zT    (4.2.6) 

 

 

Thus the integral of the divergence of  
& 
J  is zero and the energy equation for the 

total perturbation energy is simply, 
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To O(a2) the zonal mean flow , u  treated in chapter 3 is identical to UO since the 

change of the mean from the basic flow depends on the quadratic fluxes of buoyancy and 

momentum. Therefore, to the order of the linear problem we are discussing they are 

identical. Comparing (3.2.18) and (4.2.7) we note that the same energy transformation 

terms occur on the right hand sides of each equation with opposite sign. Therefore, 
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E(φ) + E (ψ )[ ]= 0    (4.2.8) 

 

The total energy of the mean plus the perturbations is conserved. The terms on the 

right hand sides of (3.2.18) and (4.2.7) are true transformation terms. Energy drained 

from the mean flow shows up as perturbation energy and vice-versa.  As discussed 

before, in order for the perturbations to grow the perturbations must either flux 

momentum from region of high zonal momentum to regions of lower zonal momentum ( 

and thus smooth out the velocity profile in latitude) and/or the perturbations must flux 

buoyancy from regions of high buoyancy (e.g. temperature) to regions of low zonal mean 

buoyancy. The eddies in the atmosphere are observed to do the latter. That is they 

typically flux heat northward in the overall equator to pole decrease of temperature. 

However, it is observed that on average they also flux zonal momentum up the gradient 

of zonal momentum returning some of the energy to the mean flow (and sharpening the 

profile of the jet stream). Of course the sum of the two terms has the sign such that total 

energy flows from the zonal mean to the perturbations. 

It is particularly revealing to rewrite the energy transformations in terms of the 

potential vorticity flux of the perturbations. 

Since, 
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an integration by parts of (4.2.7) yields, 
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or 
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The energy transformations leading to energy growth for the perturbations are 

clearly intimately tied to the potential vorticity transport and its correlation with the basic 

zonal velocity and with the buoyancy flux on the horizontal boundaries and its 

correlation with the basic zonal flow on the boundaries. Note again, the equivalence 

between buoyancy fluxes on the boundaries and pv fluxes in the interior. We already now 

from chapter 3 that on average the pv flux must be down the gradient of the basic 

potential vorticity gradient, i.e. that v 'q'qoy < 0  for instability  
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In the absence of dissipation and friction  there is a simple connection between the 

particle displacements and the pv flux. Let�s define the Lagrangian particle displacement 

in the y direction as η, then in linear theory  
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 η    (4.2.12) 

 

At the same time the linearized potential vorticity equation in the absence of 

dissipation is, 
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 q'+v'qoy = 0   (4.2.13) 

 

which with (4.2.12) implies that 

 

 
∂
∂t

+ Uo
∂

∂x
 
 
 

 
 
 q'+ηqoy[ ]= 0   (4.2.14) 

 

If q� =0 when η =0 it ,i.e. if the only perturbation in potential vorticity comes about 

by the particles carrying their old potential vorticity to a new location, then 

 

q'= −η ∂qo
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   (4.2.15) 

 

or using (4.2.12) with (4.2.15) to evaluate the pv flux,  
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Similarly at  z = 0, where 
b'= foφz,
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The use again of 4.2.12) implies that 
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Bringing these results together allows us to rewrite (4.2.11) in the suggestive form, 
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Here we have introduced the useful notation, 

 

G(z)]z=0
z=z t = G(zt ) − G(0)   (4.2.20) 

 

Note that (4.2.19) can be written as a conservation statement, 
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    (4.2.21) 

Of course, at the upper boundary we have to interpret properly the value of h (it will 

usually be zero there, and, if zT ! infinity the term itself will be zero if the perturbations 

decay with z. 

It is useful to represent the potential vorticity flux itself in this form, 
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Integrating (4.2.9) over the meridional plane and using the fact that v� vanishes at 

the lateral boundaries, 
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Using (4.2.16) and 4.2.18) we obtain, 
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This is clearly a second conservation statement. While the first statement is clearly 

connected to the conservation of total energy, (4.2.23) can be shown (an exercise for the 

student) to be a conservation statement for the total x averaged momentum integrated over 

the meridional cross section. 

We note in both (4.2.21) and (4.2.23) the occurrence of the term 

 

fo Uoz − N 2hy  

which can be rewritten, using the thermal wind relation as (for the atmospheric 

case) 
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The term is therefore proportional to the difference between the slope of the isolines 

of potential temperature  at the boundary  and the slope of the boundary itself. For the 

oceanic case a simple rederivation will exchange the isolines of density with those of 

potential temperature. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1 The difference between the boundary slope and the  

slope of the buoyancy surfaces determines the boundary factor in (4.2.21) and 

(4.2.23). 

 

 

The boundary term will vanish only if the boundary is a surface of constant 

buoyancy. It will change sign if one slope exceeds the other. 

 

4.3 Necessary conditions for instability. Consequences 

 

Let us examine the consequences of (4.2.23) first. We shall use the fact that if a 

disturbance is growing the mean dispersion of fluid elements from their initial latitudes 

mus increase with time, i.e. that for instability, 
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A) Consider the case when the boundaries are  coincident with isentropic or 

isopycnal surfaces so that the boundary terms in (4.2.23) are identically zero. 

Then (4.2.23) reduce to  
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 However, if qoy  were of a single sign over the whole meridional plane, i.e. if 

the potential vorticity gradient of the mean flow does not change sign then, (suppose for 

example it is positive over the whole cross section), 
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  (4.3.4) 

This clearly places an upper bound on the dispersion of fluid particles which goes 

to zero as the initial disturbance amplitude goes to zero. In this sense the flow must be 

stable. Thus, when the boundaries at z =0, zT are isothermal (isopycnal for the ocean ) a 

necessary condition for instability is that the meridional gradient of potential vorticity 

must change sign over the domain.  

Recall that 
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In this case (boundaries of constant potential temperature or density in the basic 

state) a large enough β (i.e. a weak enough basic velocity ) will always stabilize the flow. 

Note that it is the curvature of the basic velocity gradient which enters the determination 
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of qoy (modified by factors involving the stratification in the vertical) rather than an 

overall shear level itself. There can be a large store of available energy, either in the 

horizontal shear or vertical shear but it will not be released to a growing perturbations if 

the potential vorticity distribution does not allow it). This emphasizes the key role 

potential vorticity dynamics plays in the generation of meso-scale eddy activity in both 

the atmosphere and the oceans. Note also that the condition (4.3.2) is a necessary  

condition for instability. It is not a sufficient condition for instability. That is, if the 

potential vorticity gradient is of a single sign we have a sufficient condition for stability  

but if it changes sign we are not guaranteed that the flow will be unstable. Indeed, we 

will later be able to show some counter examples. 

Let us use the condition and  (4.3.5) to give an estimate of the vertical shear in the 

mid ocean that would be required to satisfy the condition for instability. The horizontal 

velocity curvature is on the scale of the oceanic gyre and so is negligible (this is not true 

for swift currents as the Gulf Stream). If we make the estimate: 
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where we have ignored the variation of the background density and taken the 

buoyancy frequency to be varying less rapidly than the vertical shear (or no larger), then 

for instability to occur the vertical shear, 

 

∆Uo ≥ β N 2D2

fo
2 = βLD

2   (4.3.6) 

 

Here, D is the vertical scale of the disturbance, (one might imagine it is of the order 

of the thermocline depth, say about  1 km). The condition in (4.3.6) has been rewritten in 

terms of the deformation radius based on that depth, LD = ND fo . Using mid-latitude 

values , the deformation radius is about 50 km. Since β is about 2 x 10-13 cm-1sec-1 this 

gives a critical value for ∆Uo  of 5 cm/sec. 
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As a historical note. If we ignore the β effect and if the fluid is homogeneous the 

potential vorticity gradient reduces to the horizontal curvature of the velocity profile 

yielding the famous Rayleigh theorem, i.e. that instability of classical, homogeneous 

shear flows requires an inflection point in the velocity profile. That condition always 

seemed physically mysterious but we can see that what it really requires is that the pv 

gradient not be of a single sign. Otherwise, the pv gradient is qualitatively like the 

β effect which, as we know, only gives rise to stable oscillations. We shall come back to 

this fact later in our interpretation of the conditions for instability. 

 

B) Now suppose that the pv gradient is of a single sign throughout the fluid but that the 

one horizontal  boundary is not an isentrope (atmosphere) or an isopycnal (ocean) and the 

other surface is either removed to infinity or is a surface of constant buoyancy. Then 

reconsidering the condition (4.2.23) it is clear that somewhere in the fluid one of the 

following must be satisfied for instability. 

 

 

qoy
foUoz − N 2hy[ ]z= zt

< 0,

qoy
foUoz − N 2hy[ ]z= 0

> 0

  (4.3.7 a,b) 

 

The classical problem of Charney (1947) is one in which the upper boundary is 

removed to infinity so that (4.3.7b) applies. Further, in Charney�s example the 

potential vorticity gradient is everywhere positive (and constant). Instability is 

therefore allowed only if the vertical shear at the ground exceeds the slope term or 

equivalently, only if the slope of the isotherms at the lower boundary exceeds the 

slope of the bottom boundary. In Charney�s problem, the first full discussion of 

baroclinic instability, the stabilizing effect of β is balanced by the northward 

temperature gradient at the lower flat surface.  Charney succeeded in finding 

unstable modes (we shall review his calculation later) but we can see from (4.3.7) 

that a bottom sloping upward to the north could stabilize the entire flow if it is large 

enough. 
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C)  An extreme case showing the importance of the boundary conditions and that 

emphasizes the dynamical character of the boundary is one in which the interior 

potential vorticity gradient is identically zero. This is the problem studied by Eady 

(1949). In this case a reference to (4.2.23) shows that instability requires that  

 

foUoz − N 2hy[ ]z=0
• foUoz − N 2hy[ ]z=z t

> 0    (4.3.8) 

 

Therefore a domain with a non sloping upper and lower boundary will always 

satisfy the necessary condition for instability. Note that topography can reverse the sign of 

one of the brackets and render the flow stable regardless of the amount of vertical shear 

(horizontal buoyancy gradient) present in the mean flow. The release of that energy must 

be consistent with pv dynamics and the �wrong� distribution of basic state potential 

vorticity, or its equivalent, buoyancy gradients on the horizontal boundaries can render the 

energy in the basic state dynamically unavailable. 

Return for a moment to the integral  over the y-z domain of the x-averaged  

potential vorticity flux. From (4.2.22) and (4.2.16) 
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2
t∫∫ qoy dydz   (4.3.9) 

If the potential vorticity gradient of the basic state is positive, i.e. in the beta sense, 

then for a growing instability there must be a) a potential vorticity flux down the pv 

gradient, and b) either a compensating northward buoyancy flux at the ground or c) a 

compensating southward buoyancy flux at the upper surface. 

If we consider the equation for the x-averaged zonal flow, (3.2.10) and the relation 

(4.2.9) between the Reynolds stress, the pv flux and the eddy buoyancy flux, 
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Now let�s integrate this equation over the full depth of the fluid at an arbitrary 

latitude, y, 
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The last term in (4.3.11) is zero since in quasi-geostrophic theory as much mass 

moves northward as southward across each vertical surface oriented along a latitude 

circle, i.e. there is not net storage of mass at any latitude. ( The student should review the 

derivation of quasi-geostrophy to check the validity of this statement and understand its 

limits of validity). 

Using the results of (4.2.15) and (4.2.18) we obtain, at each y, and equation for the 

vertically integrated zonal mean momentum, 
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 (4.3.12) 

 

Clearly, since there are no external forces, the total zonal momentum, if we were to 

integrate must be conserved. Thus, the integral of (4.3.12) would yield zero for the left 

hand side and the condition that the y integral of the right hand side also vanishes recovers 

the necessary condition for instability (4.2.23) which we see is really a momentum 

conservation statement. 

However, it is useful to return to a direct consideration of (4.3.12). Let�s suppose 

that the meridional pv gradient qoy  is always positive. Further let�s imagine, for the 

atmospheric case that the upper boundary moves to infinity and so the upper term at zt 

vanishes,  then for instability to occur we know that the lower boundary term must have 

the opposite sign to the term involving qoy . Consider a positive zonal current over a flat 

bottom in which the vertical shear at the ground is very strong at the jet axis where the 

meridional temperature gradient is largest and weak on the flanks of the jet. Such 
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instabilities due to the meridional buoyancy gradients  in the flow are called baroclinic 

instabilities. Then in such cases the right hand side of (4.3.12) will be positive near the jet 

axis and negative on its flanks. What that predicts is that the effect of the perturbations 

will be to accelerate the vertical average of the jet at its core where it is already large and 

decelerate  the jet at its flanks where it is weak! Such counter intuitive behavior is, in fact, 

observed in the atmosphere and is a basic consequence of baroclinic instability. Of course 

nothing is for free and the mean field suffers a loss of energy to the growing perturbations 

and this is manifested by a decay of the vertical shear of the mean current and, by thermal 

wind, and accompanying loss of potential energy of the mean as the supporting meridional 

temperature gradient declines in balance with the reduced vertical shear of the mean 

current. This important feature of the atmospheric general circulation is not mirrored in 

the oceanic case because of the change in the position of the active boundary and the 

student is encouraged to think out the difference in the resulting behavior and to ask what 

would happen to westward mean flows. 

 

 

 

 

 

 

 

 

 

Figure 4.3.1 The role of unstable perturbations for a zonal flow whose pv gradient 

is positive but with a large meridional buoyancy gradient at the jet center and weak 

gradients at the jet edges. The perturbations accelerate the vertically averaged zonal flow 

in the core and decelerate it at the edges. 

 

Let us now examine the second condition for instability, (4.2.21), the one 

expressing the energy balance for the perturbations. If we suppose that the first condition, 

(4.2.23) is satisfied (otherwise there is no reason to examine an additional condition for 

β>0,  -Uoyy> 0 !qoy >0 
!  u t < 0  Uoz big

u t < 0 Uoz small  
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instability for the flow would be stable) we can subtract an arbitrary multiple of (4.2.23) 

from (4.2.23). That multiplicative factor we will call c it is an arbitrary constant and has 

the dimensions of a speed although at this point we do not identify it with any particular 

speed. 

Then (4.2.21) can be written, 
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z=zT

ρs(η2) fo2

N 2 Uoz − fohy
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= 0

 

    (4.3.13) 

 

The terms multiplied by c sum to zero by (4.2.21).  

Clearly for instability 
∂
∂t

E(φ) > 0. Hence 

∂
∂t

dydz ρs(Uo − c)qoy (η2)∫∫ − dy

z=0

z=zT

ρs(η2) fo2

N 2 Uoz − fohy
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> 0     (4.3.14) 

 

Let�s examine a few examples to see how (4.3.14) might be used.  

Suppose the upper boundary is moved to infinity and does not enter the condition and 

let�s suppose the lower boundary is a surface of constant mean buoyancy so that it does 

not enter the condition either, Then a necessary condition for instability is simply, 

 

 dydz ρs(Uo − c)qoy (η2
t )∫∫

 
  

 
  > 0   (4.3.15) 

If we can find any  value of c that makes the integrand always negative the flow must be 

stable even if qoy  changes sign in the domain of the flow. A simple but not quite trivial 

example occurs when the scale is small enough to ignore the β effect and UO  is a 

function of y alone. Suppose that  
 Uoyy(yc ) = 0 

so that qoy  vanishes at that point. The condition for instability (4.3.15) becomes 
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 Uo −Uo(yc )( ) −Uoyy[ ]> 0    (4.3.16) 

 

 Consider the following velocity field Uo = Uoo(1+ ea(y−L) −e−ay ). The pv 

gradient is just (minus) the second derivative of  the velocity and always vanishes at y 

=L/2 where the basic velocity is always Uoo . The flow profile, the velocity curvature and 

the condition (4.3.16) is shown below. 
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Figure 4.3.2 The velocity profile, its curvature and the condition (4.3.16) are plotted 

as a function of y/L. 

 

Note that the potential vorticity gradient vanishes as y =L/2 so that the profile 

satisfies the first necessary condition for instability. Examining the figure though it is 

clear that the condition (4.3.16) is never satisfied. The dashed line shows the left hand side 

of the condition and it is always negative. Thus although the potential vorticity gradient 

changes sign and although there is a substantial amount of shear in the flow, it must be 

stable according to the energy condition we have derived. This condition is often called 
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the Fjörtoft condition after the Norwegian meteorologist who derived it in this simple 

context (in quite another  way). 

Suppose instead that the velocity field, again a function only of y, is 

 

Uo = Uoo(1− cos2 πy /2L)

Uoyy =Uoo(π 2 /2L2)cos(πy /L)

 

 

Here the pv gradient −Uoyy  vanishes at y=L/2 where the velocity is Uoo /2. The 

figure below shows the profiles of the velocity, the curvature of the profile and the Fjörtoft 

condition. In this case both the Rayleigh condition (the first condition) and the second 

condition are satisfied. Indeed, the flow is unstable as shown by direct calculation. 
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Figure 4.3.3 The velocity profile, its second derivative for the cosine profile 

discussed above. Here the second necessary condition as well as the first condition is 

satisfied. 

 

 

 


