
Chapter 11

Internal Waves and Instabilities

11.1 A two layer model for internal waves.

In the last chapter we considered gravity waves in a single fluid layer and discussed
the frequency and wave number relation,  e.g. the dispersion relation. Not surprisingly, we
found that for each real wavenumber there was a real frequency. In this chapter we will take
up the discussion of a fluid whose density is variable and when , as in the last chapter, we
add the effect of a mean flow we will find situations in which for some real wavenumbers
the resulting frequency for free waves is a complex number.  We will have to interpret just
what that means. We will find that in such cases we can consider the original, wave-free
state as an unstable equilibrium o f the system that can become unstable and spontaneously
generate waves. This spontaneous generation is the fundamental reason for the existence of
fluid turbulence and its manifestations in the oceans and atmosphere from small scales to
the large scales where eddies and synoptic scale disturbances occur.  Although the physics
of small scale and large scale instabilities differ, the overall approach to the question of the
dynamics of instability is the same.

We begin by taking advantage of the relative simplicity of irrotational flow theory.
That implies that we are considering scales small enough in space and fast enough in time
so that the rotation of the Earth can be neglected.  Consider the situation shown in Figure
11.1.1.

Figure 11.1.1 Two fluid layers of different densities and mean flows separated by an

interface z=η.
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Two fluids, each with constant but distinct densities are separated by an interface,
originally at z =0. In each layer there is a mean flow, uniform in space and time flowing in
the x direction.  The speed of each of the flows may be distinct from one another.  A
perturbation is introduced into the system by perturbing the interface a small amount so that

the interface departs from the z=0 surface by an amount η(x,t).  In each region the density is

constant, friction is ignored as being negligible and in the absence of planetary rotation,
motion started from rest will be, and remain, irrotational. Thus in each region above and
below the interface,

∇2ϕ j = 0, j = 1,2 (11.1.1)

where the index j is 1 for the region above the interface and equals 2 for the region below
the interface.  At the interface the Bernoulli equation in each fluid yields,

∂ϕ j

∂t
+
1
2
∇ϕ j

2
+ gη +

pj (x,η,t)
ρ j

= 0 (11.1.2)

and the kinematic condition, applied on each side of the interface is,

 

∂η
∂t

+∇ϕ j i∇η =
∂ϕ j

∂z
(11.1.3)

We consider small perturbations to the streaming motion in each layer and the linearized
forms of (11.1.2) and (11.1.3) are, as in the last chapter,

∂
∂t

+Uj
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
ϕ j + gη = −

pj
ρ j

∂
∂t

+Uj
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
η =

∂ϕ j

∂z

(11.1.4 a, b)

and, as before, we can apply these boundary conditions on the undisturbed free surface
position z=0.  For simplicity, we consider the fluid regions each to be semi-infinite in the z
direction.  Using the results of the last chapter we recognize that this only means that if
there are lateral boundaries they are much further away from the interface than a wavelength
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of the disturbance.  A wave-like solution of Laplace’s equation in each region that satisfies

the condition that the disturbance be finite as z becomes very large is,

ϕ1 = ReA1e
i(kx−ω t )e−kz ,

ϕ2 = ReA2e
i(kx−ω t )ekz ,

η = ReNoe
i(kx−ω t )

(11.1.5, a, b, c)

Using (11.1.5) in the kinematic boundary conditions, yields,

i(Uk −ω )No = −kA1,

i(Uk −ω )No = kA2

(11.1.6 a, b)

or eliminating N0 ,

A1
U1k −ω

= −
A2

U2k −ω
,

No =
ik

U1k −ω
A1

(11.1.7 a. b)

The dynamic boundary condition applied at the interface requires that the pressure be the
same in each layer at the interface. Using the Bernoulli equation (11.1.4) we obtain,

− p1 = ρ1gη + ρ1
∂
∂t

+U1
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
ϕ1 = ρ2gη + ρ2

∂
∂t

+U2
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
ϕ2 = − p2 (11.1.8)

at z=0.  Or,

ρ2 − ρ1( )gη = ρ1
∂
∂t

+U1
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
ϕ1 − ρ2

∂
∂t

+U2
∂
∂x

⎛
⎝⎜

⎞
⎠⎟
ϕ2 (11.1.9)

With the solutions for the velocity potentials and the interface, this leads to a second
algebraic equation for  A1  and A2 , namely,
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−
ρ2 − ρ1( )gk
i(U1k −ω )

A1 = iρ1 U1k −ω( )A1 − iρ2 U2k −ω( )A2 (11.1.10)

We can then use the kinematic condition (11.1.7a)  to eliminate A2 from (11.1.10) and
obtain,

A1 ρ2 − ρ1( )gk − ρ1 U1k −ω( )2 − ρ2 U2k −ω( )2⎡
⎣

⎤
⎦ = 0 (11.1.11)

If A1 is not zero, i.e. if the disturbance is  not trivial, then the quantity in the square bracket

must vanish.  This yield a quadratic equation for ω in terms of k and the parameters of the

flow. After a little bit of algebra,

c ≡ ω
k
=
ρ1U1 + ρ2U2

ρ1 + ρ2
±

ρ2 − ρ1( )g
ρ2 + ρ1( )k −

ρ1ρ2( )
ρ2 + ρ1( )2

U1 −U2{ }2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

 (11.1.12)

With the frequency determined we can easily find the structure of the wave by using the
conditions (11.1.7 a, b). Of course, in this linear problem the over-all amplitude of the
disturbance is arbitrary. But what we  are interested in is the behavior in time and the x and z
structure of the disturbance.

To gain insight in to the result (11.1.12) it is helpful to consider some special cases.

a) U1 =U2 = 0,
ρ1
ρ2

→ 0 ,

The shear is set to zero and the upper layer has negligible density with respect to the
lower layer so the system should mimic the simple gravity wave problem of Chapter 10. In
fact (11.1.12) reduces to ;

ω = ± gk( )1/2 (11.1.13)

which is exactly the dispersion relation for a single layer in the short wave limit (short with
respect to the depth) . See (10.4.34).

b) U1 ≠ 0, U2 ≠ 0,
ρ1
ρ2

→ 0 ,

Again, the density of the upper layer is negligible with respect to the lower layer
so that even though there is now a shear across the interface there is no dynamical
interaction of the two layers and the frequency is,
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ω =U2k ± gk( )1/2 (11.1.14)

and the result is identical to the short wave (large depth ) limit of (10.5.7), i.e. the gravity
wave Doppler shifted by the mean current.

c) U1 = 0,U2 = 0, 0 < ρ1 < ρ2 (11.1.15)

Still in the absence of shear across the interface, there is now a jump in density less

than ρ2 and the frequency is,

ω = ±
ρ2 − ρ1
ρ2 + ρ1

⎛
⎝⎜

⎞
⎠⎟
gk

⎡

⎣
⎢

⎤

⎦
⎥

1/2

(11.1.16)

The form of the dispersion relation is exactly the same as for the single fluid model but, and
this is true especially if the two densities are nearly equal, the frequency of the wave is much
less than the single layer model since in that case ,

ρ2 − ρ1
ρ2 + ρ1

⎛
⎝⎜

⎞
⎠⎟
g ≡ g ' << g (11.1.17)

The frequency is reduced since gravity, g is replaced by g’ which is called the reduced
gravity. The free waves has relatively low frequencies with respect to the single layer model
and the resulting motion seems to the observer beautifully sinuous.  Returning to (11.1.7a),
the velocity potentials in the two layers have opposite signs and so the x-velocity in the two
layers will be equal and opposite and will be decaying away from the interface. Within a
wavelength the motion will be exponentially small.  If we considered  a system with a free,
upper surface as well as this interface, the motion due to these waves on the interface will
tend to be limited to regions near the interface and be nearly unobservable at the surface.
For that reason these waves are called internal waves.

If the two layers are shallow compared to a wavelength, the frequency of the internal
wave is,

ω = ±k g 'D( )1/2 (11.1.18)

In a famous experiment  (Figure 11.1.2) , Ekman was able to explain the immense difficulty
Norwegian, weakly powered , fishing boats had in making their way along narrow fjords in
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which the fresh surface water  and the saltier ocean water  combined to make a perfect
environment for internal wave generation. When a vessel was moving at or near the velocity

g 'D( )1/2 the propulsive energy of the ship was used to make internal waves instead of

propelling the boat.  It was locally called “dead water”. The locals knew they could solve
the problem by moving at a different velocity but the explanation had to wait for the theory
of internal gravity waves.

Figure 11.1.2 A reproduction of Ekman’s experiment towing a model boat in a two -
layer  fresh/salty water  system showing the production of internal gravity waves. The figure
is from  A. Defant, Physical Oceanography,  vol. II Pergamon Press, 1961.

Note that if ρ1 > ρ2  the frequency becomes imaginary.  Now, what does that mean?

If ρ1 > ρ2

ω = ±iσ , σ =
ρ1 − ρ2
ρ1 + ρ2

⎛
⎝⎜

⎞
⎠⎟
gk

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/2

(11.1.19)
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and so the time dependence of  the potential function becomes,

e− iω t = e±σ t (11.1.20)
The root with the plus sign will yield exponentially growing solutions in time. This reflects
the instability of the basic state that has heavy fluid on top of light fluid. A small disturbance
will immediately cause the interface to explode in a series of plumes of sinking heavy water

and rising lighter water. Note that the growth  rate, σ , is larger for larger k, i.e. for shorter

waves, leading to narrow regions of rising and sinking motion. This is the fundamental
region why cumulus  clouds are so narrow in the atmosphere. Of course, when the scale
gets very small both friction and thermal diffusion become important and the full theory of
thermal convection informs us that a certain density difference is required to overcome the
loss of energy experienced by the plumes before convection can occur but  a discussion of
this interesting subject is beyond the scope of this introductory course.
d) U1 ≠U2 , ρ1 = ρ2

In this example the is no density variation in the fluid but the velocities  of the mean
flow are different in each layer and so now,

σ =
U1 +U2

2
k ± i

U1 −U2

2
k (11.1.21)

The first term on the right hand side of (11.1.21) is just the Doppler shift of the frequency
by an amount that depends on the average of the velocities of the two streams. The second
term is more interesting. It always yields an imaginary contribution to the frequency and the
corresponding growth rate is larger the small the wavelength o f the disturbance.  This a
shear instability and  is also called a Helmholtz instability, named for the great German
physicist who first studied it.  Strong shears will give rise to these small scale instabilities
and they are the fundamental mechanism for small scale turbulence in the atmosphere and
the oceans.  The general argument for a continuous profile of velocity is as follows:

Consider a flow in the x direction, as shown in Figure 11.1.3. For definiteness let’s
suppose is rests between two horizontal plates and, for the moment, let’s ignore friction.

Figure 11.1.3 A velocity profile U(z) showing the mean velocity Um as the textured
line.

Um

D
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If the vertical extent of the region is D then the total momentum for the flow in the ex
direction is (assuming constant density)

M = ρ udz
0

D

∫ = ρDUm (11.1.22)

Since there is no friction to be considered this total momentum of the flow must be
conserved since there is no net force acting in the x direction to change it. Now consider the
total energy of the flow whose general velocity is,

u =Um + u ' (11.1.23)
The kinetic energy is,

1
2

ρu2dz
0

D

∫ =
1
2

ρ Um + u '( )2 dz
0

D

∫ =
1
2

ρ Um
2 + 2Umu '+ u '

2⎡⎣ ⎤⎦dz
0

D

∫

1
2
ρDUm

2 +
1
2
ρ u '2 dz
0

D

∫

(11.1.24)

so that the mean flow possesses the minimum energy consistent with the conservation of
momentum when its velocity profile coincides with the uniform flow Um. Any disturbance
that can smooth the velocity profile and reduce its departure from the mean will reduce the
energy in the mean flow and since total energy is conserved that energy is then available for
eddying, turbulent motion. For a given mean flow, the stronger the shear the more energy is
available to feed the instability and produce growth of the perturbation and subsequent
turbulence.

The mechanism for the original growth of the disturbance is as follows: Consider the
interface as it begins to deform as shown in Figure 11.1.4.

Figure 11.1.5 The schematic to discuss the pressure distribution on the interface

Let us move with the average of the velocities so the mean flow is equal and opposite
in the two layers.  The wave is not propagating in this frame.  As the interface is deformed

U

-U

a b
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the flow speeds up over the crest of the wave  (much like the flow around the cylinder
studied in section 10.3. Since ∂u / ∂t > 0  there that means the pressure gradient will be
negative at the crest since,

ut + uux = −
px
ρ

(11.1.25)

and ux is zero at the crest by symmetry.  That also implies that upstream of the crest, at the
point a in the figure, the pressure will be higher  than at point b. So the mean flow will be
doing work on the rippled interface delivering energy to the disturbance and this accounts
for its growth. You should check that the same argument works in the lower layer.

Just as for the case when the densities destabilized the system we must not take the
prediction of ever increasing growth rate with increasing k seriously. For large k  friction
will be important but more important yet is that as the scale of the wave shrinks the
idealization of the shear layer as being infinitely sharp becomes unrealistic. For continuous
shear profiles, even sharp ones there is usually a wavenumber beyond which disturbances
are stable.

e) U1 ≠U2 , ρ2 > ρ1

This is the general case and we are prepared for the nature of the result. The density
structure is stable and by itself will support stable internal waves due to the gravitational
restoring force that occurs when heavy fluid is lifted into lighter fluid. On the other  hand
the shear will act to destabilize the flow.  According to 11.1.12 instability, called Kelvin-
Helmholtz Instability  will occur whenever the radicand in that equation becomes  negative
or whenever the shear is strong enough i.e.,

ρ2 − ρ1( )g
ρ2 + ρ1( )k <

ρ1ρ2( )
ρ2 + ρ1( )2

U1 −U2{ }2 (11.1.26)

Note that the condition is scale dependent. According to (11.1.26) short enough waves will
always be unstable.  This is a flaw in the model as noted earlier. For very small wavelength
the detailed structure of the shear zone can’t be ignored and when the wavelength is of the
same order as the width of the shear zone the buoyancy forces can stabilize the shear layer.

These disturbances are often visible in the sky as rolling billow waves.  Some years
ago John Woods  (J. Fluid Mech. 1968 vol 32pp 791-800) photographed the phenomenon
on a shallow thermocline in the Mediterranean and his beautiful photos are shown in Figure
11.1.6.
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11.2 The Richardson number

We can generalize the condition (11.1.26) thanks to a beautiful theorem proved by
L.N. Howard , 1961, J. Fluid Mech. 10,509-512 which clarified an earlier but more complex
proof by John Miles (same issue of the journal).  But first let us consider  what the

qualitative condition, in general, might be. Over a region δz the amount of kinetic energy

available for  transformation into perturbations  (11.1.24) will  be of the order of

ρΔU 2 ≈ ρ dU
dz

δz⎛
⎝⎜

⎞
⎠⎟
2

(11.2.1)
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while the energy expended by raising a fluid element in a background stratification is the

buoyancy restoring force times the distance moved, Δρgδz . But since Δρ ≈
dρ
dz

δz , the

energy used to fight the stable stratification is,

Δρgδz = −
dρ
dz

g δz( )2 (11.2.2)

so that the ratio of the energy available to drive the instability compared to the energy used
up in fighting the stabilizing effect of buoyancy is the ratio of these two expressions.
Traditionally, the ratio is measured the other way around, i.e. the ratio of the energy
expended against gravity with respect tot he shear energy available to drive the instability is,

Ri =
−g dρ

dz

ρ dU
dz

⎛
⎝⎜

⎞
⎠⎟
2 (11.2.3)

This non dimensional parameter is called the Richardson number.  For a stratified fluid, as
we defined it in section 9.3 the buoyancy frequency N  is

N =
−g
ρ
dρ
dz

⎛
⎝⎜

⎞
⎠⎟

1/2

(11.2.4)

so that the Richardson number is 

(11.2.5)

For an atmospheric flow the buoyancy frequency is defined in terms of the potential

temperature, θ, so that

N =
g
θ
∂θ
∂z

⎛
⎝⎜

⎞
⎠⎟
1/2

(11.2.6)

And from simple physical reasoning we can expect that the condition for instability will be
that Ri must be less than some critical value for instability.  We shall show, following
Howard’s proof , that the critical value is exactly 0.25.

Consider a mean flow in the x direction U(z) and suppose we add a small
perturbation,  (u’,w’) to the velocity.  We will also assume for simplicity that  the density

Ri =
N 2

Uz
2
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field is composed of a mean density ρs (z) and a perturbation ρ’(x,z,t) and similarly for the

pressure.  Furthermore, as in the oceanic case the mean density is very nearly equal to its

average  ρ0 so that in the horizontal  acceleration terms the density can be replaced by this

constant value,  i.e. the Boussinesq  approximation.  Our linearized equations of motion,
ignoring friction and assuming the scale is small enough to ignore the effect of planetary
rotation is:,

ρ0 u 't+Uu 'x+ w 'Uz( ) = −
∂p '
∂x
,

ρo(w 't+Uw 'x ) = −
∂p '
∂z

− ρ 'g,

u 'x+ w 'z = 0,

ρ 't+Uρ 'x( ) + w ' ∂ρs

∂z
= 0.

(11.2.7 a, b, c, d)

Cross differentiating the first two equation in x and z to eliminate  the pressure yields an

equation for the y component of the vorticity,  η =
∂u '
∂z

−
∂w '
∂x

,

∂
∂t

+U ∂
∂x

⎡
⎣⎢

⎤
⎦⎥
η + w 'Uzz = g

ρ 'x
ρ0

(11.2.8)

We define the differential operator,

D =
∂
∂t

+U ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

(11.2.9)

so that (11.2.8) and (11.2.7 d) are ,

Dη + w 'Uzz = g
ρ 'x
ρs

,

Dρ '+ w 'ρsz = 0.
(11.2.10 a , b)
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and using (11.2.10 b ) to eliminate the density perturbation from (11.2.10 a) we obtain,

D2η + Dw 'Uzz =
g
ρ0

∂
∂x
Dρ ' = −

g
ρ0

∂
∂x
w 'ρsz = N

2 ∂w '
∂x

(11.2.11)

Since the motion is two dimensional and incompressible (but not irrotational) we can
introduce a stream function,

u = −ψ z , w =ψ x (11.2.12)

so that ,

η = −∇2ψ (11.2.13)

allowing us to write (11.2.11) entirely in terms of ψ ,

D2∇2ψ −UzzDψ + N 2 ∂
2ψ
∂x2

= 0 (11.2.14)

This equation is sometimes called the Taylor-Goldstein  equation and has been studied for
many particular velocity  profiles U(z) and in many case detailed calculations have indicated

that the Richardson number,  that is the ratio N 2 /Uz
2  had to be somewhere in the flow less

than 1/4 for instability to arise. Many people felt that there had to be some universal
criterion of that type but it was not until John Miles presented his proof that it was
successfully derived. Miles’ proof is rather complex and  accompanied with restrictions on
the analytic nature of N and U. Howard, in reviewing the paper found a much simpler  proof
which we present here.

We look for solutions of (11.2.14) in the form,

ψ = φeik[x−ct ] (11.2.15)
where it is the real part of the expression that is implied.  The boundary conditions at  the

horizontal boundaries, say at  z=0 and z=H are that w’ =0. That implies that φ is zero at

those boundaries. Using (11.2.15) in (11.2.14) yields,
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U − c( )2 φzz − k
2φ⎡⎣ ⎤⎦ + φ N 2 −Uzz (U − c)⎡⎣ ⎤⎦ = 0,

φ = 0, z = 0,H
(11.2.16 a, b)

Howard suggested introducing the function ,

G =
φ

U − c( )1/2
(11.2.17)

in terms of which,

φz = Gz U − c( )1/2 + 1
2
Uz

G
U − c( )1/2

,

φzz = Gzz U − c( )1/2 + GzUz

U − c( )1/2
+
1
2

UzzG
U − c( )1/2

−
1
4

Uz
2

U − c( )3/2
G

(11.2.18 a,b)

The governing equation for φ then becomes the following equation for G,

d
dz
(U − c) dG

dz
−
1
2
Uzz + k

2 (U − c)⎡
⎣⎢

⎤
⎦⎥
G + N 2 −

Uz
2

4
⎡

⎣
⎢

⎤

⎦
⎥

G
(U − c)

= 0  (11.2.19)

with boundary conditions Gz=0,       z=0 , H. We can think of (11.1.19) as an eigenvalue
problem for the phase speed c for a given k. If c has an imaginary  part greater than zero the
flow will be unstable.  Note that since (11.2.19) has real coefficients if G is a solution with
an eigenvalue c then G* (the complex conjugate) will  also be a solution with eigenvalue c*,
a result easily obtained by taking the complex conjugate of  (11.2.19). Thus a condition for
instability is simply that (11.2.19) have a solution with a complex c.

As in the usual eigenvalue problems  we obtain useful information about the
eigenvalue by multiplying the equation by  the complex conjugate of the eigenfunction and
integrating over the interval (0,H). We note that,

G * d
dz0

H

∫ U − c( ) dG
dz

⎡
⎣⎢

⎤
⎦⎥
dz =

0

H

G* U−c( )dG
dz

⎤
⎦⎥

−
dG
dz0

H

∫
2

U − c( )dz (11.2.20)

and the first term on the right hand side vanishes since G and its complex conjugate vanish
at the end points. The resulting integral of the equation is,

0
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− (U − c) dG
dz

2

+ k2 G 2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dz − 1

2
G 2Uzzdz

0

H

∫ +
G 2

(U − c)
N 2 −

1
4
Uz

2⎡
⎣⎢

⎤
⎦⎥
dz

0

H

∫
0

H

∫ = 0  (11.2.21)

In the factor of the last term on the left hand side we write,

G 2

(U − c)
=
G 2 (U − c*)
U − c 2

(11.2.22)

Our final step is to take the imaginary part of (11.2.21) using (11.2.22). Only the first and
third terms in (11.2.21) contribute and each in proportional to  ci the imaginary part  of c.
We obtain,

ci Gz
2 + k2 G 2( )dz + G 2

U − c 2
N 2 −

Uz
2

4
⎡

⎣
⎢

⎤

⎦
⎥dz

0

H

∫
0

H

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0 (11.2.23)

For instability we must have ci different from zero. This means the sum of the two integrals
in the square brackets of (11.2.23) must vanish.  However, the first integral is always

positive. Therefore if, in the second integral,  N 2 >
1
4
Uz

2  everywhere in the flow ci would

have to be zero and the flow would be stable to small perturbations.  Therefore, a necessary
condition  for instability is that, at least somewhere in the flow, the Richardson number must
be less than 1/4. In fact in many cases studied this necessary condition turns out to be
sufficient. Observations have also confirmed the pertinence of the criterion. Eriksen (J.G.R,
1978, vol. 83 2989-3009) examined long term measurements of breaking internal gravity
waves near Bermuda and presented  a scatter plot of the measured shear and buoyancy
frequency when wave breaking turbulence was observed. His scatter plot is shown below in
Figure 11.2.1. The straight line in the figure is the line Ri =1/4 and it is clear that the
Richardson number accompanying most of the observations of wave breaking were in the
range less than 1/4 (note the inversion of the axes) Similar observations in the atmosphere
have reached similar results, at least qualitatively.
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Figure 11.2.1 A scatter plot of showing the location of observations in Uz ,N space where
internal gravity wave  breaking is observed (from Eriksen , 1978)

11.3 Baroclinic Instability

Another type of instability also involving shear and buoyancy effects occurs on much
larger scales in both the atmosphere and the oceans for which the Earth’s rotation is crucial
for the existence of the instability. This is the so-called baroclinic instability. The essence of
the phenomenon can be qualitatively understood by considering the thermal wind and
hydrostatic equations. Again, for simplicity we well use the dynamics of an incompressible
fluid but the discussion for the atmosphere is nearly identical with potential temperature
taking the place of the density.

As we have seen, the thermal wind equations for an incompressible fluid yield, in the
zonal (i.e. x) direction, (see eqn. 9.2.25)
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ρ0 f
∂u
∂z

= g ∂ρ
∂y
,

N 2 = −
g
ρ0

∂ρ
∂z

(11.3.1 a, b)

so that the slope of the density surfaces in the y.z plane is,

∂z
∂y

⎞
⎠⎟ ρ

= −

∂ρ
∂y
∂ρ
∂z

=
f ∂u
∂z
N 2 (11.3.2)

as shown in Figure 11.3.1

Figure 11.3.1 The slope of the density surfaces in the presence of a zonal (x) velocity
increasing in z.

The slope is generally small, in the oceanic case in mid-latitudes it is not larger than 10-3 but
the slope is nevertheless dynamically significant. Consider the virtual (i.e. imagined)
displacement of the fluid elements shown in Figure 11.3.2.

y

z

α

ρ = constant

u(z)
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Figure 11.3.3 The position of three fluid elements in position before virtual displacements.
The direction of the density gradient is also shown.

Element A is below both the elements B and C. Element C is directly above element A
and in an ocean (or atmosphere) stably stratified it will be lighter than element A. If we
imagine A lifted slowly to the position of C, the element A would be heavier than C and
would tend to sink back down towards its original position due to a gravitational restoring
force. On the other hand, with the sloping density surfaces as shown in the figure, element
A is lighter than element B even though B is higher than element A i.e. at a geopotential
surface above it. Thus, if we imagine A moved to the position of B, it will arrive at B and be
lighter than the surrounding fluid and so the buoyancy force acting on it will actually tend to
encourage a further motion along that direction.

To calculated the force on the displaced element A at point B we need only calculate
the Archimedean buoyancy force per unit mass as,

Fg = g
δρ
ρ0

= g ρA − ρB

ρ0

≈
g
ρ0

ρA − ρA +
∂ρ
∂z

δz + ∂ρ
∂y

δy + ...⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

(11.3.3)

assuming the original positions of A and B are close enough for a Taylor Series expansion
to provide us with an estimate of the density difference, Thus the vertical buoyancy force per
unit mass is,

Fg = −
g
ρo

∂ρ
∂z

δz + ∂ρ
∂y

δy⎛
⎝⎜

⎞
⎠⎟

(11.3.4)

B C

A∇ρ
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Figure 11.3.4 The displacement of fluid element A at an angle φ with respect to the

horizontal where tanφ =
δz
δy

  and δs is the distance of the displacement.

The component of the gravitational force along the displacement path, measured positive in
the direction of the displacement  is

−Fg sinφ =
g
ρo

∂ρ
∂z

δz 1+

ρy
ρz

δz
δy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
sinφ

= −N 2δs 1−

∂z
∂y

⎛
⎝⎜

⎞
⎠⎟ ρ

tanφ

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

sin2φ

= −N 2δs 1− tanα
tanφ

⎡

⎣
⎢

⎤

⎦
⎥sin

2φ

(11.3.5)

Now consider different displacements. If A is moved to the position of C, δy is zero

and the force in the direction of the displacement is just −N 2δs  and we recognize this as
the restoring “spring constant” force of a mass spring oscillator whose natural frequency
is N. Indeed, this is why N is called the buoyancy frequency. The restoring force is positive
as long as N is real representing a stable stratification. If, on the other hand, the
displacement is made such that φ <α , i.e. the displacement lies within the wedge opened up
by the sloping density surfaces, then the force in the direction of the displacement will be
positive, not restoring at all, but instead will push the element further from its original
position. Thus we anticipate that fluid displacements that take place in the wedge between
the horizontal (i.e. the geopotential ) and the sloping density surface as shown in Figure

δy

      δz

Fg

A

φ

δs
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11.3.1, will release energy and that the result will be an instability of the original zonal flow.
The resulting instability is called baroclinic instability because the source of the instability is
the sloping density surfaces and the instability can be shown to manifest itself as a growing
wave which in the atmosphere can be identified as a synoptic scale weather disturbance and
in the ocean in the form of mid-ocean eddies.

We can estimate the characteristic scale of the disturbance as follows:
For instability,

δz
δy

=
w
v
< tanα =

fUz

N 2 (11. 3.6)

We need to make an estimate of the ratio of the vertical to horizontal velocity. If D is the
vertical scale of the motion and L  is the vertical scale of the motion then from geometrical
arguments and the constraint of the continuity equation we might imagine that a good
estimate of w/v would be D/L . However, we also noted in section 9.2 that if the motion was
in quasi-geostrophic balance the horizontal velocity would be non divergent to lowest order
and the continuity equation at that order will not produce a vertical velocity. On the synoptic
scale the vertical velocity is produced by the departures from geostrophy. We can use the
vorticity equation for the vertical component of vorticity to estimate w. To lowest order in
Rossby number,

dζ
dt

+ βv = fo
∂w
∂z

(11.3.7)

where ζ = vx − uy . If U is a characteristic horizontal velocity, the first term on the left hand

side is of order,

dζ
dt

= O(U
2

L2
) (11.3.8)

and if this is balanced by the stretching term on the right hand side which is order

fo w D our estimate for the ratio, w/v would be,

w
v
= O w

U
⎛
⎝⎜

⎞
⎠⎟
= O U 2

UfoL
D
L

⎛
⎝⎜

⎞
⎠⎟
= Ro

D
L

(11.3.9)

and using (11.3.6) we obtain,
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w
v

UD
f0L

2 <
foUz

N 2 ≈
f0U
N 2D

(11.3.10)

or for instability the requirement is that the horizontal scale of the perturbation satisfy,

L2 > N 2D2

fo
2 (11.3.11)

or that L exceed the Rossby deformation radius ND/f0. Detailed calculations show that the
maximum growth rate occurs when the scale of the perturbation is of the order of the
deformation radius but somewhat larger. This leads to scales of the order of 500 km for the
atmosphere and 50 km for the oceans and this is precisely the synoptic scale in both fluids.

We can make an educated guess about the growth rates as follows. As in section 11.1
the growth rate will be the imaginary part of the phase speed of the disturbance and we can
imagine that the phase speed will be of the order of the flow in which the disturbance is
embedded. If the disturbance went much faster than the flow it would not “see” the shear,
the fluid would appear to be essentially at rest and we would not expect instability in such a
case. We therefore anticipate that,

Im(c) ≈U ≈UzD (11.3.12)

In fact, there is a theorem, originally due to Howard (same reference as for the Richardson
number proof) that supports this heuristic reasoning. The frequency is the wavenumber
times the phase speed and the wavenumber is essentially the inverse of the characteristic
length of the disturbance and we have already noted that the length will be of the order of
the deformation radius. We therefore anticipate a growth rate,

σ =
ci
L
≈

UzD
ND / fo

=
fo
N
Uz (11.3.13)

also confirmed by detailed calculations (see GFD chapter 7).


