
Chapter  6

Thermodynamics and the Equations of Motion

6.1 The first law of thermodynamics for a fluid and the equation of state.

We noted in chapter 4 that the full formulation of the equations of motion required
additional information to deal with the state variables  density and pressure and that we were
one equation short of matching unknowns and equations.  In both meteorology and
oceanography the variation of  density and hence buoyancy is critical in many phenomenon
such cyclogenesis and the thermohaline circulation, to name only two.  To close the system
we will  have to include  the thermodynamics pertinent to the fluid motion.  In this course
we will examine a swift review of those basic facts from thermodynamics we will need to
complete our dynamical formulation.

In actuality,  thermodynamics  is a misnomer.  Classical thermodynamics deals with
equilibrium states in which there are no variations of the material in space or time,  hardly
the situation of interest to us. However, we assume that we can subdivide the fluid into
regions small enough  to allow the continuum field approximation but large enough, and
changing slowly enough so that locally thermodynamic equilibrium is established allowing
a reasonable definition of thermodynamic state variables  like pressure,  density and
pressure.  We have already noted that for some quantities, like the pressure for molecules
with more than translational degrees of freedom,  the departures from thermodynamic
equilibrium have to be considered. Generally, such considerations  are of minor importance
in the fluid mechanics of interest to us.

If the fluid is in thermodynamic equilibrium any thermodynamic variable for a pure
substance,  like pure water, can be written in terms of any two other thermodynamic
variables✿, i.e.

p = p(ρ,T ) (6.1.1)

                                                
✿ For sea water, the  presence of salt renders the equation of state very complex.  There are
tomes written on the subject and we will slide over  this issue entirely in this course.
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where the functional relationship in depends on the substance. Note that, as discussed
before, (6.1.11) does not necessarily yield a pressure that is the average normal force on a
fluid element.  The classic example of and equation of state is the perfect gas law;

p = ρRT (6.1.2)
which is appropriate for dry air. The constant R is the  gas constant and is a property of the
material that must be specified. For air  (from Batchelor)

R = 2.870x103cm2 / sec2 degC (6.1.3)

One of the central results  of thermodynamics is the specification of another thermodynamic

state variable e(ρ,T) which is the internal energy per unit mass and is, in fact, defined by a

statement of the first law of thermodynamics.

Consider a fluid volume, V,  of fixed mass (Figure 6.1.1)

Figure 6.1.1 A fixed mass of fluid, of volume V subject to body force F, a surface flux of
heat (per unit surface area) out of the volume, K, and the surface force per unit area due to
the surface stress tensor.

The first law of thermodynamics states that the rate of change of the total energy of
the fixed mass of fluid in V, i.e. the rate of change of the sum of the kinetic energy and
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internal energy is equal to the rate of work done on the fluid mass plus the rate at which heat
added to the fluid mass.  That is,
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Let’s discuss each term :
(a) The rate of change of internal energy.
(b) The rate of change of kinetic energy.
(c) The rate at which the body force does work. This is the scalar product of the body

force with the fluid velocity.
(d) The rate at which the surface force does work. This is the scalar product of the

surface stress with the velocity  at the surface (then integrated over the surface).
(e)  The rate at which heat per unit mass is added to the fluid. Here Q is the

thermodynamic equivalent of  the body force, i.e. the heat added per unit mass.

(f)  

K  is the heat flux vector at the surface, i.e. the rate of heat flow per unit surface area
out of the volume.

The terms (a) and (b) require little discussion. They are the internal and kinetic energies
rates of change for the fixed mass enclosed in V. Note that term (b) is:

d
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∫ (6.1.5)

The principal point to make here is that (6.1.4) defines the internal  energy as the term
needed to balance the energy budget. What thermodynamic theory shows is that e is a state
variable defined by pressure and temperature, for example, and independent of  the process
that has led to the state described by those variables.  Similarly,  term (c) is the rate at which
the body force does work. The work is the force multiplied by the distance moved in the
direction of the force. The work per  unit time is the force multiplied by the velocity in the
direction of the force and then, of course, integrated over the mass of the body.  Term (d) is
the surface force at some element of surface enclosing V and is multiplied by the velocity at
that point on the surface and then integrated over the surface. Using the divergence theorem,
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Term (e) represents the rate of heat addition by heat sources that are proportional to
the volume of the fluid, for example,  the release of latent heat in the atmosphere or
geothermal heating in the ocean or penetrative solar radiation in the ocean and atmosphere.
Finally the flux of heat out of the system in term (f) can also be written in terms of a volume
integral,
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Now that all terms in the budget are written a volume integrals we can group them is a
useful way as,
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The first term on the left hand side has an integrand which is (nearly) the momentum
equation if Fi contains all the body forces including the centrifugal force. It lacks only the
Coriolis acceleration. However,  since each term is dotted with the velocity one could easily
add the Coriolis acceleration to the bracket without changing the result. Then it is clear that
the whole first term adds to zero and is, in fact just a statement of the budget of kinetic
energy

ρ dui
2 / 2
dt

= ρuiFi + ui
∂σ ij

∂x j
(6.1.9)

The remaining volume integral must then vanish and using, as before, the fact that the
chosen volume is arbitrary means its integrand must vanish or,

ρ de
dt

= σ ij
∂ui
∂x j

+ ρQ −
∂K j

∂x j
(6.1.10)

as the governing equation for the internal energy alone. Since the stress tensor is symmetric,



Chapter  6 5

σ ij
∂ui
∂x j

= σ ji

∂uj

∂xi
= σ ij

∂uj

∂xi

= σ ij
1
2

∂ui
∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
= σ ijeij

(6.1.11)

The first step in (6.1.11) is just a relabeled  form with i and j interchanged.  The second step
uses the symmetry of the stress tensor and the last line rewrites the result in terms of the
inner product of the stress tensor and the rate of strain tensor. Since, (3.7.15)

σ ij = − pδ ij + 2µeij + λekkδ ij (6.1.12)

or with the relation , λ = η − 2 3µ  we have

σ ij = − pδ ij + 2µ(eij − ekkδ ij ) +ηekkδ ij (6.1.13)

where the pressure is the thermodynamic  pressure of the equation of state and η is the

coefficient relating to the deviation of that pressure from the average normal stress on a fluid
element.  The scalar
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 can be shown to be always positive (it’s is easiest to do this in a

coordinate system where the rate of strain tensor is diagonalized.   So this term always
represents an increase of internal energy provided by the viscous dissipation of mechanical

energy. Traditionally, this term is defined as the dissipation function, Φ , i.e. where,
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ρ
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(6.1.15)

In much the same way that we approached the relation between the stress tensor and the
velocity gradients, we assume that the heat flux vector depends  linearly on the local value of
the temperature gradient,  or, in the general case
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Ki = ℜij
∂T
∂x j

(6.1.16)

Again assuming that the medium is isotropic in terms of the relation between temperature
gradient and heat flux, the tensor ℜij needs to be a second order isotropic tensor. The only

such tensor is the kronecker delta  so

ℜij = −kδ ij ⇒ Ki = −k ∂T
∂xi
,

(6.1.17)

The minus sign in (6.1.17) expresses our knowledge that heat flows from hot to cold, i.e.
down the temperature gradient, i.e.

 

K = −k∇T (6.1.18)

where k is the coefficient of heat conduction.  For dry air at 200 C, k= 2.54 103 grams /(cm
sec3degC)

Putting these results together yields,

 

ρ de
dt

= − p∇i
u

reversiblework
 + ρΦ +η(∇i

u)2
irreversiblework  

+ ρQ +∇i(k∇T ) (6.1.19)

The pressure work term involves the product of the pressure and the rate of volume change;
a convergence of velocity is a compression of the fluid element and so leads to an increase
of internal energy but an expansion of the volume (a velocity divergence)  can produce a
compensating decrease of internal energy. On the other hand, the viscous terms represent an
irreversible transformation of mechanical to internal energy. It is useful to separate the
effects of the reversible from the irreversible work by considering the entropy.  The entropy

per unit mass is a state variable we shall refer to as s and satisfies for any variation δ s

Tδs = δe + pδ 1
ρ( ) (6.1.20)

so that,  for variations with time for a fluid element,
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u

(6.1.21)

Substituting  for de/dt into (6.1.19) leads to an equation for the entropy in terms of the
heating and the irreversible work,

 
ρT ds

dt
= ρΦ +η(∇i

u)2 +∇i(k∇T ) (6.1.22)

Since s is a thermodynamic variable we can write, s = s(p,T )  or s = s(ρ,T ) , so that,
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(6.1.23 a, b)

Similarly, we can write (6.1.20) in two forms,
Tds = de + pd(1 / ρ)

= d(e + p / ρ) − 1
ρ
dp

(6.1.24 a, b)

and we define another state variable, the enthalpy , h, as

h = e + p
ρ (6.1.25)

It follows from (6.1.23) and (6.1.24) that  we can define,
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              (6.1.26 a, b)

so that our dynamical equation for the entropy (6.1.22) becomes
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(6.1.27)

We are almost there. Our goal is to derive a governing equation for a variable like the
temperature that we can use with the state equation (6.1.1)  to close the formulation of the
fluid equations of motion with the same number of equations as variables. We have to take

one more intermediate step to identify the partial derivative  ∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

 in terms of more

familiar concepts. To do this we introduce yet another thermodynamic state variable

Ψ = h − Ts =Ψ (p,T ) (6.1.28)

Therefore,

∂Ψ
∂p

⎞
⎠⎟ T

=
∂h
∂p

⎞
⎠⎟ T

− T ∂s
∂p

⎞
⎠⎟ T

(6.1.29)

but from (6.1.24) and (6.1.25) for arbitrary variations,

Tδs /δ p − δh /δ p = −1 / ρ (6.1.30)
we have,
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In the same way,
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Keep in mind in using (6.1.24) that p is being kept constant in the derivatives in (6.1.31)

Taking  the cross derivatives of (6.1.30) and (6.1.31)
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It is the term on the right hand side of (6.1.32) that we need for (6.1.27) and it is
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(6.1.33)

where υ is the specific volume  i.e. 1 / ρ . The increase, at constant pressure of the specific

volume is  the coefficient of thermal expansion of the material, α  is defined

α =
1
υ

∂υ
∂T

⎛
⎝⎜

⎞
⎠⎟ p

=   coefficient of thermal expansion (6.1.34)

so that,

∂s
∂p

⎛
⎝⎜

⎞
⎠⎟ T

= −αυ = −α / ρ

So that finally our governing thermodynamic equation is (6.1.27) rewritten :
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while our other equations are the state equation (6.1.1)

p = p(ρ,T ) (6.1.35 b)

and the mass conservation equation,  (2.1.11)

 

dρ
dt

+ ρ∇i
u = 0 (6.1.35 c)

and the momentum equation ( 4.1.13),

 
ρ d
u
dt

+ ρ2

Ω × u = ρg − ∇p + µ∇2 u + (λ + µ)∇(∇i

u) + (∇λ)(∇i
u) + îieij

∂µ
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.(6.1.35 d)

Our unknowns are  
 
p,ρ,T , u

6
   while we have 3 momentum equations, the thermodynamic

equation, the equation of state, and the mass conservation equation, i.e. 6 equations for 6
unknowns, assuming that we can specify,  in terms of these variables the thermodynamic
functions α,µ,η,cp ,k  which we suppose is possible. (If we were to think of the

coefficients η,κ,µ as turbulent mixing coefficients it is less clear that the system can be

closed in terms of the variables p,ρ,T and  
u )

At this point we have derived a complete set of governing equations and the
formulation of our dynamical system is formally complete. But, and this is a big but, our
work is just beginning. Even if we specify the nature of the fluid; air, water, syrup or galactic
gas the equations we have derived are capable of describing the motion whether it deals with
acoustic waves, spiral arms in hurricanes,  weather waves in the atmosphere or the
meandering Gulf Stream in the ocean.  This very richness in the basic equations is an
impediment to solving any one of those examples since for some phenomenon of interest
we have included more physics than we need, for example the compressibility of water is
not needed to discuss the waves in your bathtub.

If the equations were simpler,  especially if they were linear, it might be possible to
nevertheless accept this unnecessary richness but  both the momentum, thermodynamic and
mass conservation equations are nonlinear because of   the advective derivative so a frontal
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attack on the full equations , even with the most powerful modern computers is a hopeless
approach. This is both the challenge and the attraction of fluid mechanics.  Mathematics
must be allied with physical intuition to make  progress and in the remainder of the course
we will approach this in a variety of ways.  Before doing so we will discuss two
specializations of  the thermodynamics of special interest  to us as meteorologists and
oceanographers.

6.2 The perfect gas
The state equation (6.1.1) is appropriate for a gas like air for which R is 0.294

joule/gm deg C (1 joule =107 gm cm2/sec2). It follows that,

dp
p

=
dT
T

+
dρ
ρ

(6.2.1)

so that for processes which take place at constant pressure,

−
1
ρ

∂ρ
∂T

⎛
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⎞
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=
1
T

≡ α (6.2.2)

Thus, for a perfect gas, (6.1.35) becomes,
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or,
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(6.2.4 a, b, c)
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We define the potential temperature:

θ = T po
p

⎛
⎝⎜

⎞
⎠⎟

R /cp

(6.2.5)

where p0 is an arbitrary constant.  In atmospheric applications it is usually chosen to be a

nominal surface pressure (1000 mb). Thus for  a process at constant θ (whose pertinence

we shall shortly see) a decrease in pressure,  for example  the elevation of the fluid to higher
altitude,  corresponds to a reduction in  T. Our thermodynamic equation can then be written
as,

 

cpT
θ

dθ
dt

=Φ +
η
ρ

∇i
u( )2 +Q +

1
ρ
∇i(k∇T ) ≡ Η , (6.2.6)

where H  is the collection of the non-adiabatic contributions to the increase of entropy. If
the motion of the gas is isentropic, i.e. if we can ignore thermal effects that add heat to the
fluid element either by frictional dissipation, thermal conduction or internal heat sources,
then the potential vorticity is a conserved quantity following the fluid motion since in
general,

dθ
dt

=
θ
cpT

Η (6.2.7)

We can use (6.2.5) to express the gas law (6.1.1) in terms of the potential temperature. We
use the thermodynamic relation

R = cp − cv (6.2.8)

which follows from the fact that for a perfect gas the specific heats are constants so that,

e = cvT , h = cpT = e + p
ρ
= T (cv + R) (6.2.9)

Then,

p1/γ

ρ
=

Rθ
po

R /cp
(6.2.10)
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where

γ = cp cv
 = ratio of specific heats (6.2.11)

Thus for any process for which the potential temperature is constant,

1
γ p

dp
dt

−
1
ρ
dρ
dt

=
1
θ
dθ
dt

= 0 (6.2.12)

This relation is very important for adiabatic processes such as acoustic waves which are
pressure signals that oscillate so rapidly that their dynamics is essentially isentropic✦.

6.3 A liquid.

A liquid, like water is characterized by a large specific heat and a small expansion
coefficient. In such a case the pressure term on the left hand side of (6.1.35a) is normally
negligible.  We can estimate its size with respect to the term involving the rate of change of

temperature as, (using δp for the pressure variation and δT for the temperature variation):

αT
ρ
dp
dt

cp
dT
dt

= O Tαδ p
ρcpδT

⎛

⎝⎜
⎞

⎠⎟
(6.3.1)

For water at room temperature α= 2.1 10-4 1/gr degC, cp is about 4.2 107 cm2/sec2 deg C.

For water ρ is very near 1 gr/cm3. To estimate δp we suppose there is a rough balance

between the horizontal pressure gradient and the Coriolis acceleration. That is pretty
sensible for large scale flows. That gives  a δ p = O(ρ fUL) if L  is the characteristic
horizontal scale suitable for estimating derivatives and if U is a characteristic velocity. If the
temperature is about 20O C (nearly 300O on the absolute Kelvin scale), with U =10cm/sec,
and L =1,000 km,  and if the overall temperature variation is  about 10 degrees C, the ratio in
(6.3.1 ) is of the order of 10-5,  e.g. very small indeed.  Our thermodynamic equation then
becomes, upon ignoring the pressure term,
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cp
dT
dt

= Η (6.3.2)

For simple liquids like pure water the equation of state can be approximated as✿ ,

ρ = ρ(T ) (6.3.3)

Since α ≡ −1
ρ
dρ
dT

 it follows that (6.3.2) can be written,

dρ
dt

= −
αρ
cp

Η (liquid) (6.3.4)

However, it is also generally true for a liquid that, as we discussed in Section 2.1 that for

variations of the density such that δρ
ρ

<< 1we can approximate the continuity of  mass with

the statement that volume must be conserved,  i.e. that,

 ∇i
u = 0 . (6.3.5)

It is important to keep in mind that (6.3.5) does not mean that continuity equation then

implies that dρ
dt

= 0 . Rather, that in the comparison of terms in that  equation, the  rate of

change of density is a negligible contributor to the mass budget. On the other hand in the

energy equation  (6.3.4) one can only have dρ
dt

= 0  if the non adiabatic term H  is

negligible. Thus, being able to demand dρ
dt

= 0  requires an  energy consideration not a

mass balance consideration.  The two equations (6.3.4) and (6.3.5) are completely
consistent.  Indeed,  it is an interesting calculation to estimate for the Ekman layer solution
we have  found, for example, what temperature rise we would anticipate in a fluid like water
due to the frictional dissipation occurring within  the Ekman layer.  That estimate is left as
an exercise for the student.

                                                                                                                                                
✸ This is on of the few scientific errors made by Newton who believed that acoustic waves were isothermal
rather than isentropic. It makes a big difference in the prediction of the speed of sound.
✿ This ignores the effect of pressure on the density which is not accurate for many oceanic applications for
which there are large excursions vertically.


