
Chapter 3

The Stress Tensor for a Fluid and the Navier Stokes Equations

3.1 Putting the stress tensor in diagonal form

A key step in formulating the equations of motion for a fluid requires specifying the
stress tensor in terms of the properties of the flow, in particular the velocity field, so that the
theory becomes  “closed”, that is, that the number of variables is reduced to the number of
governing equations.  We are going to take up this issue with some care  because the same
issue arises often, even now, when it is necessary to represent the action of small scale
motions and their momentum fluxes in terms of large scale motions. In the formulation we
have to be clear about what symmetries  of the system need to be respected (for example, the
symmetry of the stress tensor itself). So the approach we take here has application beyond
the formulation of the basic equations.

In the example of the last chapter we saw that a stress tensor that had only a diagonal
component in one coordinate frame would have, in general, off diagonal components in
another frame. More generally,  since the stress tensor is symmetric , we can always find a
coordinate frame in which the stresses are purely normal , i.e. in which the entries in the
stress tensor lie along the diagonal.

Consider the stress tensor σ ij which is generally not diagonal and let us find the

transformation matrix aij  which renders it diagonal in a  new frame.

σ 'ij = aikajlσ kl = σ ( j )δ ij =
σ1 0 0
0 σ 2 0
0 0 σ 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(3.1.1)

The (j) in the parenthesis indicates that the index is not summed over. To find the
transformation matrix that satisfies (3.1.1) we multiply both sides of the equation by aim and
carry out the indicated summation



Chapter 3 2

 

aimaik
δmk
ajlσ kl = σ ( j )δ ijaim = σ ( j )ajm ,

⇒σmlajl = σ ( j )ajm

(3.1.2 a, b)

For each  j this is an equations for the three components of the vector ajm, m=1,2,3.
To be sure we understand the form of the problem, let’s write out (3.1.2 b) entirely.

(σ11 − σ ( j ) )aj1 +σ12aj2 +σ13aj3 = 0,

σ 21aj1 + (σ 22 − σ ( j ) )aj2 +σ 23aj3 = 0,

σ 31aj1 +σ 32aj2 + (σ 33 − σ ( j ) )aj3 = 0.

(3.1.3 a, b, c)

and recall that σ12 = σ 21 , etc. This yields a simple eigenvalue  problem for the σ ( j ) . There

will be three eigenvalues  corresponding to the three diagonal elements of the new stress
tensor. For each eigenvalue there will be an eigenvector  ajm , m = 1,2,3 . Since the stress

tensor is symmetric the eigenvectors  corresponding to different eigenvalues are orthogonal.
Thus, for σ ( j ) ≠ σ (i ) ,

aimajm = δ ij (3.1.4)

and the proof is an elementary one from matrix theory.

σmlajl = σ ( j )ajm ,
σmlail = σ (i )aim ,

⇒σmlajlaim = σ ( j )ajmaim ,
σmlaila jm = σ (i )aimajm ,

(3.1.5 a, b, c, d)

Subtracting the two final equations yields

σmlajlaim − σmlaila jm = σ ( j ) − σ (i )( )ajmaim , (3.1.6)
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In  the second term on the right hand side we interchange the dummy summation indices,
letting   m l  to obtain

σmlajlaim − σ lmaimajl = σ ( j ) − σ (i )( )ajmaim , (3.1.7)

but since the stress tensor is symmetric, σml = σ lm  and the left hand side of (3.1.7) is zero
and (3.1.4) follows directly.

So we can always find a frame in which the stress tensor is diagonal,

σ ij =
σ1 0 0
0 σ 2 0
0 0 σ 3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(3.1.8)

3.2 The static pressure (hydrostatic pressure)

Our definition of a fluid is that if it is subject to forces, or stresses that will not lead to
a change of volume it must deform and so not remain at rest. It follows that in a fluid at rest
the stress tensor must have only diagonal  terms. Furthermore, the stress tensor would  have
to be diagonal in any coordinate frame because, clearly, the fluid doesn’t know which frame
we choose to use to describe the stress tensor. As we saw in the last chapter the only second
order stress tensor that is diagonal in all  frames is one in which each diagonal element is
the same. We define that value as the  static pressure and in that case the stress tensor is
just,

σ ij = − pδ ij (3.2.1)

This also follows from the easily proven fact that δij is the only isotropic second order

tensor,  that  is , the only tensor whose elements are the same in all coordinate frames.
Sometimes  p is called the hydrostatic pressure but  that misleadingly suggests that it has
something to do with a gravitational force balance. Rather it is merely the pressure in a fluid
at rest and the fact that the stress tensor is isotropic implies that the normal stress in any
orientation is always –p and the tangential stress is always zero. This fact is often called
Pascal’s Law. Blaise Pascal (1623-1662) formulated his ideas in a discussion of the
hydraulic force multiplier  involving  pistons of various diameters linked together
hydraulically.   The isotropy of the pressure was not a result that was accepted immediately
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by his contemporaries.★ For a fluid at rest the pressure is also the thermodynamic pressure,
that is, a state variable determined, say , by the temperature and the density. When the fluid
is moving the pressure, defined as the average normal force on a fluid element, need not be
the thermodynamic pressure and we will have to consider that in more detail below. The
average normal stress is

σ jj / 3 =
1
3
(σ11 +σ 22 +σ 33) (3.2.2)

this is (mistakenly ) taken to be –p in several otherwise fine texts but it is strictly true only
for simple mono atomic gases. In general there is a discrepancy between the average normal
stress and the pressure. It is true however, and is left as an exercise for the student, that  the
trace of the stress tensor σ jj  is invariant, i.e. the same in all coordinate systems.

We can always split the stress tensor into two parts and write it

σ ij = − pδ ij + τ ij (3.2.3)

where τ ij is called the deviatoric  stress. It is simply defined as the  difference between the

pressure and the total stress tensor and our next task is to relate it to the fluid motion. Note
that if we define the pressure as the average normal stress then the trace of the deviatoric
stress tensor, τ ij  is zero. If the pressure is so defined we can then not guarantee it is equal

to the thermodynamic pressure and we will have to represent the difference of the two of
them also in terms of the fluid motion. If, on the other hand, we define the pressure  as the
thermodynamic pressure then the trace of τ ij is not zero. Of course, since it is a matter of

our choice which we do, the final equations will be the same.

3.3 The analysis of fluid motion at a point.
We are going to try to relate the stress tensor to the fluid motion, i.e. to some property

of that motion. In almost all cases of interest to us, that relationship will be a local one (this
is an important property true for simple fluids). So we first need to analyze the nature of the
flow in the vicinity of an arbitrary point and discover what aspects of that motion will
determine the stress. Again, it is unfortunate that many texts go wrong here and so let us be
especially careful in our development.

                                                
★ Rouse, H. and S. Ince. 1957 History of Hydraulics.  Dover Publications , New York
pp269
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Consider the motion near the point xi. Within a small neighborhood of that point,  and
using the continuous nature of fluid motion, we can represent the velocity in terms of a
Taylor Series. For small neighborhoods of the point, only the first term is important,  hence,

 
ui (x j + δx j )  ui (x j ) +

∂ui
∂x j

δx j (3.3.1)

Since both the velocity and the displacement δxi are vectors it follows that ∂ui ∂x j
is a

second order tensor. We are going to discuss this tensor in some detail because we will
show how the stress tensor depends on this deformation tensor. Thus, if we write the
velocity as ui (x j + δx j ) = ui (x j ) + δui (x j )  we have

δui (x j ) =
∂ui
∂x j

δx j (3.3.2)

We can rewrite the velocity deviation

δui = δui
(s ) + δui

(a),

δui
(s ) =

1
2

∂ui
∂x j

+
∂uj

∂xi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δx j , δui

(a) =
1
2

∂ui
∂x j

−
∂uj

∂xi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
δx j

(3.3.4 a, b, c)

So that one part of the velocity deviation is represented by a symmetric tensor

eij =
1
2

∂ui
∂x j

+
∂uj

∂xi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(3.3.5 a)

called the rate of strain tensor  (we will see why shortly) and an antisymmetric part,

ξij =
1
2

∂ui
∂x j

−
∂uj

∂xi

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(3.3.6 b)

and it is important to note that the antisymmetric part has only three nonzero entries.  Thus,
the total velocity deviation is
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δui = e ij + ξij( )δx j (3.3.7)

We will discuss each contribution separately.  It may come as no surprise that the
(symmetric) stress tensor is proportional to the symmetric eij but that is something we have
to demonstrate.

3.4 The vorticity

The three components of the antisymmetric tensor , ξij  are

ξ21 =
1
2

∂u2
∂x1

−
∂u1
∂x2

⎛
⎝⎜

⎞
⎠⎟
= −ξ12

ξ32 =
1
2

∂u3
∂x2

−
∂u2
∂x3

⎛
⎝⎜

⎞
⎠⎟
= −ξ23

ξ13 =
1
2

∂u1
∂x3

−
∂u3
∂x1

⎛
⎝⎜

⎞
⎠⎟
= −ξ31

(3.4.1)

and these are the three components of the vector

 

1
2

ω =

1
2
∇ × u (3.4.2)

where

 


ω = ∇ × u ≡ curlu,

ω i = εijk
∂uk
∂x j

(3.4. 3)

are all representations  of the  vorticity . The relationship between  ξij  and the vorticity is

straight forward, for example,

ξ32 =ω1 / 2 =
1
2

∂u3
∂x2

−
∂u2
∂x1

⎛
⎝⎜

⎞
⎠⎟

(3.4.4)

with the other components following cyclically,  In general,
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ξij = −
1
2
εijkω k (3.4.5)

which follows from

ξij = −
1
2
εijkω k = −

1
2
εijkεklm

∂um
∂xl

= −
1
2
εkijεklm

∂um
∂xl

= −
1
2
δ ilδ jm − δ imδ lj( ) ∂um∂xl

= −
1
2

∂uj

∂xi
−
∂ui
∂x j

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(3.4.6)

The velocity deviation proportional to the antisymmetric  tensor  is then,

δui
(a) = ξijδx j = −

1
2
εijkω kδx j =

1
2
εikjω kδx j (3.4.7)

which may be more recognizable written in vector form,

 
δ u (a) = 1

2

ω ×δ x (3.4.8)

Figure 3.4.1 The relation between the vorticity, the position vector  (relative to an arbitrary
origin) and its contribution to the relative displacement  velocity which is perpendicular  to
the first two.

Thus,  δ
u (a) represents the displacement  velocity due to a  pure rotation  at a rotation rate

which is half the local value of the vorticity. We recognize that it is a pure rotation because

ω

δx

δu(a)
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the associated velocity vector is always perpendicular to the displacement  δ
x  and so that

there is no increase in the length of  δ
x , only a change in direction.  The vorticity

 

ω = ∇ × u  is twice the rotation rate.  The vorticity , as we shall see, occupies a central place
in the dynamics of atmospheric and oceanic phenomena and we see that it is one of the
fundamental portions of the general decomposition of  fluid motion.

3.5 The rate of strain tensor

Now let’s consider  the contribution of the symmetric tensor eij = 1
2

∂ui
∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
. It

is called the  rate of strain tensor.  To see why,  consider two differential line element

vectors,  δ
x and  δ

x ' at the same point separated by an angle θ.

Figure 3.5.1 Two displacement vectors with an angle θ between them.

Let their respective lengths be δs  and δs '  respectively. Now, following the fluid, each
displacement vector will change depending on the difference between the position of the
origin and the position of the tip of the vector. Thus,

d
dt
δxi = δui (3.5.1)

where δui , by definition, is that velocity difference. Now let’s consider the inner product ,

δxiδx 'i = δsδs 'cosθ (3.5.2)

The rate of change of this product  is

θ δx

δx’
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d
dt
δxiδx 'i = cosθ δs d

dt
δs '+ δs ' d

dt
δs⎡

⎣⎢
⎤
⎦⎥
− sinθ  δsδs ' dθ

dt

= δxiδu 'i+ δx 'i δui

= δxi
∂ui
∂x j

δx ' j+ δx 'i
∂ui
∂x j

δx j

(3.5.3)

Note that the deformation tensor ∂ui ∂x j
acts on both line elements since they share the

same origin. Interchanging the i  and j  dummy indices  the last term in the above equation
yields,

d
dt
δxiδx 'i = cosθ δs d

dt
δs '+ δs ' d

dt
δs⎡

⎣⎢
⎤
⎦⎥
− sinθ  δsδs ' dθ

dt

= δxiδx ' j
∂ui
∂x j

+
∂uj

∂xi

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 2eijδxiδx ' j

(3.5.4)

dividing both sides of (3.5.4) by δsδs '  yields,

cosθ 1
δs '

d
dt
δs '+ 1

δs
d
dt
δs⎡

⎣⎢
⎤
⎦⎥
− sinθ  dθ

dt

= 2eij (δxi /δs)(δx ' j /δs ')
(3.5.5)

Note that the vectors δxi /δs and δx ' j /δs  are unit vectors. We can now use (3.5.5) to

interpret the components of the tensor eij .

Example 1.
Let  δ

x 'and δ x coincide so that θ  =0 and let  δ
x lie along the x1 axis. Then
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cosθ = 1,sinθ = 0 and δs = δx1 . We then have from (3.5.5)

1
δx1

d
dt
δx1 = e11 (3.5.6)

so that the diagonal elements of the rate of strain tensor represent the rate of stretching of a
fluid element along the corresponding axis..

Figure 3.5.2 The rate of strain along the axes due  to the diagonal  components of eij. In the
case shown, e2 2 is negative.

Example 2.

Now choose  δ
x  and δ x ' to lie along the x1 and the x2 axes respectively. So now,

cosθ = 0,sinθ = 1 . We then have from (3.5.5)

−
dθ
dt

= 2e12 (3.5.7)

Figure 3.5. 3 The distortion of the original right angle by the off diagonal element  of
the rate of strain tensor.

This has a simple interpretation, since a little geometry shows that

e1 1

e2 2

x1

x2

δx

δx’ θ

θ1

θ2
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−
dθ
dt

= ( d
dt
θ1) + (

d
dt
θ2 ) = (

∂u1
∂x2
) + (∂u2

∂x1
) (3.5.7)

since, for example,

tanθ2 ≈θ2 =
δx2

δx1

,  and d
dt
θ2 =

1
δx1

∂u2

∂x1

δx1

The off diagonal element of the rate of strain tensor therefore represent the rate of shearing
strain of a fluid element.

3.6 Principal strain axes and the decomposition of the motion.

As in the case of the stress tensor,  the rate of strain tensor can also be diagonalized,
so that we can always find a coordinate frame in which ,

eij = e( j )δ ij (3.6.1)

In this frame the velocity associated with the symmetric part of the deformation tensor
represents a pure strain along the principal axes so that lines parallel to the coordinate axes
are strained but not rotated

δui
(s ) = e(i )δxi (3.6.2)

Figure 3.6.1 A fluid element  reacting to the application of pure strain along its principal
axes. Note that the diagonal line element AA’ rotates as well as stretches.

Although lines parallel to the principal axes are only extended or contracted, other lines such
as the line AA’ in the figure are also rotated as the element is sheared. This is analogous to
the production of shear stresses by pure normal stresses along an element’s diagonal that
we saw in the last chapter.  There is, of course, no rotation of lines parallel to the principal
axes. Note also that since,

A’

A

A

A’
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ejj =

∂uj

∂x j
= ∇i
u (3.6.3)

which is the rate of volume  expansion,  we can write the rate of strain tensor, in the principal
axes system as, a pure strain without volume change plus a pure volume change, i.e.

 
eij = e(i )δ ij −

1
3
∇i
u⎡

⎣⎢
⎤
⎦⎥
δ ij

⎛
⎝⎜

⎞
⎠⎟
+∇i
uδ ij / 3 (3.6.4)

The first bracket in (3.6.4) then represents a pure strain without any change in volume and
the last term represents a pure volume change.

Putting the results of the last three sections  together we see that we can represent the
motion of a fluid element in terms of three basic parts: 1) a pure translation, 2) a pure strain
along the principal axes and 3) a rotation  (associated with the vorticity). This fact was
demonstrated by Helmholtz (1853)

Figure 3.6.2 The motion of each fluid element can be decomposed into a pure translation,
strain, and rotation.

Example:

Consider a simple shear flow for which the velocity is

ui = x2
∂u1
∂x2

,0,0
⎛
⎝⎜

⎞
⎠⎟

(3.6.5)

Figure 3.6.3 A linear shear flow
                                                
 This is noted in a wonderful, if somewhat old fashioned book, well worth some study, Arnold
Sommerfeld’s , Mechanics of Deformable Bodies,  Lectures on Theoretical Physics Vol II.  1950 Academic
Press. pp396.

translation pure strain rotation

x1

x2
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For this example the strain tensor has only two non zero components,

e12 = e21 =
1
2
∂u1
∂x2

, (3.6.6)

so the equations to determine  the principal  axes and strain rates are,

0 − e( j ) e12
e12 0 − e( j )

⎡

⎣
⎢

⎤

⎦
⎥
aj1
aj2
⎡

⎣
⎢

⎤

⎦
⎥ = 0 (3.6.7)

so that the condition for the vanishing of the determinant o f the 2X2 matrix  in (3.6.7)
yields,

e( j ) = ±e12 = ±
1
2
∂u1
∂x2

,

e(1) = 1
2
∂u1
∂x2

, e(2) = −
1
2
∂u1
∂x2

,

(3.6.8 a,b,c)

For e(1)  we have,

−aj1 + aj2 = 0⇒ aj1 = 1 / 2, aj2 = 1 / 2 (3.6.7 a, b, c)

after normalizing the vectors to have unit length. For e(2) ,

aj1 = −1 / 2, aj2 = 1 / 2 (3.6.8 a,b)

The components of the vorticity are

ω i = (0,0,−
∂u1
∂x2
) (3.6.9)

The rate of strain along the principal  axes, the associated velocities, and the velocity
associated with the vorticity(rotation) are shown in Figure 3.6.4 and demonstrate the
decomposition of the relative velocity into a strain and a rotation.
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Figure 3.6.4 The directions of the principal axes (dashed)  and the rates of strain for the
shear flow example. The short vectors represent the velocity due to the strain and rotation
and the full vector is their sum.

3.7 The relation between stress and rate of strain.

We need to find a relation between the nine independent components of the stress
tensor σ ij  and the fluid velocity and it is here for the first time that we use the particular

properties of a fluid rather than a general continuum. As we saw, in a fluid at rest σ ij  is

isotropic and depends on the single scalar,  p,  the fluid pressure, which is determined

thermodynamically from some state equation of the form p = p ρ,T( ) ( although for

seawater with the presence of salt this relation is much more complex).
In a moving fluid we have to make certain assumptions that seem to be valid based on

our experience with the type of fluids, air and water that we are most concerned with.  We
formulate these assumptions as follows:

1) The stress tensor is a function only of ∂ui ∂x j
 , the deformation tensor, and various

thermodynamic state functions like the temperature.  That is, we assume the
deviatoric stress τ ij depends only on  the spatial distribution of velocity near the

element under consideration.  The stress-rate of strain relation is local. Note that we
are not assuming that the stress depends only on the rate of strain tensor at this
point and we are including the entire deformation tensor, including the
antisymmetric part  (the vorticity).

e(1)

e(2)

δu(s)

δu(a)

δu
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2) We assume the fluid is homogeneous in the sense that the relationship  between
stress and rate of strain is the same everywhere. There  is a spatial variation in the
stress σ ij  only insofar as there is a spatial variation of the deformation tensor

∂ui
∂x j

. This distinguishes a fluid from a solid for which the stress tensor depends

on the strain itself.
3) We assume that the fluid is isotropic, i.e. that there is no preferred direction in space

insofar as the relation between stress and rate of strain is concerned. Obviously,
given a particular  rate of strain, as in the example of the preceding section, there will
be a special direction for the stress but only because of the geometry of the strain
field not because of the structure of the fluid. This is true for air or water but is not
true for certain fluids with long chain molecules  in their structures for which rates
of strain along the direction of the chains give stresses different than in other
directions. It is possible to argue that this isotropy eliminates the vorticity as a
contributor .

These assumptions define what is called a Stokesian  Fluid (after Stokes, 1845). It is not
difficult to show, that  as a consequence of the above assumptions, that the principal axes of
the stress and rate of strain must coincide even if the relation ship between stress and rate of
strain is nonlinear. That will be left as an exercise for you.

We now make one further assumption. We assume that the relation between stress
and rate of strain is linear. This defines a Newtonian Fluid  and both air and water
experimentally satisfy  this assumption.  This implies that we are searching for the general
relation between the deviatoric stress and the deformation tensor of the form

τ ij = Tijkl
∂uk
∂xl

(3.7.1)

where the proportionality tensor (note it is fourth order) satisfies the conditions of
homogeneity and isotropy.  In particular the last condition, isotropy, implies that the
relationship (3.7.1) and thus the proportionality tensor Tijkl is independent of  orientation in

space. If there is a spatial structure to the stress it must reflect the spatial structure of the
deformation. So, in general, we need to find the most general fourth order tensor that is
isotropic, i.e. the same in all rotated coordinate frames. For a second order tensor the most
general  isotropic tensor is the Kronecker delta δ ij , which as we have seen is invariant

under coordinate transformation. The issue we face here is to find its fourth order



Chapter 3 16

equivalent. There are several  constructive proofs that yield the result we are looking for and
the simplest, I think,  is as follows.

Consider the scalar constructed by taking the inner product  of Tijkl  with the four

vectors Ai ,Bi ,Ci, , and Di ,

S = TijklAiBjCkDl (3.7.2)

This scalar depends linearly on the magnitude of each of the vectors and their relative
orientations in space. However, since Tijkl  is an isotropic tensor the absolute directions  of

four vectors should not affect the scalar S but only the orientations of the vectors with one
another.  Hence,  S should depend only on the cosine of the angles between those vectors, or
equivalently,  only on the dot products of the vectors. Thus,

 S = TijklAiBjCkDl = α(

Ai

B)(

Ci

D) + β(


Ai

C)(

Bi

D) + γ (


Ai

D)(

Ci

B) (3.7.3)

Other products like  (

A ×

B)i(

C ×

D)  add nothing new. Rewriting (3.7.3)  in index notation,

TijklAiBjCkDl = αAiBiCjDj + βAiCiBjDj + γ AiDiCjDj ,

= AiBjCkDl αδ ijδkl + βδ ikδ jl + γδ ilδ jk{ }
(3.7.4)

Since the four vectors are arbitrary the condition that (3.7.4 ) is always satisfied yields the
form for Tijkl , namely,

Tijkl = αδ ijδkl + βδ ikδ jl + γδ ilδ jk (3.7.5)

This is the most general fourth order isotropic tensor. We can see immediately that since
each Kronecker delta is invariant  under a linear orthogonal coordinate transformation  the
tensor Tijkl  must also be invariant.  However, we have an additional constraint to impose

since we know that the stress tensor is symmetric and so Tijkl =Tjikl under an interchange of

the i  and j suffixes. Applying this to (3.7.5) it follows that,
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βδ ikδ jl + γδ ilδ jk = βδ jkδ il + γδ jlδ ik .

⇒ (β − γ )δ ikδ jl = (β − γ )δ ilδ jk

(3.7.6)

For this to be satisfied for each value of i,j,k andl we must have,
γ = β (3.7.7)

so that

Tijkl = αδ ijδkl + β δ ikδ jl + δ ilδ jk( ) (3.7.8)

from which it follows that the stress tensor has the form,

σ ij = − pδ ij + {αδ ijδkl + β δ ikδ jl + δ ilδ jk( )} ∂uk∂xl

= − pδ ij +αδ ij
∂uk
∂xk

+ β ∂ui
∂x j

+
∂uj

∂x j

⎛

⎝⎜
⎞

⎠⎟

(3.7.9)

The traditional notation uses µ for β and λ for α, so that finally we have,

                                                                                                 (3.7.10)

Note that the stress tensor depends only on the pressure, and the rate of strain tensor and
not on the antisymmetric vorticity terms. The final term on the right hand side of (3.7.10) is
proportional to the divergence of the velocity field, i.e. on the rate of volume change.
Generally speaking, in the dynamics of interest to us, the deviatoric stress becomes
important when the shear is large,  usually near boundaries, and  typically dominates the
relatively small divergence term.  Of course, for a nondivergent fluid, the term is zero.

As we have written it, the stress tensor depends on three scalars,  p ,µ and λ. The real

question we have to confront is what we mean by the pressure. There are two obvious
definitions and they need not be the same. From a mechanical point  of view we can define
the pressure as the average normal stress. That leads to a definition of p that we will
momentarily label with an overbar i.e.

σ ij = − pδ ij + 2µeij + λekkδ ij
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p = p = −
1
3
σ ii = −

1
3
σ11 +σ 22 +σ 33( ) (3.7.11)

as it is in a fluid at rest. Note that even with the fluid in motion this definition of the

pressure is independent (invariant) of the coordinate system since the trace of σij is an

invariant scalar.  If the pressure is defined this way it implies that the trace of the deviatoric
stress must be zero, or,

τ ii = 2µeii + λekkδ ii = ejj 2µ + 3λ[ ] = 0 (3.7.12)

and this relates the two coefficients λ and µ.

λ = −
2
3
µ (3.7.13)

and this relation is often used in texts, for example  Kundu’s excellent book. However, if
the pressure is defined by (3.7.11) we can no longer  insist that the pressure be the same as
the equilibrium thermodynamic pressure. How can this be possible? It is probably useful to
remember  that the equilibrium thermodynamic pressure, for example in a gas,  is related to
the translational  kinetic energy of the molecules when the gas, in equilibrium,   has reached
an equipartition of energy between all its degrees of freedom. For a monoatomic gas whose
only degree of freedom is that of the translation velocity of its atoms the pressure will
always be the equilibrium thermodynamic pressure. For more complex molecules
possessing, say , rotational or vibrational  degrees of freedom, it is possible that under
abrupt changes of volume there will be a lag between the equilibration of  the rotational or
vibrational degrees of freedom and the translational.  The mechanical pressure is related
only to the translational motion of the molecules but there may be a lag before the pressure
comes into equilibrium with other  thermodynamic variables  that require the equipartition of
energy to occur. So in general,  if we want to write our equations (as we will have to) in a
way to link the mechanics and the thermodynamics we will want to introduce the
equilibrium thermodynamic pressure pe. That will differ from the mechanically defined
pressure by an amount depending on the deformation tensor ∂ui / ∂x j . In an isotropic

medium that difference in the two scalar definition of pressure must be related by a second
order isotropic tensor, or,
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p = p = pe −η

∂ui
∂x j

δ ij = pe −η
∂uj

∂x j
= pe −η∇i

u (3.7.14)

so that the stress tensor becomes

σ ij = − peδ ij + 2µeij + (η − 2 3µ)ekkδ ij (3.7.15)

On the other hand, we could just define the pressure as the thermodynamic pressure in
(3.7.10) in which case,

σ ij = − peδ ij + 2µeij + λekkδ ij (3.7.16)

It is clear that in either approach we get the same set of equations and the relation between

the two formulations is just that λ = η − 2 3µ . For a monoatomic gas , we can take η =0,

and the thermodynamic pressure is the average normal pressure. If the fluid is
incompressible (or nearly so) these extra terms are inconsequential.

This form of the stress tensor was derived in the first part of the nineteenth
century, largely by the French school of fluid dynamicists. The first to have done so was
Navier  in 1822. He was a military engineer and was more noted for his construction of
bridges but he had a rather complex imaginary model of the interaction of fluid molecules
that he was nevertheless able to use to derive  (3.7.10) without the divergence term. Other
derivations followed by Cauchy (1828), St. Venant (1843), Poisson (1829) and finally, in a
form more closely resembling what we have done by Stokes (1845). Partly for that reason,
partly for Anglo-French parity, the resulting fluid momentum equations with the full stress
tensor are called the Navier-Stokes equations.

3.8 The coefficient of viscosity µ.

Let us return to the example of the simple shear flow of section 3.6. The stress
associated with the shear has only one independent component τ12 . From (3.7.10) this is
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τ12 = µ ∂u1
∂x2

(3.8.1)

and is illustrated in Figure 3.8.1

Figure 3.8.1 The shear flow and two horizontal planes  on which the stress is calculated.

Keeping in mind the orientation of the normal to each of the two surfaces in the figure. The
stress acts in the positive sense on the upper face of the lower plane (to drag it to the right)
and that plane exerts a stress on the fluid above it that would tend to drag the fluid leftward
with the same force. The stress on the fluid at the upper plane is to the left and the stress on
the plane by the fluid is to the right.  The coefficient that relates the velocity shear to the

stress is called the viscosity coefficient µ, The stress, force per unit area, has the dimensions

of m L
T 2 / L

2 = m LT 2  where  m is a mass unit (e.g. grams) and L is a length unit and T is a

unit of time.  This must have the same dimensions as µ ∂u
∂z

⎡
⎣⎢

⎤
⎦⎥
= µ 1

T
. Since the dimensions

of m are just ρL3 , it follows that the dimensions of µ = ρ L
2

T
. The coefficient  is a

thermodynamic state variable and depends rather nontrivially on temperature and in
continuum theories it must be specified. If we were to look on the microscopic scale we
would see that the basis for the existence of the shear stress is in the random motion of fluid
molecules or atoms. This is most clearly seen when the fluid is a gas. Let’s consider  the
same shear flow as in Figure 3.8.1 but let’s add the random motion of gas molecules that
have zero ensemble average; the average is what has defined our continuum velocity u. The
random thermal motion of the  atoms will allow a flux of atoms across a plane like the two
of the above figure and shown again in Figure3.8.2.

τ12
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Figure 3.8.2 A fluid plane, perpendicular to the x2 axis for the linear shear flow.

As the gas molecules from below cross the plane shown in the figure they carry a flux of
momentum in the 1 direction equal to mu '1u '2 where u '1  is the excess or deficit of the
velocity with respect to the macroscopic mean. Since the molecule is coming from below the
plane where the macroscopic velocity is smaller and if it retains its velocity in the x1

direction (at least until it collides with another molecule) it will arrive across the plane with a
deficit of velocity as shown. On the other hand gas molecules coming from above, with a
u '2  which is negative will arrive with a positive value of u '1 . The flux of momentum across

the plane perpendicular  to the x2 axis is therefore always negative. If we can write for u '1

 
u '1 = −

∂u1
∂x2

(3.8.2)

where   is the distance an atom goes between collisions, then the net momentum flux will be

 
momentum flux per unit volume= − 2 nm

V
u '2 

∂u1

∂x2

(3.8.2)

where n is the number of atoms crossing the plane. The ratio nm /V  is just the fluid density

and the product 
 
u '2  =

d
dt
2 / 2 . The stress is just equal to this rate of momentum flux so

that the coefficient of viscosity is:

 
µ = ρ d

2

dt
(3.8.3)

u'2
u'1 u’1

u'2
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where the term 
 

d2

dt
is just the rate of random dispersion of fluid atoms due to their thermal

motion. Note the dimensions of µ are just what we expected. For dilute gases it is possible

to use kinetic theory to actually carry out a real calculation of the viscosity although it is not
a trivial calculation.  For more complicated gases or liquids it is very difficult if not
impossible so we will usually consider the coefficient of viscosity as given.

It is useful to define a slightly different measure of viscosity, called the kinematic

viscosity ν,

ν =
µ
ρ

(3.8.4)

and whose dimensions are L2/T.
The following figures give the viscosity coefficient and its kinematic cousin for

dry air and pure water  over a range of temperature. The values are taken from Batchelor’s
book,  Fluid Dynamics.

Figure 3.8.3 The coefficient of viscosity µ in the first panel,  the kinematic viscosity ν in the

second panel and the density of air as a function of temperature.  All are in cgs units and the
temperature is in degrees Centigrade
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As the temperature increases the thermal motion of the air molecules increase and so the
exchange of momentum by the random  molecular motion increases.  Note that both the

viscosity µ and the kinematic viscosity ν increase with temperature.

Figure 3.8.4 The viscosity (first panel) µ and the kinematic viscosity ν for water  as a

function of temperature.

In contrast with air, the viscosity of water decreases with temperature. The viscosity of water
is related to the intermolecular forces  between water molecules and increasing the
temperature weakens   those forces and reduces the viscosity. Note that although the

viscosity , µ, of water exceeds that of air the kinematic  viscosity of water is lower.

3.9 The Navier Stokes Equations
Now that we have an explicit form for the stress tensor we can write the momentum

equation (2.7.6) in a form suitable for a fluid. With (3.7.16) we have

ρ dui
dt

= ρFi −
∂p
∂xi

+
∂
∂x j

2µeij⎡⎣ ⎤⎦ +
∂
∂xi

λ ∂uk
∂xk

⎛
⎝⎜

⎞
⎠⎟

= ρFi −
∂p
∂xi

+
∂
∂x j

µ ∂ui
∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

∂
∂xi

λ ∂uk
∂xk

⎛
⎝⎜

⎞
⎠⎟

(3.9.1)



Chapter 3 24

In (3.9.1) and from now on,  we have dropped the subscript “e” on the pressure and we are
assuming it is the thermodynamic pressure and not the average normal stress.
It is difficult write (3.9.1) completely in vector  form but with some little looseness of
notation,

 
ρ d
u
dt

= ρ

F − ∇p + µ∇2 u + (λ + µ)∇(∇i

u) + (∇λ)(∇i
u) + îieij

∂µ
∂x j

(3.9.2)

If the fluid is incompressible and if the temperature variations in the fluid are small enough
so that the viscosity  can be approximated as a constant the Navier  Stokes equations
become,

 
ρ d
u
dt

= −∇p + ρ

F + µ∇2 u (3.9.3)

If the viscosity coefficient is small enough to tempt us to ignore friction entirely we end up
with the Euler Equations,

 
ρ d
u
dt

= −∇p + ρ

F (3.9.4)

Note that in this case the order of the differential equation is reduced since the Laplacian in
(3.9.3) eliminated. This is a singular  perturbation of the dynamics and we will find that
making what appears to be a sensible approximation to the dynamics opens up an
interesting physical problem.

Let’s count, again,  unknowns and equations. The unknowns are  
u,ρ and p (5)

while the equations are the three momentum equations plus the mass conservation equation
(4) and so we are still one equation short unless there is a relationship, say, that relates the
density to the pressure field, or in the simplest case, if the density is a constant. In all other
cases we will  have  to consider coupling the dynamical equations we have derived to
continuum statements of  the laws of thermodynamics.

The total time derivate contains the term  (
ui∇)u and this form is not easily expressed

in other coordinate (e.g. spherical) systems. An alternative  expression comes from the
identity, easily proven using the alternating tensor εijk ,

 
ui∇u =


ω × u +∇ u 2 / 2 (3.9.5)
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where  

ω = ∇ × u  is the vorticity. The Navier Stokes equation , e.g. (3.9.3) becomes

 
ρ ∂u

∂t
+

ω × u⎛

⎝⎜
⎞
⎠⎟
= − ∇p + ρ∇ u 2 / 2( ) + µ∇2 u  (3.9.6)

Note that  

ω  , the vorticity,  is twice the local component of the fluid’s rotation.

Once again , it is important to emphasize the nonlinearity of the Navier Stokes equations
due to the advection of momentum by the velocity field. As an aside, note that if the fluid is
incompressible, so that the divergence of the velocity vanishes you can show that,

 µ∇
2 u = −µ∇ ×


ω (3.9.7)

so that even though the stress is proportional to the strain and not the vorticity the frictional
force in the equations, for an incompressible fluid, can be written in terms of the vorticity.

3.10 Turbulent stresses
Before we continue with our formulation of the basic laws of fluid mechanics note that

if ρ is constant the system is closed. Let’s think about that case for the moment which will

allow us to examine some interesting features of the equations of motion. Further, since we
are decoupling the dynamics from the thermodynamics lets keep the viscosity coefficients
constant and if the fluid is incompressible our system of equations is,

∂uj

∂x j
= 0,

∂ui
∂t

+ uj
∂ui
∂x j

= −
1
ρ
∂p
∂xi

+ Fi + ν∇
2ui .

(3.10.1 a, b)

The incompressibility condition ((3.10.1a) allows us to write the momentum equation,

∂ui
∂t

+
∂uiu j

∂x j
= −

1
ρ
∂p
∂xi

+ Fi + ν∇
2ui . (3.10.2)

We are often confronted with the situation in which the motion field is very complex,
full of eddies and essentially random macroscopic  motions at length scales and time scales
much shorter than the scales of the motion we are interested in. For example, if we are
interested in the atmospheric general circulation, with scales of  thousands of kilometers
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how do we take into account the turbulent motions on scales that are much smaller, like the
wispy eddies we see evidence of in the effluent of smoke stacks? We might try to average
the velocity in space or in time so that the velocity we consider in our equations of motion is
that averaged velocity. Unfortunately, the equation for the averaged velocity contains effects
of the small scale motion we had hoped to eliminate by the averaging process because of the
nonlinearity of the dynamics.

Suppose we write the full velocity field as an average or mean flow plus a deviation.

 
ui = ui

mean flow
 + u 'i

turbulent fluctuation
 (3.10.3)

The average that defines the mean flow could be a spatial average over scales large
compared to the scale of the fluctuating velocity,  or it could be a time average over periods
large compared to the time scale of the fluctuations, or it could be an ensemble average over
a large set of realizations of the same flow configuration differing only in the fluctuations.
Defining the averaging  process is not trivial but we imagine it is possible to do and for
consistency it implies that the average  of the fluctuation is zero, i.e.

u 'i = 0 (3.10.4)
If we apply this averaging operation to the momentum equation the average of a linear term
will contain only the average quantity, e.g.

∂ui
∂t

=
∂ui
∂t

(3.10.5)

On the other hand when we take the average of uiu j

uiu j = ui + u 'i( )(uj + u ' j )

= uiu j + uiu ' j+ u 'i u j + u 'i u ' j
(3.10.6)

Since  the average of the average just reproduces the average and the average of the primed
variables is zero,

uiu j = uiu j + uiu ' j + u 'iu j + u 'i u ' j

= uiu j + u 'i u ' j

(3.10.7)

00
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The last term in (3.10.7) is not zero even though each fluctuating term has zero average in

the same way that cos(ωt) has a zero time average but (cos(ωt))2 has a non zero time

average.  Therefore, the equations for the time mean flow contain terms that have their origin
in the small scale motions we may not be in a position to describe in a deterministic fashion
since (3.10.2), when averaged yields,

∂uj

∂x j
= 0

∂ui
∂t

+ uj
∂ui
∂x j

= −
1
ρ
∂p
∂xi

+ ν ∂2ui
∂x j∂x j

−
∂u 'i u ' j
∂x j

(3.10.8)

The last term on the right hand side has the form of the divergence of a stress tensor (per
unit mass), called the Reynolds Stress,

τ ij / ρ = −u 'i u ' j (3.10. 9)

and affects the flow in much the same way as we argued that gas molecules did in giving
rise to our viscous stresses in the fluid. Except  that here, instead of microscopic momentum
being carried by the random motion of molecules around the macroscopic mean, we are
talking  about a macroscopic   random motion around a large scale mean flow. The analogy
has sometimes been made that the presence of viscosity, in a gas, can be thought to be
analogous to two trains passing each other at different velocities. On the fast train the
passengers throw oranges through the windows of the slow train; the passengers on the
slow train simultaneously  throw  oranges through the windows of the fast train.  Each set
of oranges  initially possesses the speed along  the track of the train it left. The fast moving
oranges slightly speed up the slow train and the slow moving oranges slow down the fast
train. This is microscopic friction in the fluid. In the turbulent case, whole macroscopic
eddies of fluid play the role of the momentum transfer agents. In this case the passengers
have ripped up the seats and are flinging them through the trains and the expectation is that
the effect will be greater.

In order to close the system (3.10.8) one is tempted to continue the analogy and
try to express the turbulent stresses in terms of the averaged fields,
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−u 'i u ' j = Aijkl
∂uk
∂xl

(3.10.10)

except that now the space is hardly isotropic dynamically, (e.g. turbulent transfers across a
density gradient or across a mean jet could be different than in other directions), and it is not
at all clear that the momentum of great chunks of fluid will be preserved while the chunks
move from place to place in analogy with molecules—there is no mean free path. Still, in
desperation,  one often supposes that,

−u 'i u ' j = K
∂ui
∂x j

+
∂uj

∂xi

⎛

⎝⎜
⎞

⎠⎟
(3.10.11)

leading to an equation for the averaged flow,

∂ui
∂t

+ uj
∂ui
∂x j

= −
1
ρ
∂p
∂xi

+ ν ∂2ui
∂x j∂x j

+ K ∂2ui
∂x j∂x j

(3.10.11)

where usually K >> ν.

It is important  to understand the very shaky dynamical foundation o f (3.10.11). In
some cases,  for example the role of weather-scale eddies on the atmospheric general
circulation,  it is found that the turbulent field can actually sharpen rather than smooth out
the velocity gradients. Even when the representation (3.10.11) is qualitatively acceptable
there is no deductive way to determine the size of K. Nevertheless, the use of (3.10.11) or
some more sophisticated form of the same representation is quite common in both
oceanography and meteorology in the absence of a better alternative.


