Future US Seafood Supply:

Economic Considerations

Hauke Kite-Powell

Marine Policy Center

Woods Hole Oceanographic Institution

Morss Colloquium 25 May 2011

Outline

- About that seafood trade deficit...
- US Aquaculture...today and tomorrow?
- Future paths and implications:
 - Prices and availability of seafood
 - Employment
 - Ecological footprints
 - Human health & seafood safety
- Conclusions

US Balance of Trade

Sources: US Census Bureau, Gehlhar et al. (2007)

Seafood Balance of Trade

Sources: US Census Bureau, Gehlhar et al. (2007)

Does it matter?

Sources: US Census Bureau, Bureau of Economic Analysis

US Seafood Supply, 2010

```
80% + of US consumption is imported 50% + of that is farmed
```

Net imports:

- Shrimp (550,000 t -- \$4.2 billion)
- SW fish (225,000 t -- \$2.0 billion; >50% salmon)
- FW fish (253,000 t -- \$1.4 billion)

Exports:

- Groundfish (\$312 million)
- Flatfish (\$154 million)
- Canned salmon (\$132 million)

Value of domestic commercial landings and import since 1995

Source: National Marine Fisheries Service, Fisheries

Statistics Division

US Aquaculture Industry, 2010

- About \$1 billion production
 - Half of this is food finfish (catfish, salmon, ...)
 - \$200 million mollusks
 - \$50 million crustaceans
- Fresh water production in decline since 2003
- Low growth except in shellfish

Future US Seafood Demand

US population:

2010: 310 million

2050: 440 million

16 lbs/person/year seafood

Source: Shamshak and Anderson (2008)

Per capita US consumption

(borrowed from Frank Asche)

We'll need another 1 million tons/year by 2050... at least.

World Demand is Growing Faster

Source: S. Vannuccini, FAO

Future Seafood Supply

- Significant additional supply will not come from US wild capture fisheries
- Either we will import more...or we will farm more. (It will be farmed either way.)
- Implications for...
 - Price and availability
 - US employment
 - Ecological footprints
 - Human health and food safety

Price and Availability

- Aquaculture production lowers prices
- Greater control over availability
- Expanded markets

US Salmon Landings & Imports

Primary Production Efficiency

Increasing resource constraints, especially on terrestrial food production

Source: Pelletier and Tyedmers (2007)

Carbon Footprint: Production

Increasing concerns of carbon emissions from all economic activity, including food production

Source: Pelletier and Tyedmers (2007)

Carbon Footprint: Production

- Salmon aquaculture has a lower ecological footprint than beef/pork, roughly equivalent to poultry
- Salmon aquaculture has similar C intensity and more efficient PP utilization compared to capture fisheries
- Lower use of FM/FO reduces the ecological footprint

Carbon Footprint: Transportation

- Direct cost
 - \$0.10/lb frozen (sea)
 - \$0.75/lb fresh (air)
- C emissions
 - 2.5 million tons of seafood imports at 0.2 t CO_2e / ton = 500,000 t CO_2e
 - @ \$100/t CO₂e (Nordhaus 2007) = \$50 million

This figure shows the globally averaged carbon price of CO_2 under different strategies for the next century. Note the upward tilt of the strategies. Note these are per ton carbon; for prices per ton of CO_2 , divide by 3.67. Policies begin in the second period (2015 representing 2011-2020).

- Transport cost is 5-10% of import value (sea transport)
- C emissions cost from transport is less than 1% of import value, or 10 – 20% of CO₂e from production

Employment

- Direct aquaculture farm employment could be 1 job per \$100,000 production
- Indirect and induced employment: another
 2-3 jobs per \$100,000 production
- Additional jobs in processing, distribution, and retail – depends on species, markets (domestic vs. export)
- Potential for several 100,000, but...

Positive Ecological Externalities: Shellfish Aquaculture and Nutrient Loads

Economic value of nutrient level reductions from oyster culture can be same order of mangnitude as harvest value (Kite-Powell et al. 2006)

Eating Seafood is Good for You and for the Planet...but...

Acute health costs estimated \$660 million/year (Ralston et al. in press)

Net chronic health effects are positive but not well quantified

Imported seafood?

Health Effects?

- Questions about feed content, additives (drugs), water quality in imported (farmed) seafood
- Extensive investment in seafood quality control in the US, and some overseas (HACCP)
- Limited inspection of imports could change soon (GAO 2011)
- Costs reflected accurately in consumer prices?

Conclusions: Looking to 2030/40

- Aquaculture will supply most of global seafood (Asia, So. America,...)
- Per capita consumption of seafood will likely be higher
 - Health, wealth, ecology, prices
 - Global consumption & per capita rate growing faster than
 US US market becomes relatively less important
- Seafood prices likely to be lower relative to red meat, poultry
 - Increasing resource constraints, especially on terrestrial production
 - More room for efficiency gains in seafood

Conclusions: Role of US Aquaculture?

- It is feasible to increase US aquaculture production significantly (if we want to!)
- If we do...
 - Job creation [100,000] not a big deal for the nation but can be very important locally
 - Marginally lower US prices on some fresh seafood
 - Reduced seafood trade deficit mainly through more exports
 - Enhanced development of US aquaculture technology and infrastructure/support industry for global market

To get there...

- More streamlined process for permitting and access to marine sites
- Process/will/political backing for permitting agencies to make positive decisions on aquaculture permit applications
- New partnership between the public, government, industry, and NGOs for governance of aquaculture