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Abstract

Much can be learned by rattling a box of red and blue
marbles. However, the statistics of ocean currents
may be more complicated. On the other hand, maybe
the currents are simpler than the marbles.

Forward

This paper employs the abstract used fifteen years
ago. Only a third sentence is added.
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1. Guessing at ocean circulations: numerical modeling

Attempts to understand ocean circulation usually take into account the
forces that are applied to the ocean, whether from windstress,
thermohaline interaction or tidal potential. One seeks to identify cause-
and-effect relationships. As more realistic details of forcing are taken
into account, utilizing more realistic geometry with more complete
ocean physics, the search for cause-and-effect becomes more difficult,
turning toward large computer modeling. One attempts to discover the



cause of ocean circulations by solving Newton’s dynamics for an "ocean"
divided into as many "little masses” as one’s computer can manipulate.

However, using even the most powerful computers to attempt to
calculate the flow of the global ocean, the "little masses™ are actually
volumes of order 104 km3 each containing more than 104! molecules of
water. Even if we supposed that individual molecules could serve as the
particles to which F=ma might apply, we evidently await computers at
least 41 orders of magnitude more powerful than present machines
before we can carry out this program. Meanhwhile, what to do?

Simply: guess.

Guessing can occur on many levels. We can "guess” that on some scale
smaller than is available to optical microscopy, molecular chaos leads
to mixing of momentum, thermal energy, and ions of Na or Cl, for
example. We might then guess that the Navier-Stokes equations
describe some aggregate integration over Newton’s dynamics. Even here
though, we may be puzzled that Navier-Stokes are not symmetrical with
respect to time-reversal whereas Newton is. Very seriously,
oceanographers (and any other fluid dynamicisits) must bear in mind that
the Navier-Stokes equations (which we may take as a starting point) are
not derived from some law of physics; rather these equations are simply
a guess about how collections of large numbers of molecules can be
described. In any case, having disregarded Newton and moving a little up
in scale, we next discover that our computer can’t solve discretized
versions of Navier-Stokes either, at least not for any volume of water
larger than about 1 m3 (this estimate based upon length scales
associated with names like Kolmogorov and Batchelor). Evidently, more
guessing is required. So we begin guessing at "turbulence
parameterizations” such as may be applicable over scales smaller than
about 1 m. Our skill at these guesses appears to be so poor that we
leap instead to larger scales, say 1 km3. At this scale we have even
less reason to think we can guess worth beans, so we hasten to yet
larger scale, like 104 km3. Although there’s no apparent reason to
believe that guessing skill has got better, at least we’ve got to the
scale where our modeled ocean fits into a big enough computer. Then we
can shift attention to looking at the model output, leaving apart the
sordid business about all the poor guessing along the way.



In making up all the turbulence or subgridscale parameterizations which
are employed in numerical ocean models, we effectively make assertions
about processes that we don’t understand. We have to instruct the
computer to do something, so we "make something up”. Simply, we
assert prejudices about what we guess goes on at subgridscales.

2. Guessing without prejudice (or a little less prejudice maybe)

There are other ways of guessing. One way is expressed through
information theory. A key idea is to require that, if one has only
limited information about something and is then asked to guess about
further properties of that something, the ensuing guesses ought not
purport to represent more information than one had at the outset.
Claims to any further knowledge can only reflect prejudice on the part
of the claimer. In this article, we seek an "unprejudiced” basis for
guessing features of ocean circulation.

A formalism which seeks to clarify the basis for guessing only at the
level of available information was founded by Shannon. If we ask
"what’s new?" since Vol. 1, No. 1 of J. Corr. Ocean., it may be this: that
we see the theory of guessing (after Shannon) as a natural way to
develop quantitatively the statistical dynamical subjects discussed in
Vol. 1, No. 1. Indeed, that view is already clear in a paper by Rick
Salmon in a volume entitled "Topics in Ocean Physics”.

In brief schemata, the information-theoretic point of view can be posed
in terms of an ocean state vector, say . Components of & might be the
collection of dependent variables at all the grid points of some computer
model. Or the components of & might be all the quantum numbers to
describe all the particles in the ocean. Now we admit that it is
practically (even theoretically) impossible to observe @ (in reality)
completely, while our ability to predict the evolution of & is presumably
worse yet. Maybe it doesn’t even make sense to talk about & per se.
Instead consider some probability "density” p(®) for the occurence of
actual & within a small phase-space volume d® near . Then an entropy
function for this system is given by H = -[d®p($)In[p(®)]. The objective



is to apply whatever information one has (or thinks one has) about the
ocean as constraints on p(®) while determining p(®) by the condition of
maximizing H. That maximum entropy ("minimum information”, "least
biased” or "unprejudiced”) solution is then the fairest guess we can make
about . The application of this idea to physical systems, such as
classical statistical mechanics, has been developed over decades in
papers and books by Jaynes, Katz and others.

Regarding the large scale ocean circulation as an aggegate of many,
many interacting components, it is natural to expect a tendency toward
maximizing H. Concerned about the role of eddy advection in that
aggregate interaction, one may seek to impose constraints that p(®)
satisfy those properties which are conserved under eddy advection.
Thus, we imagine that & is quite free to evolve in any fantastically
complicated way only so long as that free evolution not violate overall
conservation of, say, total energy. In this way, the attitude is no more
complicated than if we imagine a lump of some material, initially warm
in one part and cold in another. We naturally guess that such a lump,
left in isolation, will come to uniform temperature throughout (although
actual integration of F=ma for all the particles in the lump might quite
tax one’s super-computing resource). A further analogy is to the box of
red and blue marbles, initially segregated red on left, blue on right.
Upon rattling, we guess the distribution of red-blue will become on
average more uniform despite our not having followed the exact
trajectory of each marble. In what follows, we ask how well this
simple analogy carries over to guessing states of ocean circulation
without attempting detailed calculations of F=ma throughout the ocean.

3. Application to ocean dynamics

Various applications of this statistical mechanical / information
theoretical approach to ocean dynamics have been developed by Rick
Salmon, myself and others. Although these have appeared in sundry
ordinary journals (with apology here to Correct Readers), the approach
has been regarded as esoteric and unrelated to more serious problems in
mainstream oceanography. Is it actually the case that the ocean
currents of statistical dynamics are unrealistic? Purposes of this



article are (1) to provide the Correct Readership with amusing maps and
(2) to suggest methods for enhancement of conventional ocean models.

It may not be appropriate here to reproduce lengthy derivations. Neither
does Correct Journals policy admit referencing ordinary journals. Let
me only say that the following maps do not represent any new research;
they are simply the evaluation of a formula published by Salmon et al. in
1976 in a journal whose initials are j.f.m.

a. Larger scale, extratropical circulations

If we attend only to extratropical ocean circulation on scales larger
than100 km, say, one of the "standard guesses” is that an idealization to
quasigeostrophic dynamics may be useful. Then one of the results of
Salmon et al. is to show that, on scales larger than the first internal
Rossby radius, maximum H favors more nearly barotropic motion. For
simplicity here adopting barotropic quasigeostrophy, and including
bottom topography h as elevation above a mean reference depth D, the
solution for maximum H has mean streamfunction ¢ given by
(L2-V2)y=fh/D, where V2 is the horizontal Laplacian and f is Coriolis
parameter. L2 is a ratio of two Lagrange multipliers, resulting from the
two constraints that ideal quasigeostrophy preserve total (domain
integrated) energy '/,<| V¢ |2> and enstrophy 1/,<(V2y+fh/D)2>, Values
of the Lagrange multipliers (analogs of statistical mechanical
"temperatures”) depend upon total energy, total enstrophy and upon the
identification of a scale of motion at which the assumed
quasigeostrophic dynamics are conservatively truncated.

Just "to see what happens”, let us simply choose an L. One might guess
that L has something to do with the high wavenumber end of the eddy
spéctrum, admittedly a vague statement. In what follows, I’ve chosen
an L that varies slowly with latitude, increasing from near 3 km at the
pole to near 11 km at the equator. L is being considered here as a fiddle
factor, for which one could as well have more simply taken L=10 km
everywhere. Now, if our interest (when drawing global maps) is at
scales much larger than L, we next notice that V2 can be dropped from
the formula for expected . Then one may care to write y=fh\ where



A=(L2/D). This relocates the ambiguity about specifying reference depth
D, combining that with the uncertain choice of L, into a single fiddle-
factor X (with dimensions of length).

In a contest for simplest-ever-theory-of-ocean-circulation, I think
y=fhX must be a candidate. At a few seconds cpu (on a plain computer)
for global ocean calculation, the calculation is certainly "cheap”. But is
it any "good"? Correct Readers are invited to review this issue’s special
map supplement. A caution is required: It is easy to look at this map in
the way one might regard output from a GCM. Owners / operators of
GCMs may especially leap to see which is "better”. Strictly, that does
not make sense. The maps are not GCM output, and indeed pay no
attention to such obvious matters as what forces the ocean. Rather the
maps present the theoretical expression for a tendency term that may be
substantially or wholly missed by coarser resolution GCMs.

One may be inclined to dismiss a theory of ocean circulation that is so
naive as not even to care which way the wind blows. After all, everyone
knows the Gulf Stream goes the other way! Just so. As well, almost
everyone regards the Gulf Stream as a surface intensified manifestation
of the wind-driven circulation. In reality, the wind blows, the sun
shines, it rains sometimes, water freezes or melts sometimes, and the
moon goes ‘round. Such direct forcings are expected to override (in
places and at times, depending upon their strength) the statistical
mechanical tendencies. For the most part, direct forcings of the ocean
are seen in the direct responses of the upper ocean. At greater depths,
the internal statistical tendencies become more evident, as seen in such
ubiquitous tendencies as poleward undercurrents along eastern ocean
margins, equatorward undercurrents along western margins and a
tendency toward cyclonic circulation around the periphery of marginal
seas and lakes. In a good many cases, these observed undercurrents are
opposed to the sense of apparent forcing -- a sometimes source for
consternation. We only remark here that the occurence of such currents
is fully as "natural” and as expected as the tendency for red and blue
marbles, initially segregated, to tend toward more uniform mixture on
average.

Strictly, the simple y=fhX is an equilibrium statistical mechanical



result, applicable to a closed, isolated system. The oceans are coupled
to the rest of Planet Earth and so on to the Universe. In principle, this
requires a much more arduous (and uncertain) effort under the category
of disequilibrium statistical mechanics. In part, such efforts have been
carried out and reported in sundry ordinary journals (which will not be

mentioned.) As a practical matter, let us here explore some shortcuts.

b. Practical synthesis with ocean GCMs

In gross, the direct response of the ocean to mean forcing is a tolerably
manageable problem, appreciating that a substantial computing effort is
still needed. The greater difficulty is to incorporate the role of eddies.
Here let us imagine a synthesis: integrating gross effects of direct
forcing in a large scale OGCM while including the effects of eddies by a
tendency-to-equilibrium parameterization. This is especially relevant
for questions concerning climate change, for example, in which the
domain is global and integrations are required over substantial time
intervals. It is essential to avoid the explicit computing of as much
"detail” as one can (hopefully) omit. In particular, resolution coarser
than the first Rossby radius may be attractive.

Two schemes come to mind. The first is to append a simple relaxation-
to-equilibrium to one’s momentum equations (or vorticity or other
derived equation, depending upon model formulation). Thus one would
write

(u) (u] [(*@E@—-uxz0)/7)
1T T
=< o r=Models ¢+ ' (1)

ot|S S

where, for illustration, we’ve imagined model variables {u, T, S, ...}.
"Model{.})" here collects whatever expressions one already has in the
model. Equilibrium velocity u* is given from y as u*=-A2ZxVfD and t is
a relaxation time constant which the user will choose. It is interesting
that T could be assumed to depend upon location, depth, season, ...;
however, one is inclined first to simplify by taking a constant 7. We
observe that u* depends only upon horizontal position X, whereas the



model velocity u depends also upoh vertical coordinate z and time t. In
the eXpression for u%*, we take the full depth D of ocean, while A
remains an adjustable length scale. One should note that u* is obtained
by taking ¢ as a velocity streamfunction rather than depth integrated
transport streamfunction. The quasigeostrophic theory from which the
expression for ¢ was obtained is ambiguous on this point. However, as
we mean to use the calculation in a practical way within a numerical
model whose D may range from greatest depth to zero, an assignment of
¢ as trasnport streamfunction would lead to nearly singular u* in
shallow water.

Some disadvantages of the first scheme may be apparent. Away from
strong topography such as continental margins, u* will be weak and (1)
will be dissipative of kinetic energy, with spin-down time ©. As well,
the formulation in (1) is not so faithful to disequilibrium statistical
mechanics in which small scales of motion can be expected to adjust
toward equilibrium more rapidly. These two complaints might be met by
a second scheme consisting of placing the relaxation process under a
Laplacian:

(u) (u] [vVux,z ) —u*e)]
i T = Model T + (2)
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Many models will already include a lateral eddy viscosity, here v. In
any case it will be necessary by some means to remove velocity
variance at near grid scale. All we do in (2) is that, rather than letting
eddy viscosity move the flow toward rest, the eddy viscosity draws the
flow toward u*. A caution here is that (2) introduces V2VD which will
directly force at small scales. This may require some spatial smoothing
of u*, whose influence then js felt under V2,

Schemes (1) and (2) needn’t be exclusive. They may both be present.
The concern is for how many fiddle factors one wants. If one’s model
already includes v, then use only of (2) avoids introducing <.



c. Baroclinicity, and small-scale steep topography

Discussion in the preceding section is limited to large scales such that
approximating statistical equilibrium by its barotropic component is
justified. It should be very clear though that this does not attempt to
approximate computed large scale flow as barotropic. u, T, S and any
other model fields will exhibit baroclinic large scale structures in
response to the nature of large scale forcing. It is only u* in the
preceding section which is barotropic. [Let me here respond to another
sometimes concern. It might be thought that such a wide range of D
contradicts geostrophy. However, a nearly isobath-following u* of the
amplitudes obtained for reasonable A, does hot significantly viclate
geostrophy.]

While one motivation is to improve the fidelity of large scale ocean
models, such as for climate studies, we may wish to consider modeling
at smaller scales -- such as the scale of an individual seamount, for
example. In a domain of smaller scale, one might suppose that
computing resource is sufficient to resolve adequately enough of the
range of variability that subgridscale representation is not a major
concern. Maybe. However, it is still a matter of economy and perhaps
also of elegance to consider if some part of the solution can be supplied
on theoretical grounds leaving the computer to deal with "book-keeping".
At explicitly resolved scales already much smaller than the first Rossby
radius, barotropic u® is clearly inappropriate. Neither is it necessary to
be so restricted. Even in their first study, Salmon et al. already
considered baroclinic statistical equilibrium within a two layer
idealization. Extending such analyses to arbirary continuous
stratification with realistic topography may be exhaustively demanding.
Again let us here speculate about plausible short-cuts.

Anélgsis is simplified by transforming the vertical (pressure) coordinate
z to a stretched vertical coordinate ¢ given by dt=(N/f)dz where N(z) is
stability frequency. The quasi-geostrophic motion field, including
perturbation density, is fully defined by a 3D streamfunction y(x,y,%).
Then the total energy (including available potential) and total enstrophy
(including vertical potential) are given by integrals of x-y-g of |Vy|?2
and of (szp)z. For a domain unbounded in x-y-g, the constraining
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integrals of the motion appear to be "isotropic” in the coordinates, hence
statistical equilibrium is isotropic in x-y-g. This result is entirely
conistent with the preceding section where the real ocean is bounded by
its top and bottom such that, at scales larger than DN/f, isotropy in x-y-
¢ exhibits little variation in z. At smaller scales in the real ocean, a
tendency toward maximum entropy (i.e. isotropy in x-y-t) suggests that
eddy variability may realize approximate N/f aspect ratio in x-y-z.

What about realistic topography? A more serious theoretical effort is
required, which I've not yet pursued. Let me only suggest the following
caveat emptor. For topography of sufficiently small amplitude, we still
solve (L2-V2)y=fh/D for velocity streamfunction ¢ at the benthic
interface. L2 remains as before. However, we may now be interested in
scales as small as, or smaller than, L; hence we may need to invert the
elliptic operator L2-V?2 rather than discarding V2. Having found ¢ at the
benthic interface, we extend ¢ into the 3D (x-y-¥) domain according to
approximate isotropy. For example, if we are able to perform a
horizontal Fourier transform of ¢ at the benthic interface, then for each
wavevector k, we may take the vertical penetration to decay as
exp{-kg). When the results are mapped back to x-y-z coordinates, we.
observe that a tendency to capture an anticyclonic "Taylor cap” above a
seamount is clearly expressed. This procedure is probably OK as long as
the seamount is not so tall as to penetrate into the upper pycnocline.
The problem is this: Mapped to x-y-z, where is the level reference for
2?7 Practically, it may "work” best to take z=0 as the actual benthic
interface, grossly deformed as it is. Only experience at applications
may finally sort this out. In any case, we obtain a 3D ¢* from which
we obtain both a 3D u* and a 3D density perturbation p*. The
suggestion then is that a numerical model of flow in the vicinity of the
seamount could incorporate relaxation terms involving both u* and p*.

Of‘great practical concern is the role of statistical equilibrium tendency
for coastal zone oceanography. The effect of continental margins has
already been seen in this issue’s special map supplement. However, the
maps are drawn at coarse scale for which u* should be barotropic.
Examined in closer detail, we would observe that the strongest
equilibrium tendency is usually found just seaward of the shelf break.
Often a significant stratification exists in waters overlying the shelf
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break. Therefore, in higher resolution numerical models of the coastal
zone, one expects to see the strongest u* overlying the upper slope,
with diminished influence above the pycnocline. Of course the numerical
model will include direct forcing by wind or buoyancy. Likewise, the
numerical model can impose u=0 at the benthic interface although u* is
greatest at the bottom.

d. Secondary circulation and coastal zone productivity

Although most of our attention so far has addressed the mean horizontal
circulation, there is an important remark concerning also the induced
secondary (vertical planar) circulation. We have seen that statistical
equilibrium flows are such as keep the coastline to the right of the flow
(in the northern hemisphere). That actual coastal flows tend to do this
is so well known that it is a part of "classical” oceanography more than
a half century old.

Coastal zones are also observed to support high productivity.
Sometimes that productivity may be associated with upwelling-
favorable winds. However, the productivity usually characterizes
coastal zones even when the climatological mean winds do not
especially favor upwelling. One might identify an apparent paradox: If
the observed flows agree with the "classical” rule of keeping the coast
to their right, then the benthic Ekman transport is preferentially
downslope. As this water near the base of the water column is usually
highest in nutrient, the result should be to exhaust the coastal zone,
limiting productivity. Is there a conflict between the sense of
longshore circulation and the nutrient budget (also oxygen, heat and salt
budgets in some cases)?

Resolution of this depends upon understanding the disequilbrium
prdcesses which are responsible for evolution toward statistical
equilibrium. In particular I have investigated a "topographic stress”
(reported in 1987 in the same ordinary journal mentioned earlier with
initials j.f.m.) In terms of secondary circulation, the topographic stress
appears as an upslope "pumping” in the lower portion of the water
column. This is manifest near canyons which often are observed as
sources for nutrient enriched (oxygen depleted) waters. 'In cases where
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the mean winds favor neither upwelling nor downwelling, and no mean
longshore pressure gradient acts, the longshore flow is expected to
achieve a balance between topographic stress (tendency toward
statistical equilibrium) and frictional retardation. Then the upslope
pumping by topographic stress just balances the downslope Ekman
transport. Although this balance does not, by itself, favor coastal
productivity, the balance does prevent the exhaustion of the coastal zone
due to Ekman benthic transport.

e. Inverse modeling, data assimilation

In the foregoing, we have considered unprejudiced circulation in the
context of "forward” ocean models. It makes as much sense, perhaps
more, to incorporate unprejudiced circulation within "inverse” models.
As a matter of principle, it should appear that any observation of the
ocean, i.e. an amount of information, reduces our uncertainty (i.e.
entropy) concerning the ocean state. Thus it is just the formulation of
ocean dynamics with respect to system entropy that may naturally
include the effect of importing information on account of observations.
While further effort will be needed to develop this point of view, a more
immediate remark is that the "new" terms which we’ve added at (1) or
(2) can simply be carried forward as dynamic constraints on an inverse
calculation. The question which may arise (depending upon one’s flavor
of inverse modeling) is what weight or confidence to place upon the
“new” terms. I don’t see any clear way to answer the question. It is
rather like asking "Well, how do you feel about eddy viscosity?” On a
scale one to ten? I can only say that I feel that u* is at least as good
an idea as eddy viscosity. There is another approach. Statistical
dynamics predicts both a mean circulation and the variance of
fluctuations about that mean. One could imagine using the inverse
variance as the weight for the unprejudiced mean. I think, however, that
this is not a good idea. As remarked above, statistical dynamics is
supplying solutions for closed, non-dissipative idealizations. In applying
a relaxation-to-u*, we only assert that eddy interactions should cause
real systems to tend toward equilibrium. Especially as larger scale
mean flows are predicted, these are expected to better survive against
actual dissipation. On the other hand, the statistical equilibrium for
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fluctuation variances can be shifted toward smaller scales (depending
upon two Lagrange multipliers, neither of which is well estimated). My
guess (with prejudice) is that disequilibrium processes such as energy
or enstrophy cascades quickly ruin the statistical equilibrium prediction
for fluctuation variances while leaving largely in tact the predictions
for mean u*. Thus it remains to assess how good we reel about
unprejudiced u*, something that may become clearer as we gain more
experience.

Secondly (or within the category of “generalized inverse"), there is
application under data assimilation. Especially interesting are the
~"adjoint-method” variational solutions recently published by Thacker,
Tziperman and others in ordinary journals (which will not be mentioned).
The power of these methods is that they both find solution to model
dynamics which best fits given data and adjust parameters of the model
dynamics in order to optimize that fit. With respect to the novel
subgridscale representation set out above, one might particularly wish
to evaluate X while possibly also adjusting a response time t (if
present) and/or eddy viscosity v. Care is required though that
insufficiency of data may lead to lack of convergence (or very slow
convergence) of the adjoint method when too many control parameters
are adjusted.
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