o

1

Journal of

Correct Oceanograp]ly

Volume 2, Number 1, December 1983

Bruce Warren "The Lemon-and-Lime Line: 1I. Appeal

for Data"

Philip D. Thompson "A Simple Mechanical Analogue of
Two-Dimensional Flow"

Queries concerning this journal may be directed to
The Editor, J. Correct Oceanography, P.0O. Box 6000,
Sidney, B. C., V8L 4B2 Canada. '

Special Holiday Offer: A very limited number of charter
subscriptions are still available, offering substantial

savings over intended newstand price.




<&

The Lemon-and-Lime Line: I. Appeal for Data

Bruce Warren

Abstract. A socio-geographical boundary, the Lemon-and-Lime Line,

"is defined, and an appeal is made for data with which to map it

accurately.

During the course of oceanographic travels, I have been struck

by the fact that, while in some paits of the world people garnish

- gin—and—tonic,wifh a piece of lime, in other parts they choose lemon.

It is my impression that these differing tastes are nearly everywhere
uncompromising ;nd irreconcilable; and indeed, that there exists a
distinct, sécio—geographic demarcation between thg two regions —
more deeply rooted in the Social Order than even the Prime Meridian —
which I have tentatively called the "Lemon-and-Lime Line". No doubt
there are compelling and intriguing cpltural reasons for this
division, but it seems prudent to défer theoretical investigation
until the‘Line,has been mapped with at least fair accurécy.
Observations available;to me at present, for example, are  inadequate
even to tell‘wheﬁhei the Lime-Preferential and Lemon-Preferential
Regions are simply or multiply connected. Nor am I at all sure that
the Line is everywhere a line: somewhere it may be oniy a smudge.

Thé purpose of this note is not, therefore, to speculate, but
to report observations of preference that colleégues and I have made,
and to solicit additional data from other curious travelers. Mapping
the Lemon-and-Lime Line accurately over the globe will evidently be a
large :enough task té require a collectivé effort. Our existing

observations of geographical preference, listed in Table 1, could at

the very least stand verification.



Table 1. Observations of Préference‘for Lemon and Lime

Country Preferred Garnish
Canada Lime
United States: .

Contiguous U.S. Lime

College Station, Texas Lemon wedges

Alaska
Anchorage
Adak

Hawaii

Puerto Rico
Bermuda

Mexico

Costa Rica

Panama-

Venezuela

Curacao

-Ecuaddr

Brazil

Argentina

Chile:

Major cities

Puﬂta Arenas

Lime
Lemon
Lemon
Lime
Lime
Lime
Lime

Lemon

Either

Occasionally lemon

Puerto Williams *  Neither _
England Lime
Switzerland Non-uniform
Italy Lemon

Remarks

Sampling in more than thirty states.

" Unexplained exception in certain

Aggie bars.

Usually.

Thorough sampling.
Pronounced lemon.

Lime often available on request.

Spot~sampling near Hilton Hotels.

Extensive sampling.

Beyond the pale: an order for gin-
- and~-tonic brought gin-and-7-Up.

. Only lime in Recife.

Only Buenos Aires investigated.

Lemon most common.
Usually neither available.

Gin not common (!)

Cantonal preferences: lime in Geneva,
lemon in Zurich. :

Pronounced limone. Lime required by
expatriates. in La Speczia.



Countgx

Preferred Garnish

Soviet Union:

Moscow and Leningrad

Yalta and environs

- Turkey

Kenya

South Africa

South West Africa (Namibia)

Seychelles

Mauritius

Sri Lanka
Australia
New Zealand
Fiji

New Caledonia

Japan

South Korga

Usually neither

Lime

Lemon

Either

Lime

Lime

Lime

Lemon

Lime

Lime

Lemon -

" Lime

Lime preferred,
often lemon

Lemon

Lemon

Remarks

Gin available only in “hard-
currency" tourist bars.

Tourist bars only.
Studies only in Istanbul.

Noisy data.

Usually. Lemon also available
in Swakopmund, where much that
is unexpected is found.

Exceptionally enjoyable at

Northolme Hotel.

Except at Le Chaland Hotel, which
caters to a British clientele,
- and serves lime.

- Sampling in Colombo only.

Repeated sampling.

(!) Adamantly.

TLime pronounced lemon or citron,

lemon pronounced citron.

Sampling limited to Seoul.

The geographical distribution of data is obviously fragmentary

and uneven. The coverage of the Bmericas, of the Pacific, and of the

Indian Ocean is not bad, but there are only three observations for

Africa, and only one for all of the Asian Mainland. It is regrettable,

moreover, that Europe, Cradle of . Western Civilization, should have

received so little attention to date.



Nevertheless, important questions are posed by the data already
in hand. Why, for example, is New Zealand so anomalous among its
neighbors in the South Pacific? Why are Brazil and Kenya so indecisive
in their allegiances? And, while the Line appears to péss between
Adak and the Alaskan Mainland, at what lohgitude do ships plying from

-California to Hawaii switch from lime to lemon?

Clearly more data are needéd, and I am appealing herewith to
other oceanographers (and anyone else, for that matter) to send me
their own observations of local preferences for lemon Vvs. lime, in
order that a well documented map of the Lemon-and-Lime Line may
eventually be prepared. It seems doubtful thatgtﬁe importance of
this project would warrant color-printing of the resulting map in
eleétric green and yellow, but even a blackJand-white version should

prove stimulating to sociologists, theoreticians, and bon vivants.

Acknowledgements: I am indebted for some field data to certain
colleagues who probably wish to remain anonymous. This research

has not been supported by the Office of Naval Research.
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1. Introduction

.The purpose of this note is to draw attention to a remarkable
parallelism between the dynamical properties of a solid body, rotating
around three different axes in the absence of external forces, and those
of a low-order spectral model of two-dimensional flow. The rates of
rotation around the three principal axes of a solid body correspond to
the amplitudes of three interacting modes in a spectral representation
of the streamfunction for the two-~dimensional flow of a homogeneous
inviscid fluid, and are governed by evolution equations that have pre-
cisely the same mathematical form as those for the three modal ampli-
tudes. The moments of inertia around the three principal axes cor-
respond to the eigenvalues associated with the three interacting modes.

The exact correspondence between these two systems sheds no new
light on their behavior, which is completely known and understood; it
does, however, provide us with a simple and accessible way of demon-
strating experimentally some of the important aspects of nonlinear
transfer of energy between interacting modes. This article contains the
material and equipment for a modest parlor, classroom or laboratory

demonstration.

2. The spectral form of the vorticity equation
The dynamical principle governing the two~dimensional motion of a
homogeneous inviscid fluid is that of conservation of vorticity, follow-

ing the motion of material elements of the fluid. I.e.,



E":+Y'-VC=0 ()

in which V is the fluid velocity, V is the two~dimensional vector grad-
ient: ¢ is the vorticity, KeVxV, and K is a unit vector normal to the &

plane of motion. In addition, we impose the condition of incompress-—

ibility, which in this case reduces to:

From this equation we infer that

V = Kx Vg T = V% . (2)

<«

The streamfunction ¢ contains an arbitrary additive function of time,
which we are free to specify. Since the component of velocity normal to
a fixed boundary necessarily vanishes, so also does the derivative of ¢
along the boundary-—i.e., ¢ is constant on a fixed closed boundary. We
specify the arbitrary function contained in ¢ by setting ¢ = 0 on the
boundary at all times. Substituting from (2) into (1), we arrive at a

single equation with only one dependent variable, namely,

0

V2p + K » Vg x V(V2p) = 0 . (3)
ot ~

Taken together with initial and boundary conditions on ¢, the equation

above completely determines the evolution of the flow. . B ¢

<y



For many purposes, it is convenient to replace (3) by an equivalent
system of coupled ordinary differential equations. These are obtained
by representing ¢ as

A4(0) 4;(x,y) o @)

: N
o(x,y,t) = §
i=1

(i=1,2,3,...N)

in which the Aj(t) are amplitude factors that depend only on time.

The ¢i are the eigensolutions of

V20; = - 9?6 | (5)

and the ai are the eigenvalues of (5) for ¢i = 0 on the closed

boundary of some region A.
The orthogonality of the ¢i is readily shown by applying (5) for

two distinct eigenvalues ap and aq. I.e.,

-2
P “" 0

<
N

hod
]

2 = - 2
v ¢q aq ¢q .

Multiplying the first of these equations by ¢q, multiplying the second

by ¢p, and subtracting the second from the first, we find that
Ve V-6V = (a2-q2 .
- ( ¢q ¢P ¢P ¢q’) ( q P >) d)P ¢q

Thus by Gauss' theorem



__-P-.. __g- d = 2 - 2
,g; (o 5n ™ % om )_ B (og? - ap? ) [, o094

where the derivative with respect to n is taken normal to the boundary.
The area integral over A is taken over the entire flow. The line inte-
gral is taken around the closed boundary B of thé.rééioﬁ A: i£ van-

ishes, since the ¢'s vanish on B. The a's being distinct, we conclude

that

j¢¢dA=0'.

Finally, owing to the homogeneity of (5), the ¢; may be normalized in
such a way that

f ¢]’_2 dA = 1 .

A S
In other words, the ¢; are an orthogonal set of eigenfunctions and are
presumably complete.

Substituting from (4) into (3), we obtain the spectral form of the
vorticity equatiomn:

. _
o, - §. + .2 A A.(keV9.x99.) = 0 .

i=1 1 dt 1 i=1 j=1 J 1] . 1 J

Let us next multiply the equation above by a particular eigenfunction

¢ and integrate each term over the area A. Then, owing to the

orthogonality of the_¢i,
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where the nmonlinear interaction coefficients Bjji are given by

Bisk [ keVp xVp.dA .
A
Integrating by parts and introducing the condition that ¢i=0 on B, one

can establish the following general properties of Bijk:

(1) it reverses sign under any noncyéiié permutation of indices,
(2) remains uncﬁahged under any cyclié permutation of indices, and
(3 vanishes if any'two indices are-equal.

The consequences of these properties of ﬂijk’are that certain

quadratic functions of the Ai's are invariant. For example, multi-

plying (6) by X.k and summing over k, we see that

N N

2 ﬁ1Jka A Ak

¢ 1 X
a4 2 2)
dt 2 Z e k=1 121 j=1

N N :
2p B Az .
L P

It
II.M -4

j=1

The summation over i and k vanishes, owing to propeftieS"(l)-and»(3) of

Bijk- We conclude, therefore, that the quantity
1
— 25 2
2 o, <A
I

is invariant. In interpreting this result, we note that



l.j vev dA = X f VeV dA = l.f Y2y dA
2 ~ = A 2

whence, from the definition (4) and the orthogonality of the ¢;,

1 IN 2, 2
— VeV dA = 2 a, “A
21, vy 7 L

Thus, the total kinetic energy of the flow is invariant, a fact that can

be derived directly from (3) in three steps. The significance of the

present result is that the total kinetic enmergy of any finite truncation
of (4) is also invariant, and that such finite truncations retain impor-
tant dynamlcal propertles of the comglete representatlon

Slmllarly, multiplying (6) by ay Ak and summing over k, we get

N K N
& 2 aa?) = ¥ 7 7 B..a.%?, A
dt 2 =1 e k=1 i=1 j=1 13k3 K
| N N
= A, A, .
igl i le kz Bl]k J % AJ k

In this case, owing to properties (1) and (3) of Bijk» the summation
over j and k vanishes. Thus, the truncated system possesses .a second

quadratic invariant,

1
2
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This quantity is readily identified as
2

2

(V22 da = %j z2 da

A A

or, in recent terminology, "enstrophy."

3. The 3-mode system and its amalogy to the "'gyroscopic” equations
Specializing (6) for the case of three interacting modes (the sim-
plest nontrivial case), we generate the system of evolution equations

for A}, Az and A3z. They are:

a12 dA;

Bi23 (a22 - 032) A2A3
dt

2 dAj

ac B123 (032 - Glz) AjA3 @))

a2

2 dAj
dt

o3 B123 (312 - azz) AAp .

Now, it should be noted that these are just the ''gyroscopic" equations

of Euler (cf. Joos, 1932), if we take A; to be the rate of rotation of-

2 with the :

a solid body about the ith principal axis and identify oj
moment of inertia around that.axis. Hence, whatever can be said of the
dynamics of a rotating solid body (f;ee of externél forces) also applies
to the behavior‘of a 3-mode truncation of two-dimensional flow.

We next examine some properties of solutions of the nonlinear sys-

tem (7). To simplify matters somewhat, let us define:



alazaa
alAl = X a2A2 = .Y a3A3 = Z t = -——?;—-'r . .
Under these transformations, (7) becomes
B = (g2 - ay?) W2
dt
a¥y = (a32 - alz) Xz . (8)
dt . o ' '
az . (aiz - a22) Xy .
dt .

With the transformations shown above, the invariance of kinetic enmergy

and enstrophy may be expressed as

X2 + Y%+ 22 = X,

2y2 2y2 292 = 2y 2 2y 2 29 2
al X< + az Y- + a3 Z dl XO + a2 YO + a3 Zo
in which the subscript "zero" denotes the initial value of a variable.

Multiplying the first of these equatioms by 412, 22 and ¢32 in succes-

sion, and subtracting the second equation, we get

2 oy 2)(v2 - v .2 2 2V(72 — 7 2y =
(al az )(Y YO ) + (al a3 )(Z | ZO ) p
2 - 2 2 . ¢ 2 2 . 2 2 - 2 -
(qz ) ) (X X, )+ (aZ o, )z Z, ) 0
=0.

2 - 2 2 - 2 2 . 2 2 o 2
(a3 _al.)(x XO ? + (a3 «, (Y ) Y, )

The symmetry of these equations suggests that a further transformation

might be in order, namely,
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= 2. 2y1/2 = 2., 2y1/2 = 2., 2yl/2
X (a3 @, )t 4x Y (a3 o )4y z (a2 o, )t 4z
9)

The relationships above then become:

(y2 - yoz) + (22 - 202),-= 0.
(x? - xoz) - (22 - 202) = 0
(x2 - x02) + (y2 —'yoz) = 0 .

Since each pair of these equations expresses two of the variables in

terms of the third, equations (8) may now be written as three uncoupled

&

equations in x, y, and z. With the transformations given in (9),

¢ ' dx = g [(yy2 + x02 - x2)(202 - x02 + x2)]1/2
dt
dy = -x [(x02 + y02 - y2)(z02 + yo2 - y2)]i/2 (10)
dt '
dz = [(x02 - zo2 + zz)(yo2 + 202 - 22)]1/2
dv

in which k = [(a,2 - a_2)(x,2 - @ 2)(a 2 - « 2)]}/2, Equations (10)
3 2 3 1 2 1
may be solved by quadrature. The solutions are easily shown to be bi-
periodic: they are, in fact, expressible in terms of Jacobi elliptic
functions.
It is not, however, necessary to find the complete solutions of

(10) in order to understand the behavior of the system in certain

specific circumstances., Let us suppose, for example, that all of the
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kinetic energy of the system were concentrated initially in one mode.
If that were exactly true, then (8) would imply that none of the ampli-
tudes change with time., But what happens if one or both of the other
two modes initially contain some small amount of kinetic enefgy? Is the
large supply of energy in one mode transferred to the two energy-
deficient modes, or does it remain in that mode?

To study these questions, it is convenient to put equations (10) in
a slightly different form, obtainable by squaring both sides of each
equation, differentiating with respect to time and removing factors

common to all terms. The result is:

d?x - kZx [2x 24923222 2x2] ' -~ (1la)
— 0 0 0

d?

d?y = —kzy [x02 + 2y02 + 202 - 2y?] ‘ (11b)
dt '
d%z = 2, [-x 2 +y 24 22 2 - 222] . (11ie)
_d_:BT 0 0 0

For future reference, we also order the eigenvalues, such that @ < @y

< a3. This renders k real and k? positive. The amplitudes x and z are
then associated with the lowest and highest modes, respective}y, and y
with the intermediate mode.

Let us suppose that y, « Xgs Zg £ Xg. Near the initial time, then,

(11b) and (llc) are approximately:

d2 2.2
——§ = -k“x
dz -0 7



<1
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%%% e -kzxozz .
Near initial time, therefore, the solutions are:
y = ¥ cos kxot

z = z0 cos kxot .

That is, the intermediate and highest modes undergo oscillations, with
amplitudes equal fo their small initial values. The conclusion is that,
'if the kinetic energy is initially concentrated inbthe lowest mode, it
stays there.

In considering the case when x5 €z and yg € zg, we observe that
equations (11) are symmetrical in x and z. Accordingly we conclude
that, if the kinetic energy is initially concentrated im the highest
mode, it stays.there and is not transferred to the othér two modes.

Finally, examining the case when xg € yg and z( <yg, we note that

(11a) and (llc) are approximately:

2
d®z ~ k2y02x
dt2
d?z - 2¢ 2

=2 = k Yoz -

Near initial time the solutions are:

»
I

X cosh kyom

z = z4 cosh ky01
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Thus, even if % and z, are initially small, x and z grow exponentially,
and energy is rapidly transferred from the intermediate mode to the low-

est and highest modes. oo

4, Interpretation of results as applied to the gyréscope

Let us next see how the results of the preceding section apply to
the rotation of a solid ellipsoid with principal axes of different
lengths. The amplitude x then corresponds to the rot;tion rate aro#nd
the shortest axis, z to the fotation rate around the longest Axis, andry
"to the rotation rate around the éxis of intérmediate length, 1In view of
this correspondence between variables, we would expect that the éllip-
soid, if iﬁitially spﬁﬁ around eithér its shértest §r longegtvé#is (but
with a small eomponent of rotation around its intermediaté axis5, would
not transfer much rotation to motion around either of its other axes.
If, on thé éthef han&, the ellipsoié &é;e initially spun aroﬁnd>its
intermediaée axis (again, with small components of rotation around its
shortest and longest axes),lwe would expect that rotation would be
transferred rapidly to motions around the shortest and loﬁgest axes. In
short, the ellipsoid would immediately "wobble."

Conversely,‘if the latter conclusions were confirmed experimental-
ly, by the slightlybimperfect spinning of an ellipsoid around each of
its three principal axes, it would also demonstr#te the validify of our
earlier conclusions about the nonlinear transfer of kimetic energy be-
tween three interacting modes in a highly truncated representation of

two-dimensional flows.
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One usually does not have a suitable ellipsoid lying right at
hand. A fair approximation, however, is a rectangular parallopiped
whose length, width and thickness are different. Among the most common
objects of this description is a matchbox ;ontaining 2" wooden
matches.?2 It is approximately 9/16" x 1 7/16" x 2 1/16". These dimen-
sions can be altered slightly to increase the disparity between moments
of inertia around the principal axes, and thus to enhance the qualita-
tive differences of behavior. One change is to make the box 2 1/2" long
to produce more "wobble" when it is spun around the axis spanning its
width. One of the pages of this note is printed on heavy stiff paper,
showing the outlines of contiguous faces of such a box. To construct
the box, cut along the outer lines, fold upward along the innmer lines,
and fasten the edges together with adhesive tape (1/2" scotch tape is

recommended) .

5. Conduct of the experiment

It is important to try to impart spin around only one principal
axis of the box. To achieve some degree of exactness, it is suggested
that the box be élaced on the edge of a table, with the desired axis of
rotation parallel to the edge and with- slightly less than half of the

box extending beyond the edge (see Fig. 1.). Then, place the nail of an

'index finger against the table and beneath the box, with the thumbnail

2 Another common object of this kind, pointed out to me by Dr. Peter

Rhines, is the standard American chalkboard eraser.



EDGE OF TABLE

/

" Figure 1
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pressingvupwﬁrd on the underside of the.index finger and directlyx
beneath the center of the protruding edge of the box (see Fig. . Then
release the thumb, so that the nail strikes?the lowe:_edge‘qf ;he,bq%l
fgrcibly. &he box will fly up and slightiy-toward ;hgzﬁableflilts>§pi9
will be pfimari}y around theuaxis,paréllel to thevedge_of the table;
some slight components of spin around the_oFbgr;twq ﬁ#es'will ineiitaE1y_
be imparged,jdue to_small.asymme;fiesvof_thg{po§a$i;s misalignmentwonbyh
striking.it off center. Nevertheless,‘wigh some ca;e,‘it‘is not ;iféi;
cult to demonstrate the qualitative differences of behavior descrigédlin
Sectibn 4.

I have no doubt that there may be considerable‘improvements on the
design of this;gxperiﬁent._,In-its.crudest form, hoﬁever, it demon~

strates some important nonlinear effects in two-dimensional flows.
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