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Abstract.  These notes provide an introduction to: 
• Methods for the expression of isotopic abundances, 
• Isotopic mass balances, and 
• Isotope effects and their consequences in open and 
closed systems. 

Notation.  Absolute abundances of isotopes are com-
monly reported in terms of atom percent.  For example, 
 atom percent 13C = [13C/(12C + 13C)]100 (1) 
A closely related term is the fractional abundance 
 fractional abundance of 13C ≡ 13F  

 13F = 13C/(12C + 13C) (2) 
These variables deserve attention because they provide 
the only basis for perfectly accurate mass balances. 

Isotope ratios are also measures of the absolute abun-
dance of isotopes; they are usually arranged so that the 
more abundant isotope appears in the denominator 
 “carbon isotope ratio” = 13C/12C ≡ 13R (3) 
For elements with only two stable nuclides (H, C, and N, 
for example), the relationship between fractional abun-
dances and isotope ratios is straightforward 
 13R = 13F/(1 - 13F) (4) 
 13F = 13R/(1 + 13R) (5) 

Equations 4 and 5 also introduce a style of notation.  
In mathematical expressions dealing with isotopes, it is 
convenient to follow the chemical convention and to use 
left superscripts to designate the isotope of interest, thus 
avoiding confusion with exponents and retaining the 
option of defining subscripts.  Here, for example, we 
have written 13F rather than F13 or F13. 

Parallel version of equations 4 and 5 pertain to multi-
isotopic elements.  In the case of oxygen, for example, 
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Natural variations of isotopic abundances.  The 
isotopes of any element participate in the same chemical 
reactions.  Rates of reaction and transport, however, 
depend on nuclidic mass, and isotopic substitutions 
subtly affect the partitioning of energy within molecules.  
These deviations from perfect chemical equivalence are 

termed isotope effects.  As a result of such effects, the 
natural abundances of the stable isotopes of practically 
all elements involved in low-temperature geochemical 
(< 200°C) and biological processes are not precisely con-
stant.  Taking carbon as an example, the range of interest 
is roughly 0.00998 ≤ 13F ≤ 0.01121.  Within that range, 
differences as small as 0.00001 can provide information 
about the source of the carbon and about processes in 
which the carbon has participated. 

The delta notation.  Because the interesting isotopic 
differences between natural samples usually occur at and 
beyond the third significant figure of the isotope ratio, it 
has become conventional to express isotopic abundances 
using a differential notation.  To provide a concrete 
example, it is far easier to say – and to remember – that 
the isotope ratios of samples A and B differ by one part 
per thousand than to say that sample A has 0.3663 %15N 
and sample B has 0.3659 %15N.  The notation that pro-
vides this advantage is indicated in general form below 
[this means of describing isotopic abundances was first 
used by Urey (1948) in an address to the American 
Association for the Advancement of Science, and first 
formally defined by McKinney et al. (1950)] 

 δAXSTD = 1
STD
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Where δ expresses the abundance of isotope A of ele-
ment X in a sample relative to the abundance of that 
same isotope in an arbitrarily designated reference mater-
ial, or isotopic standard.  For hydrogen and oxygen, that 
reference material was initially Standard Mean Ocean 
Water (SMOW).  For carbon, it was initially a particular 
calcareous fossil, the PeeDee Belemnite (PDB; the same 
standard served for oxygen isotopes in carbonate miner-
als).  For nitrogen it is air (AIR).  Supplies of PDB and of 
the water that defined SMOW have been exhausted.  Prac-
tical scales of isotopic abundance are now defined in 
terms of surrogate standards distributed by the Interna-
tional Atomic Energy Authority’s laboratories in Vienna.  
Accordingly, modern reports often present values of 
δVSMOW and δVPDB.  These are equal to values of δSMOW 
and δPDB. 

The original definition of δ (McKinney et al., 1950) 
multiplied the right-hand side of equation 6 by 1000.  
Isotopic variations were thus expressed in parts per thou-
sand and assigned the symbol ‰ (permil, from the Latin 
per mille by analogy with per centum, percent).  Equa-
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tions based on that definition are often littered with 
factors of 1000 and 0.001.  To avoid this, it is more con-
venient to define δ as in equation 6.  According to this 
view (represented, for example, by Farquhar et al., 1989 
and Mook, 2000), the ‰ symbol implies the factor of 
1000 and we can equivalently write either δ = -25‰ or 
δ = -0.025. 

To avoid clutter in mathematical expressions, sym-
bols for δ should always be simplified.  For example,  δb 
can represent δ13CPDB( -

3HCO ).  If multiple elements and 
isotopes are being discussed, variables like 13δ and 15δ 
are explicit and allow use of right subscripts for desig-
nating chemical species.  

Mass-Balance Calculations.  Examples include (i) 
the calculation of isotopic abundances in pools derived 
by the combination of isotopically differing materials, 
(ii) isotope-dilution analyses, and (iii) the correction of 
experimental results for the effects of blanks.  A single, 
master equation is relevant in all of these cases.  Its 
concept is rudimentary: Heavy isotopes in product = 
Sum of heavy isotopes in precursors.  In mathematical 
terms: 

 mΣFΣ = m1F1 + m2F2 + ... (7) 
where the m terms represent molar quantities of the ele-
ment of interest and the F terms represent fractional iso-
topic abundances.  The subscript Σ refers to total sample 
derived by combination of subsamples 1, 2, ... etc.  The 
same equation can be written in approximate form by 
replacing the Fs with δs.  Then, for any combination of 
isotopically distinct materials: 
 δΣ = Σmiδi/Σmi (8) 

Equation 8, though not exact, will serve in almost all 
calculations dealing with natural isotopic abundances.  
The errors can be determined by comparing the results 
obtained using equations 7 and 8.  Taking a two-
component mixture as the simplest test case, errors are 
found to be largest when δΣ differs maximally from both 
δ1 and δ2, i. e., when m1 = m2.  For this worst case, the 
error is given by 
 δΣ - δΣ* = (RSTD)[(δ1 - δ2)/2]2 (9) 
Where δΣ is the result obtained from eq. 8; δΣ* is the 
exact result, obtained by converting δ1 and δ2 to frac-
tional abundances, applying eq. 7, and converting the 
result to a δ value; and RSTD is the isotopic ratio in the 
standard that establishes the zero point for the δ scale 
used in the calculation.  The errors are always positive.  
They are only weakly dependent on the absolute value of 
δ1 or δ2 and become smaller than the result of eq. 9 as 
δ >> 0.  If RSTD is low, as for 2H (2RVSMOW = 1.5 × 10-4), 
the errors are less than 0.04‰ for any |δ1 - δ2| ≤ 1000‰.  

For carbon (13RPDB = 0.011),  errors are less than 0.03‰ 
for any |δ1 - δ2| ≤ 100‰. 

The excellent accuracy of eq. 8 does not mean that all 
simple calculations based on δ will be similarly accurate. 
As noted in a following section, particular care is 
required in the calculation and expression of isotopic 
fractionations.  And, when isotopically labeled materials 
are present, calculations based on δ should be avoided in 
favor of eq. 7.  

Isotope dilution.  In isotope-dilution analyses, an 
isotopic spike is added to a sample and the mixture is 
then analyzed.  The original “sample” might be a 
material from which a representative subsample could be 
obtained but which could not be quantitatively isolated 
(say, total body water).  For the mixture (Σ) of the 
sample (x) and the spike (k), we can write: 
 (mx + mk)FΣ = mxFx + mkFk (10) 
Rearrangement yields an expression for mx (e. g., moles 
of total body water) in terms of mk, the size of the spike, 
and measurable isotopic abundances: 
 mx = mk(Fk - FΣ)/(FΣ - Fx) (11) 
Since we are dealing here with a mass balance, δ can be 
substituted for F unless heavily labeled spikes are 
involved. 

Blank corrections.  When a sample has been con-
taminated during its preparation by contributions from an 
analytical blank, the isotopic abundance actually deter-
mined during the mass spectrometric measurement is that 
of the sample plus the blank.  Using Σ to represent the 
sample prepared for mass spectroscopic analysis and x 
and b to represent the sample and blank, we can write 
 mΣδΣ = mxδx + mbδb (12) 
Substituting mx = mΣ - mb and rearranging yields 
 δΣ = δx - mb(δx - δb)/nΣ (13) 
an equation of the form y = a + bx.  If multiple analyses 
are obtained, plotting δΣ vs. 1/mΣ will yield the accurate 
(i. e., blank-corrected) value of δx as the intercept. 

Calculations related to isotope effects 
An isotope effect is a physical phenomenon.  It 

cannot be measured directly, but its consequences – a 
partial separation of the isotopes, a fractionation – can 
sometimes be observed.  This relationship is indicated 
schematically in Figure 1. 

Fractionation.  Two conditions must be met before 
an isotope effect can result in fractionation.  First, the 
system in which the isotope effect is occurring must be 
arranged so that an isotopic separation can occur.  If a 
reactant is transformed completely to yield some pro-
duct, an isotopic separation which might have been 
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visible at some intermediate point will not be observable 
because the isotopic composition of the product must 
eventually duplicate that of the reactant.  Second, since 
isotope effects are small enough that they don’t upset 
blanket statements about chemical properties, the tech-
niques of measurement must be precise enough to detect 
very small isotopic differences. 

Observed fractionations are proportional to the mag-
nitudes of the associated isotope effects.  Examples of 
equilibrium and kinetic isotope effects are shown in 
Figure 2.  As indicated, the magnitude of an equilibrium 
isotope effect can be represented by an equilibrium con-
stant.  In this example, the reactants and products are 
chemically identical (carbon dioxide and bicarbonate in 
each case).  However, due to the isotope effect, the equi-
librium constant is not exactly 1.  There is, however, a 
problem with the use of equilibrium constants to quantify 
isotope effects.  An equilibrium constant always pertains 
to a specific chemical reaction, and, for any particular 
isotopic exchange, the reaction can be formulated in 
various ways, for example: 
 H218O + 1/3 CaC16O3  H216O + 1/3 CaC18O3 (14) 
vs. 
 H218O + CaC16O3  H216O + CaC18O16O2 (15) 
To avoid such ambiguities, EIEs are more commonly 
described in terms of fractionation factors. 

A fractionation factor is always a ratio of isotope 
ratios.  For the example in Figure 2, the fractionation 
factor would be: 
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A more compact and typical representation would be 

 13αb/g = Rb/Rg (17) 
Here, subscripts have been used to designate the 
chemical species (b for bicarbonate, g for gas-phase 
CO2) and the superscript 13 indicates that the exchange 
of 13C is being considered.  The resulting  equation is 
more compact.  It does not combine chemical and math-
ematical systems of notation and, as a result, is less 
cluttered and more readable.  For either reaction 14 or 
15, the fractionation factor would be 
 18αc/w = Rc/Rw (18) 
where c and w designate calcite and water, respectively. 

For a kinetic isotope effect, the fractionation factor is 
equal to the ratio of the isotope-specific rate constants.  It 
is sometimes denoted by β rather than α.  In physical 
organic chemistry and enzymology, however, β is gener-
ally reserved for the ratio of isotope-specific equilibrium 
constants while α stands as the observed isotopic frac-
tionation factor. 

There are no firm conventions about what goes in the 
numerator and the denominator of a fractionation factor.  
For equilibrium isotope effects it’s best to add subscripts 
to α in order to indicate clearly which substance is in the 
numerator and, for kinetic isotope effects, readers must 
examine the equations to determine whether an author 
has placed the heavy or the light isotope in the 
numerator. 

Reversibility and systems.  Given a fractionation 
factor, isotopic compositions of reactants and products 
can usually be calculated once two questions have been 
answered: 
  1.  Is the reaction reversible? 
  2.  Is the system open or closed? 

Figure 2.  Examples of equilibrium and kinetic
isotope effects. 

Figure 1.  Schematic representation of the relation-
ship between an isotope effect (a physical phenom-
enon) and the occurrence of isotopic fractionation (an
observable quantity). 
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An open system is one in which both matter and energy 
are exchanged with the surroundings.  In contrast, only 
energy crosses the boundaries of a closed system. 

Reversibility and openness vs. closure are key con-
cepts.  Each is formally crisp, but authors often sew 
confusion.  If a system is described as “partially closed,” 
readers should be on guard.  If the description means that 
only some elements can cross the boundaries of the 
system, the concept might be helpful.  If partial closure 
instead refers to impeded transport of materials into and 
out of the system, the concept is invalid and likely to 
cause problems. 

Openness covers a range of possibilities.  Some open 
systems are at steady state, with inputs and outputs 
balanced so that the inventory of material remains 
constant.  In others, there are no inputs but products are 
lost as soon as they are created.  These cases can be 
treated simply, others require specific models. 

Reversible reaction, closed system.  In such a 
system, (1) the isotopic difference between products and 
reactants will be controlled by the fractionation factor 
and (2) mass balance will prevail. 

To develop a quantitative treatment, we will consider 
an equilibrium between substances A and B, 
 A  B (19) 
The isotopic relationship between these materials is 
defined in terms of a fractionation factor: 
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where the Rs are isotope ratios and the δs are the 
corresponding δ values on any scale of abundances (the 
same scale must be used for both the product and the 
reactant).  The requirement that the inventory of mater-
ials remain constant can be expressed inexactly, but with 
good accuracy, in terms of a mass-balance equation: 
 δΣ = fBδB + (1 – fB)δA (21) 
where δΣ refers to the weighted-average isotopic com-
position of all of the material involved in the equilibrium 
(for equation 14 or 15, it would refer to all of the oxygen 
in the system) and fB refers to the fraction of that 
material which is in the form of B.  By difference, the 
fraction of material in the form of A is 1 – fB. 

Rearrangement of equation 20 yields: 
 δA = αA/BδB + (αA/B – 1) (22) 
The second term on the right-hand side of this equation 
is commonly denoted by a special symbol: 
 α - 1 ≡ ε (23) 
Equation 22 then becomes: 

 δA = αA/BδB + εA/B (24) 
(Like δ, ε is often expressed in parts per thousand.  For 
example, if α = 1.0077, then ε = 0.0077 or 7.7‰.  
Dimensional analysis reliably indicates the form required 
in any calculation.  In equations 24-29, all terms could be 
dimensionless or could be expressed in permil units.  
The dimensionless form is required in equation 20, 
where δ is added to a dimensionless constant, in equa-
tions 39 and 40, where use of permil units would unbal-
ance the equations, and in equations 41 and 42, where δ 
and/or ε appear as exponents or in the arguments of 
transcendental functions.) 

Substituting for δA in equation 21, we obtain 
 δΣ = fBδB + (1 – fB)(αA/BδB + εA/B) (25) 

Solving for δB, we obtain an expression which allows 
calculation of δB as a function of fB, given αA/B and δΣ: 
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If equation 24 is rearranged to express δB in terms of δA, 
αA/B, and εA/B, and the result is substituted for δB in 
equation 21, we obtain a complementary expression for 
δA: 
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Equations 26 and 27 are generally applicable but 
rarely employed because adoption of the approximation 
αA/B ≈ 1 yields far simpler results, namely: 
 δA = δΣ + fBεA/B (28) 
and 
 δB = δΣ - (1 – fB)εA/B (29) 
Graphs depicting these relationships can be constructed 
very easily.  An example is shown in Figure 3.  For fB = 
1 we must have δB = δΣ and for fB = 0 we must have δA 
= δΣ.  As shown in Figure 3, the intercepts for the other 
ends of the lines representing δA and δB will be δΣ ± 
εA/B.  If αA/B < 1, εA/B will be negative and A will be 
isotopically depleted relative to B.  The lines represent-
ing δA and δB will slope upward as fB → 0.  If αA/B > 1 
then A would be enriched relative to B and the lines 
would slope downward. 

There are two circumstances in which the approxi-
mation leading to equations 28 and 29 (i. e., αA/B ≈ 1) 
must be examined.  The first involves highly precise stu-
dies and the second almost any hydrogen-isotopic frac-
tionations.  As an example of the first case, Figure 4 
compares the results of equations 26 and 27 to those of 
28 and 29 for a system with αA/B = 1.0412.  This is, in 
fact, the fractionation factor for the exchange of oxygen 
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between water and gas-phase carbon dioxide at 25°C 
(where A is CO2 and B is H2O).  The solid and dotted 
lines in the larger graph represent the more accurate and 
the approximate results, respectively.  The lines in the 
smaller graph in Figure 4 represent the errors, which 
significantly exceed the precision of measurement 
(which is typically better than 0.1‰). 

For many hydrogen-isotopic fractionations, α differs 
from 1.0 by more than 10%.  In such cases, the approxi-
mation fails and a magnifying lens is not needed to see 
the difference between the accurate and the approximate 
results.  An example is shown in Figure 5. 

Irreversible reaction, closed system.  The goal is to 
determine the isotopic relationship between the reactants 
and products over the course of the reaction, starting 
with only reactants and ending with a 100% yield of 
products.  We’ll consider the general reaction R → P 
(Reactants → Products).  If the rate is sensitive to 
isotopic substitution, we’ll have αP/R ≠ 1, where 
 αP/R ≡ RP,i/RR (30) 
In this equation, αP/R is the fractionation factor, RP,i is 
the isotope ratio (e. g., 13C/12C) of an increment of 
product and RR is the isotope ratio of the reactant at the 
same time.  Following the approach of Mariotti et al. 
(1981) and expressing RP,i in terms of differential quan-
tities, we can write 
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where the ms represent molar quantities and the sub-
scripts designate the heavy and light isotopic species of 
the Product and Reactant.  In absence of side reactions, 
dmhP = -dmhR and dmlP = -dmlR.  Employing these 
substitutions, the equation can be expressed entirely in 
terms of quantities of reactant: 
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Figure 3.  General form of a diagram depicting iso-
topic compositions of species related by a reversible
chemical reaction acting in a closed system. 
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Figure 4.  Graphs showing results of both accurate
and approximate calculations of isotopic composi-
tions of reactants and products of a reversible reac-
tion in a closed system.  The dotted lines in the upper
graph are drawn as indicated in Figure 3 and by equa-
tions 28 and 29.  The solid lines are based on equa-
tions 26 and 27.  The differences between these treat-
ments are shown in the smaller graph. 
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Separating variables and integrating from initial condi-
tions to any arbitrary point in the reaction, we obtain 
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where the subscript zeroes indicate quantities of lR and 
hR at time = 0. 

It is convenient to define f as the fraction of reactant 
which remains unutilized (i. e., 1 - f is the fractional 
yield).  Specifically: 
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Avoiding approximations introduced by Mariotti et al. 
(1981), we rearrange this equation to yield exact substi-
tutions for the arguments of the logarithms in equation 
33.  For example: 
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Which yields 
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Similar rearrangements yield 
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So that equation 33 becomes 
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Which can be rearranged to yield 
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an expression which duplicates exactly equation V.17 in 
the rigorous treatment by Bigeleisen and Wolfsburg 
(1958).  Without approximation, this equation relates the 
isotopic composition of the residual reactant (RR) to that 
of the initial reactant (RR,0), to the isotope effect (αP/R), 
and to f, the extent of reaction. 

If the abundance of the rare isotope is low, the 
coefficient for f, (1 + RR,0)/(1 + RR), is almost exactly 1.  
In that case, equation 39 becomes 
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Because quantities with equal logarithms must them-
selves be equal, we can write 
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Equation 41 is often presented as “The Rayleigh Equa-
tion.”  It was developed by Lord Rayleigh (John William 
Strutt, 1842-1919) in his treatment of the distillation of 
liquid air and was exploited by Sir William Ramsey 
(1852-1916) in his isolation first of argon and then of 
neon, krypton, and xenon.  The ratios in these cases were 
not isotopic.  The concept of isotopes was introduced by 
Frederick Soddy (1877-1956) in 1913, long after Strutt 
and Ramsey had been awarded the Nobel Prizes in phys-
ics and chemistry, respectively, in 1904.  Instead, the 
ratios in Rayleigh’s conception pertained to the abun-
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Figure 5.  Graph depicting isotopic compositions
of reactants and products of a reversible reaction in a
closed system with an α value typical of hydrogen
isotope effects. 
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dances of Ar, Ne, Kr, and Xe relative to N2 and, as the 
distillation proceeded, relative to each other. 

Figure 6 indicates values of RR that are in accordance 
with equation 41 (viz., the line marked R; on the 
horizontal axis, “yield of P” = 1 – f).  If the objective is 
to use observed values of δP and/or δR in order to 
evaluate αP/R, a linear form is often desirable.  One 
which is linear and exact is provided by equation 39.  
Values of δ must be converted to isotope ratios and the 
initial composition of the reactant must be known.    
Regression of ln(RR/RR,0) on ln[f(1 + RR,0)/(1 + RR)] 
will then yield εP/R as the slope. 

By use of approximations, Mariotti et al. (1981) 
developed less cumbersome forms.  The first is derived 
by rewriting equation 40 with the argument of the 
logarithm in the delta notation.  Rearrangement then 
yields 
 ( ) ( ) fln1ln1ln P/RR,0R εδδ ++=+  (42) 
This is an expression of the form y = a + bx.  Regression 
of ln(δR + 1) on lnf yields a straight line with slope εP/R. 

 A second form is very widely applied.  Noting that 
ln[(1 + u)/(1 + v)] ≅ u – v when u and v are small relative 
to 1, Mariotti et al. (1981) simplified eq. 42 to obtain 
 δR = δR,0 + εP/R·lnf (43) 
This is also an expression of the form y = a + bx.  More-
over, it is an equation in which all terms can be expres-
sed in permil units.  Regression of δR on lnf will yield 
εP/R as the slope and δR,0, which need not be known 
independently, as the intercept. 

The approximations leading to equations 42 and 43 
can lead to systematic errors.  These are examined in 
Figure 7, which is based on values of δ and ε that are 
typical for 13C.  Equation 42 is based on the approxi-
mation that mlR/mlR,0 does not differ significantly from 
mR/mR,0 (cf. eq. 34).  This is evidently much more 
satisfactory than the approximation leading to equation 
43, which produces systematic errors that are larger than 
analytical uncertainties for values of f < 0.4.  Equation 43 
should never be used in hydrogen-isotopic calculations, 
for which the approximation u ≈ v << 1 is completely 
invalid. 

Equations 39-43 pertain to values of δR, the isotopic 
composition of the reactant available within the closed 
system.  Figure 6 also shows lines marked P and P′ rep-
resenting respectively the isotopic compositions of the 
pooled product and of the product forming at any point 
in time.  The relationship between R and P′ always 
follows directly from the fractionation factor: 

Figure 6.  Schematic representation of isotopic
compositions of reactants and products for an irrever-
sible reaction in a closed system. 
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Equation 43

Equation 42

εP/R = -30‰ (eq. 43) = -0.030 (eq. 42)
δR,0 = -8‰ (eq. 43) = -0.008 (eq. 42)
RSTD = 0.011180

Figure 7.  Errors in values of δR calculated using
equations 42 and 43. 
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As noted in Figure 6, this leads to a constant isotopic 
difference (designated B in the Figure) between R and P′.  
Initially, both the pooled product, P, and P′ are depleted 
relative to R by the same amount.  As the reaction pro-
ceeds, the isotopic composition of P steadily approaches 
that of the initial reactant.  The functional relationship 
can be derived from a mass balance: 
 mR,0δR,0 = mRδR + mPδP (45) 
substituting mR/mR,0 = f and mP/mR,0 = 1 - f, combina-
tion of equations 43 and 45 yields 
 δP = δR,0 – [f/(1 – f)]εP/R·lnf (46) 
an expression which shows that the regression of δP on 
[f/(1 – f)]·lnf will yield εP/R as the slope. 

Systematic errors associated with equation 46, sum-
marized graphically in Figure 8, are smaller than those in 
equation 43 (note the differing vertical scales in Figs. 7 
and 8). 

In practical studies of isotope effects, the most vexing 
problem is usually not whether to accept approximations 
but instead how to combine observations from multiple 
experiments.  The problem has been explored systemati-
cally and very helpfully by Scott et al. (2004), who have, 
in addition, concluded that calculations based on equa-
tion 42 are most likely to provide the smallest uncertain-
ties.  Notably, they recommend regression of lnf on ln(δR 
+ 1), thus necessitating transformation of the regression 
constants in order to obtain a value for εP/R.  Although 

both f and δR are subject to error, use of a Model I linear 
regression, and thus assuming that errors in δR are small 
in comparison to those in f, is recommended. 

Reversible reaction, open system (product lost).  
Atmospheric moisture provides the classical example of 
systems of this kind.  Water vapor condenses to form a 
liquid or solid which precipitates from the system.  
Vapor pressure isotope effects lead to fractionation of the 
isotopes of both H and O.  The process of condensation 
is reversible, but the evolution of isotopic compositions 
is described by the same equations introduced above to 
describe fractionations caused by an irreversible reaction 
in a closed system.  The heavy isotopes accumulate in 
the condensed phases.  Consequently, the residual reac-
tant (the moisture vapor remaining in the atmosphere) is 
described by increasingly negative values of δR.  The 
curves describing the isotopic compositions have the 
same shape as those in Figure 6, but bend downward 
rather than upward. 

Reversible or irreversible reaction, open system at 
steady state.  A schematic view of a system of this kind 
is shown in Figure 9.  A reactant, R, flows steadily into a 
stirred reaction chamber.  Products P and Q flow from 
the chamber.  The amount of material in the reaction 
chamber is constant and, therefore, 
 QPR JJJ +=  (47) 
Where J is the flux of material, moles/unit time. 

  The relevant fractionation factors are 
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and 
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It doesn’t matter whether these fractionations result from 
reversible equilibria or from kinetically limited processes 
that operate consistently because residence times within 
the reactor are constant.  As a result of these processes, 
the isotopic difference between P and Q can also be 
described by a fractionation factor 
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-0.1
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Equation 46

εP/R = -30‰
δR,0 = -8‰

Figure 8.  Errors in values of dP calculated using
equation 46. 

Figure 9.  Schematic view of an open system which
is supplied with reactant R and from which products P
and Q are withdrawn. 
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Given these conditions, isotopic fractionations for 
any system of this kind are described by equations 26 
and 27  (or by eq. 28 and 29 if a ≈ 1), with P and Q 
equivalent to A and B and R equivalent to the material 
designated by Σ.  The value of fB is given by JQ/JR. 

Systems of this kind range widely in size.  The 
treatment just described is conventional in models of the 
global carbon cycle, in which the reaction chamber is the 
atmosphere + hydrosphere + biosphere, R is recycling 
carbon entering the system in the form of CO2, and P and 
Q are organic and carbonate carbon being buried in 
sediments.  The value of αR/Q, the fractionation between 
CO2 and carbonate sediments is accordingly ≈ 0.990.  
The value of αR/P, the fractionation between CO2 and 
buried organic material is ≈ 1.015.  Combination of these 
factors as in equation 50 leads to the fractionation 
between organic and carbonate carbon, αP/Q ≈ 0.975. 

The treatment is also appropriate for isotopic frac-
tionations occurring at an enzymatic reaction site.  In this 
case, the reaction chamber is the microscopic pool of 
reactants available at the active site of the enzyme, R is 
the substrate, P is the product, and Q is unutilized sub-
strate (thus αR/Q = 1.000).  Fractionations occuring in 
networks comprised of multiple systems of this kind 
have been described by Hayes (2001). 

Irreversible reaction, open system (product 
accumulated).  Plants exemplify systems of this kind.  
Carbon and hydrogen are assimilated from infinite 
supplies of CO2 and H2O and accumulate in the biomass.  
The problem is trivial, but a particular detail requires 
emphasis.  The fixation of C or H can be represented by 

 R → P (51) 
The corresponding isotopic relationship can be described 
by a fractionation factor 

 
1
1P

R

P
P/R +

+==
RR

R
δ
δα  (52) 

The relationship between δR and δP is then described by 
 P/RRP/R εδαδ +=P  (53) 
This equation is often simplified to this form: 
 P/RR εδδ +=P  (54) 
For example, to estimate the δ value of the CO2 that was 
available to the plant, an experimenter will often refer to 
“a one-to-one relationship” and subtract εP/R (typically ≈ 
-20‰) from the δ value of the biomass.  For carbon, no 
serious error will result.  The relationship is nearly “one-
to-one” (slope = αP/R ≈ 0.980). 

For hydrogen, however, this approach leads to 
disaster.  Any experimenter dealing with εP/R ≈ -200‰, a 
value typical of fractionations affecting deuterium, 
should remember that the slope of the corresponding 
relationship must differ significantly from 1 and that 
equation 53 cannot be replaced by equation 54.  This 
comparison between fractionations affecting carbon and 
those affecting hydrogen is summarized graphically in 
Figure 10. 

Figure 10.  Comparison of fractionations affecting
carbon and hydrogen.  In each case, the broken line
represents a “one-to-one” approximation and the
solid line represents the accurate relationship
described by the equation.  The approximation is
essentially valid for carbon but seriously in error for
hydrogen. 
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