Effects of Elevated pCO<sub>2</sub> on Calcareous Plankton

Victoria J. Fabry, David N. Faber, Richard A. Feely, and James C. Orr

# Changes in carbonate chemistry from atmospheric CO<sub>2</sub> increase



Rate of change is probably 100 times greater than that which occurred at end of recent ice ages

Wolf-Gladrow et al., 1999

# Changes in seawater CO<sub>2</sub> chemistry and impacts to biota

The Ocean in a High CO<sub>2</sub> World UNESCO, May 2004

# Workshop on the Impacts of Increased CO<sub>2</sub> on Marine Calcifiers

#### NSF/NOAA/USGS, April 2005

Ocean Acidification Due to Increasing Carbon Dioxide, Report of The Royal Society, released June 2005

# Emerging consensus

- For many calcifying organisms investigated, calcification progressively decreases as the seawater becomes more acidified (i.e., pCO<sub>2</sub> increases, [CO<sub>3</sub><sup>2-</sup>] and CaCO<sub>3</sub> saturation state decrease)
- The "adverse effect on calcification is one of the most obvious and **possibly most** serious of the likely environmental impacts of ocean acidification."

-Raven et al., 2005. The Royal Society

# **Major planktonic calcifiers**

|                                         | # Extant species | Mineral<br>form | Generation<br>time |
|-----------------------------------------|------------------|-----------------|--------------------|
| Coccolithophores<br>(autotrophs)        | ~ 200            | calcite*        | days               |
| Foraminifera<br>(heterotrophs)Fr. Spero | ~ 30             | calcite         | weeks              |
| <b>Pteropods</b><br>(heterotrophs)      | ~ 32             | aragonite       | months<br>to year? |

B. Seibel

# Changing carbonate chemistry can impact different temporal and spatial scales



# **Coccolithophores**

#### pCO<sub>2</sub> 280-380 ppmv



Emiliania huxleyi

#### pCO<sub>2</sub> 780-850 ppmv



# Calcification decreased

- 9 to 18%







Gephyrocapsa oceanica

Manipulation of CO<sub>2</sub> system by addition of HCl or NaOH Riebesell et al.(2000); Zondervan et al.(2001).



from U. Riebesell & B. Rost

irom U.

### Mesocosm study Bergen 2000

 Total organic carbon (TOC) production: No difference between pCO<sub>2</sub> treatments

 Particulate inorganic carbon (PIC) production: declined in high pCO<sub>2</sub> treatment

 Ratio of PIC/TOC: Lower in high pCO<sub>2</sub> treatment



'Glacial' 'Present' 'Year 2100'

24.6±0.4

22.9±1.4

30-

20

24.2±1.9

Delille et al. (2005)

# Enhanced formation of transparent exopolymer particles (TEP) with elevated *p*CO<sub>2</sub>

#### **During bloom**

#### Later in bloom



Higher carbon export through TEP production, even though calcification was reduced at  $pCO_2$ 700 ppmv

Engel et al. (2004); Delille et al. (2005)

# Foraminifera

## Shell mass is positively correlated with [CO<sub>3</sub><sup>2-</sup>]

Orbulina universa

Globigerinoides sacculifer



Manipulation of CO<sub>2</sub> system by addition of Na<sub>2</sub>CO<sub>3</sub> and/or HCI or NaOH

#### Bijma et al. (2002)

# Foraminifera

## Shell mass is positively correlated with [CO<sub>3</sub><sup>2-</sup>]

Orbulina universa

Globigerinoides sacculifer



-4 to -8% decline in calcification at 2xCO<sub>2</sub> -6 to -14% decline in calcification at 3xCO<sub>2</sub>

Bijma et al. (2002)

## **Pteropods**

#### Collected in subarctic Pacific Respiratory CO<sub>2</sub> forced $\Omega_A < 1$ Shells of live animals start to dissolve within 48 h























## What we know

Direct measurements of the short-term calcification response in 4 coccolithophorid species (out of 200 spp)
Interactions of nutrients with elevated pCO<sub>2</sub> in *Emiliania huxleyi*

Measured response of 2 foraminifera species (out of ~35 species), using shell mass as a proxy for calcification.

Information on the qualitative response of 1 pteropod species (out of ~ 32 species) when aragonite saturation state < 1</p>

## **Critical Research Needs**

**Calcification Response** 

> Measure calcification responses of multiple taxa

- Additional coccolithophore species
- Foraminifera and pteropods
- Other calcareous plankton (e.g., ostracods, larvae of benthic molluscs and echinoderms)

Examine interactions of multiple controls on calcification (e.g., pCO<sub>2</sub>, temperature, nutrients, light)

Mechanistic understanding of calcification process

Capacity of calcifiers to adapt to elevated pCO<sub>2</sub>

Impacts of elevated pCO<sub>2</sub> on species surviorship and fitness

## **Critical Research Needs**

**Ecosystem Response** 

Shifts in relative abundance and distribution of calcifying species

- Non-calcifying species may outcompete calcifiers
- Geographical ranges of calcifying species may shift
- Vertical distributions of calcifying species may shoal with decreasing CaCO<sub>3</sub> saturation state
- Changes in food webs and other species interactions
- > Biogeochemical cycles

 Shoaling of aragonite and calcite saturation horizons in several oceanic regions will lead to increased CaCO<sub>3</sub> dissolution within water column
Changes in export of organic C and CaCO<sub>3</sub> Investigation of ecosystem impacts requires field process studies in multiple oceanic regions

Which pelagic ecosystems are most at risk?









# Which pelagic ecosystems are most at risk?

- Regions where aragonite saturation states are predicted to shoal to surface or near-surface by year 2100
  - High latitudes, particularly the Southern Ocean and subarctic Pacific
- Ecosystems in which aragonite-producers are important components
  - Pteropods in the Southern Ocean and subarctic Pacific

#### Where should process studies be conducted?

**Aragonite Saturation Levels in 2099** 



#### Where should process studies be conducted?

**Aragonite Saturation Levels in 2099** 



#### Galapagos region: Strong pH gradient with depth



Millero et al. (1998)