Age Characteristics in a Multidecadal Arctic Sea Ice Simulation

using CICE version 4.0

Elizabeth Funke, Los Alamos National Laboratory

Cecilia Bitz, University of Washington

Ice age: So What?

- Can be deduced from satellite observations
- Related to ice physical properties (albedo, salinity, thickness)
- Might be useful for prediction of near-future ice pack
- Seasonal ice pack implies simpler logistics/shipping
- Ecosystem ramifications

I. G. Rigor and J. M. Wallace, Geophys. Res. Lett. **31**, 2004

September 1981

September 2002

Observations

J. C. Comiso, Geophys. Res. Lett. 29, 2002

All use satellite-derived ice concentration
Most use ice velocity (buoy, AVHRR, etc.)
Some use ice thickness (elastic-gravity waves, laser altimeter)

Thickness proxy

Maslanik et al., Geophys. Res. Lett. 34, 2007

CICE

	version 3.14	version 4.0
-	energy conserving, multi-layer thermodynamics	multi-layer snow
	ice thickness distribution with 5 categories and open water	multiple-scattering radiation
	variables/tracers (for each thickness category):	
	ice area fraction	ice age
	ice/snow volume in each vertical layer	melt ponds
	ice/snow energy in each vertical layer	algal ecosystem
	surface temperature	
	elastic-viscous-plastic (EVP) dynamics	
	incremental remapping advection	
	energy-based, multi-category ridging and ice strength	
	nonuniform, curvilinear, logically rectangular grids	tripole grids
	Fortran 90	regional configuration
	parallelization via the Message Passing Interface (MPI)	cache-based decomposition
	netCDF or binary input/output	more coupling/forcing options
	users in 12 countries, dozens of institutions	available: web, subversion repository

Configuration and Forcing

 320×384 (1°) displaced-pole grid

air temperature humidity wind precipitation

modified CORE atmo forcing 1958 - 2006

SST salinity deep ocean heat flux

radiation

CCSM/POP ocean output monthly climatology

AOMIP

March ice thickness and age

September total area of age N 4-year running mean $\begin{array}{l} {\sf March} \\ {\sf cumulative \ area} \\ \geq {\sf age \ N} \end{array}$

March age in Fram Strait

Summary

— a consistent simulation of sea ice age, dynamics, and thermodynamics —

In agreement with observations:

- accelerating loss of perennial ice over last 3 decades
- a large spatial-scale, multi-year, average sea ice thickness—age relation holds
- anomalously high flushing of older ice through Fram Strait in high-index AO years led to declining average ice age

In addition:

- age is not a good proxy for sea ice thickness at smaller scales
- during more neutral AO years, age recovers but area, thickness and volume do not
 younger ice classes have again declined since 2000

In coming decades, it is possible that the age of the Arctic ice pack will fluctuate between younger and older ice types, sometimes exhibiting bimodal age distributions, before becoming completely dominated by seasonal ice.

AOMIP

Ice age: a diagnostic

- reasonably simple to implement
- comparable with observations
- additional insight for model comparisons?